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Abstract

The use of machine learning methods for the prediction of reaction yield is an emerging area.

We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields,

using combinatorial data. Molecular descriptors used in regression tasks related to chemical reac-

tivity have often been based on time-consuming, computationally demanding quantum chemical

calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints

and molecular graphs) are quicker and easier to calculate, and are applicable to any molecule.

In this study, SVR models built on structure-based descriptors were compared to models built on

quantum chemical descriptors. The models were evaluated along the dimension of each reaction

component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models

out-performed the quantum chemical SVR models, along the dimension of each reaction compo-

nent. The applicability of the models was assessed with respect to similarity to training. Prospec-

tive predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to

validate the generalisability of the models, with particular interest along the aryl halide dimension.
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1 Introduction

Advances in medicinal chemistry rely on the discovery and synthesis of novel molecules. Time,

cost and efficiency pressures in the pharmaceutical industry are key drivers in accelerating drug

design and development. The success of artificial intelligence and machine learning in other fields,

such as image recognition and text processing, has sparked increased interest in their application

to drug discovery.1–3 This attention includes the design and optimisation of small molecules. The

availability of large reaction datasets and high-performance computing have been key in the devel-

opment of computer-aided chemistry,4 for example in: molecular design,5 retrosynthetic planning

tools,6–10 reaction prediction10–12 and the optimisation of reaction conditions.13–15

Whilst the prediction of biological activities and molecular properties using quantitative structure-

activity or structure-property relationship (QSAR/QSPR) models has been well-studied,1,16 reac-

tivity prediction, has been explored much less. This is largely due to a lack of appropriately curated

data, for example, on reaction yield and enantiomeric excess (%ee). Performing a large number of

experimental reactions is expensive, time-consuming, resource-consuming and requires synthetic

chemists. High-throughput chemistry, along with batch and flow systems, have recently opened up

opportunities to generate reaction data for use in machine learning.17–19

Support vector machines (SVM) are a supervised learning technique that use labelled training

data to predict the label of unlabelled data.20 It can be applied to classification and regression prob-

lems, whereby the label is either a class/category or continuous value, respectively. For non-linear

relationships, SVMs use a kernel function to map data from an input space to a high-dimensional

feature space, where classification or regression is performed linearly. The kernel function com-

putes the inner product in the feature space directly, without applying the non-linear transfor-

mations at a higher computational cost. Different types of kernels have been assessed for both

classification and regression problems related to chemo-21 and bioinformatics.22–26 Applications

of SVMs in chemistry include bioactivity prediction, toxicity-related properties and physicochemi-

cal property prediction.1,26–29

A dataset consisting of chemical structures or reactions must converted to a machine readable

format before presented to a machine learning algorithm. Molecular descriptors are based on the

structural, physiochemical, electronic, or topological nature of molecules. Quantum chemical de-

scriptors are common for the prediction of chemical reactivity.19,30–32 They have also been used to
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build kernel-based QSAR and QSPR models, employing the Gaussian radial basis function (RBF)

kernel.33–35 Site-specific, atomic properties including NMR shifts, vibrational frequencies, vibra-

tional intensities and partial atomic charges have been used, along with global descriptors such as

HOMO (Highest Occupied Molecular Orbital) energies, LUMO (Lowest Unoccupied Molecular Or-

bital) energies, dipole moment and polar surface area. Three-dimensional steric descriptors have

been included in models of catalyst selectivity to improve predictions, by capturing important con-

formational information.31,32 Quantum chemical descriptors are typically calculated using density

functional theory (DFT), which can be computationally demanding. Therefore, quantum chemical

descriptors may not always be appropriate for large datasets, particularly if the dataset contains

large molecules. Site-specific descriptors require overlapping, common structural features within

the molecules.19,30,31 Reaction components that consist of a large variety of molecules with no

key shared atoms between them all, require alternative representations such as structure-based

descriptors.

A chemical hashed fingerprint defines the two-dimensional topology of a molecule in the form

of a vector of binary bits. For example, MACCS Keys36 depict the presence or absence of a set

of predefined structural fragments, while other fingerprints consider each atom and its local en-

vironment. Morgan circular fingerprints37 encode the neighbourhood within a particular radius

of each atom, whereas RDK fingerprints38 encode topological paths up to a specified path length.

Molecular fingerprints are fast and easy to calculate, making them a popular choice for represent-

ing molecules. They are established in machine learning for virtual screening39 and have emerged

in the prediction of reaction conditions.13,14 Sandfort et al.40 have shown that two-dimensional,

structure-based molecular fingerprints can achieve similar accuracy to quantum chemical descrip-

tors in the prediction of chemical reactivity. Reactions were represented by a concatenation of mul-

tiple fingerprint features (MFFs) and were used to build random forest models to predict reaction

yields and %ee.40 Fingerprints have also been utilised in kernel-based QSAR/QSPR relationship

models, using the Tanimoto or RBF kernel.27–29

Molecular graphs are another two-dimensional representation that depict the atoms and bonds

within molecules as a set of nodes and edges. The global molecular structure is considered, in

contrast to the local environments in fingerprints. The kernel trick can be applied to molecular

graphs to build machine learning models based on kernel methods, including SVMs.41 Kriege et

al.23 give a detailed overview of graph kernels and provide guidelines to aid researchers in the
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identification of successful kernels for different applications. Molecular graphs have been used

in combination with deep learning to generate graph convolutional network models for reaction

prediction,12 retrosynthetic route design7 and the prediction of reaction conditions.42

The prediction of reaction yields and enantiomeric excess are multidimensional problems as

reaction outcomes depend on multiple reaction parameters, including both categorical and contin-

uous variables. Small changes in the reaction conditions such as catalyst(s), reagent(s), solvent(s),

as well as temperature and pressure can result in radically different reaction outcomes or possibly

failed reactions. Even with the chemical intuition and experience of expert synthetic chemists,

chemical reactivity and reaction outcomes can be challenging to anticipate. High-throughput ex-

perimentation enables the screening of multiple discrete reaction variables (catalysts, reagents,

solvents) on a nanomolar scale.43,44 A matrix of parallel reactions is performed on a plate at the

desired temperature and pressure, with the same reaction time. The samples in each well are anal-

ysed using liquid/gas chromatography-mass spectrometry (LCMS/GCMS). There are challenges

associated with such high throughput chemistry. These include the handling of very small volumes

of liquid, evaporative solvent loss due to the use of volatile organics and solubility. The technique

has proved useful for the optimisation of reaction conditions, as well as the discovery of new chem-

ical reactivity in the pharmaceutical industry and academia.43,44 It is also a lower cost alternative

for generating reaction data with which to build machine learning models.19,32,40,45

An open-source combinatorial dataset, including reaction yields, was reported by Doyle et al.19

The experiments were performed on three 1536-well high-throughput plates with the use of the

Mosquito robot. The dataset contains a set of Buchwald-Hartwig amination reactions between

4-methylanaline and 15 aryl halides, under varying reaction conditions (Fig. 1). This type of

palladium catalysed C-N cross-coupling of amines and aryl halides, has attracted particular atten-

tion due to its wide application in the pharmaceutical industry.46–48 The aromatic amine products

are important building blocks for the synthesis of small drug-like molecules.49 However, this key

transformation can be limited if the substrates contain a five-membered ring with a heteroatom-

heteroatom bond. Despite the drug-like characteristics of such heterocycles, for example isoxa-

zoles, they are not common in approved pharmaceuticals.49 Potentially inhibitory isoxazole addi-

tives were included in the Buchwald-Hartwig reactions to simulate the effect of drug candidates

containing isoxazole heterocycles on the reaction performance. Glorius developed an approach to

identify catalysis inhibiting sub-structures by deliberately adding representative fragments to the
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catalytic mixture.50 This allowed assessment of the sub-structures’ effect on reaction performance,

without the need to synthesise and isolate isoxazole (or other) containing aryl halides as a prior

step to performing the coupling reactions.

Fig. 1 Buchwald-Hartwig amination reaction.19

The dataset reported by Doyle et al. was used to build machine learning models to predict reac-

tion yield.19 The reactions were represented using quantum chemical descriptors for each reaction

component (aryl halide, additive, base and catalyst ligand). Datasets with combinatorial structure

have an intrinsic pattern (i.e. the presence or absence of molecules) which can lead to large varia-

tions in the performance of a model depending on the train-test split of the data.51 By splitting the

data randomly, the reaction components in the test reactions will also be present in different train-

ing reactions. This type of in-sample test, where descriptors of molecules in the test reactions are

already observed in training, can result in an unreliable representation of model generalisability.

Models may fit the pattern of the data, rather than the relationship between chemically meaning-

ful descriptors and the observed data. These models would therefore struggle when extrapolating

to unseen chemical entities. One-hot encodings52 can be used as a baseline to validate model

performance and reveal potential patterns within the training data that may be fitted by models

built on chemically meaningful descriptors. This one-hot encoding of a reaction simply denotes

the presence or absence of each molecule in the form of a vector and encapsulates no informa-

tion beyond this. For a random 70-30% train-test split of the Buchwald-Hartwig data, Chuang and

Keiser showed models built on one-hot encodings exhibited near identical performance to quantum

chemical descriptors.52

A more appropriate assessment of model generalisability is to test models with unseen molecules,

not present in training, an out-of-sample test.51 A set of reactions containing specific molecules

(one or more reaction components) are withheld from model training and used to assess the pre-

dictive ability of the trained model. It is important to ensure models are trained on reactions

that cover a broad range of chemical space and observed variables. Doyle et al.19 designed out-
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of-sample test sets by splitting the reactions along the high-throughput plates, where each plate

contained a different set of additives. The random forest model built on quantum chemical de-

scriptors was trained using the reactions on plate 1 and 2, then tested using plate 3. Chuang

and Keiser identified that alternative splits of the plates resulted in a much lower performance,

suggesting the random forest model built on quantum chemical descriptors was limited.52 Split-

ting the data along plate lines was also not a reliable way to assess model generalisability as each

plate did not cover an even spread of chemical reactivity (Fig. S6a†). Out-of-sample test sets were

therefore redesigned using activity ranking, along the additive dimension.53 The mean yield of the

reactions containing each additive were ranked from lowest to highest. The highest and lowest

yielding additives were included in all training sets. Test sets were constructed from the remaining

additives by taking every fourth molecule. This was repeated three more times to create a total

of four test sets. Designing test sets using activity ranking ensured the model was trained on a

range of reaction yields.53 The quantum chemical random forest model showed good generalis-

ability across the additive dimension, with a mean coefficient of determination (R2) of 0.69 and

root-mean-squared-error (RMSE) of 14.9% in the additive ranked test. Doyle et al. did not perform

out-of-sample tests using activity ranking along the aryl halide dimension.

Support vector regression (SVR) models have been successful in the prediction of numerical

values20 related to QSAR and chemoinformatics.54 Although Doyle et al. reported that the random

forest method outperformed SVR in an initial in-sample test,19,53 we investigate the application

of kernel methods further in the prediction of reaction yields, with more rigorous testing. In this

study, SVR models are built on quantum chemical descriptors and two types of structure-based

descriptors: molecular graphs and molecular fingerprints. The effect of the molecular descriptors

on model performance, along the dimension of each reaction component, is investigated. To ensure

the reported generalisability of the models is reliable, test sets are designed using activity ranking

and the applicability of the models was assessed. A set of prospective reactions are outlined for

model validation and predictions of reaction yields are reported prior to experimentation.
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2 Methodology

2.1 Dataset

The data used in this study were 4608 single-step reactions reported by Doyle et al.19 This open

access dataset contains the reactants, products, reaction conditions and yields of a single reaction

class, the Buchwald-Hartwig amination reaction (Fig. 1). The reactions varied in 23 isoxazole

additives, 15 aryl/heteroaryl halides, three bases and four Buchwald ligands (Fig. S1, S2 and S3†).

The data was generated using ultra-high-throughput experimentation in three 1536-well plates,

giving a full matrix of reaction components including controls. Once the control reactions and

reactions containing additive seven were removed, a total of 3955 reactions remained. Additive

seven was removed as quantum chemical descriptors could not be calculated;19 see the ESI† for

details. The names of the aryl halide, additive, base and ligand in each reaction were converted

to SMILES (Simplified Molecular Input Line Entry Specification) strings.55 This was completed

using the NCI/CADD Chemical Identifier Resolver API56 with the exception of a few unrecognised

names, which were drawn and converted to SMILES strings in ChemDraw.

A set of prospective combinatorial reactions was compiled to validate the SVR models. The

proposed reactions will be performed experimentally using high-throughput chemistry to identify

reaction yields. All possible combinations of 59 aryl halides, three bases, four catalyst ligands

and two additives, formed a total of 1416 proposed reactions. Five of the aryl halides are present

in the Doyle et al.19 dataset and will be used as standards. The remaining aryl halides cover

ortho, meta and para substituents, with a range of electron withdrawing and electron donating

groups (Fig. S4†). The base, DBU, and catalyst ligand, BrettPhos, were selected along with the

two higher yielding bases and ligands from the Doyle et al. dataset: MTBD, BTMG, t-BuXPhos

and t-BuBrettPhos (Fig. S3†). The prospective reactions will also be performed without a catalyst

to investigate whether the reactions of the ortho-substituted halopyridines are proceeding via an

alternative reaction pathway. As the aim of these reactions is to assess model generalisability,

particularly along the aryl halide dimension, the reactions will be carried out, with and without, a

single isoxazole additive: 3-methylisoxazole (Fig. S1†).
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2.2 Molecular Descriptors

Quantum Chemical Descriptors. A combination of calculated molecular, atomic and vibrational

properties formed a set of quantum chemical descriptors for each reaction (Table 1). The quantum

chemical descriptors for the Doyle et al. dataset were calculated by Doyle et al.19 The molecular

descriptors included molecular volume, surface area, ovality, molecular weight, EHOMO, ELUMO,

electronegativity, hardness and dipole moment. The atomic descriptors, NMR shifts and elec-

trostatic charge, were calculated for shared atoms in each reaction component. The common

molecular vibrational modes across the set of molecules for each reagent class were identified.

The vibrational frequencies and infrared transition intensities were calculated for the common

modes. The Spartan ’14 interface for the Q-Chem quantum chemical software package57,58 was

used to calculate 120 descriptors per reaction (19, 27, 10 and 64 descriptors for the additive, aryl

halide, base and ligand, respectively) using the density functional B3LYP with the 6-31G(d) basis

set.59,60 The descriptors were standardised by centring the data to have zero mean and scaling to

unit variance. The same method was used to calculate the quantum chemical descriptors for the

prospective reactions; computational details can be found in the ESI†.

Table 1 Format and Notation of the Quantum Chemical Descriptors, Molecular Fingerprints, Molecular
Graphs and One-hot Encodings for a Single Reaction

Reaction Components Additive Aryl Halide Base Ligand

Quantum Chemical
Descriptors

[ DAd
1 · · · DAd

19 DAH
1 · · · DAH

27 DB
1 · · · DB

10 DL
1 · · · DL

64 ]

Fingerprints [ · · · 0 1 · · · ] [ · · · 0 1 · · · ] [ · · · 0 1 · · · ] [ · · · 0 1 · · · ]

Concatenated Finger-
prints

[ · · · 0 1 · · · · · · 0 1 · · · · · · 0 1 · · · · · · 0 1 · · · ]

Graphs [ GAd ] [ GAH ] [ GB ] [ GL ]

One-hot Encodings Ad1 · · · Ad22 AH1 · · · AH15 B1 B2 B3 L1 · · · L4

[ 1 · · · 0 1 · · · 0 1 0 0 1 · · · 0 ]

Molecular Fingerprints. The topology of molecules can be represented by molecular finger-

prints. Three types were implemented using the RDKit package: MACCS Keys,36 RDK finger-

prints38 and Morgan circular fingerprints.37 Fingerprints are hashes (i.e. binary bit vectors) of

a specified length, set to 1024-bit for this study (see the ESI† for further discussion), except the

MACCS fingerprint which is 167-bit by definition. The bits within a MACCS fingerprint define the

8



(a)

(b)

Fig. 2 Schematics of how (a) RDK fingerprints and (b) Morgan fingerprints are calculated, using the
chlorine atom in 1-chloro-4-ethylbenzene as an example. These processes would be repeated for each
atom in the molecule.
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presence or absence of predefined substructures/fragments, called MACCS Keys. A total of 166

public MACCS Keys define the substructures/fragments as SMARTS strings. Note: There are 167

bits due to zero indexing in python, to allow for the original numbering of the MACCS keys (1-166),

i.e. every fingerprint begins with a zero.

RDK topological fingerprints and Morgan circular fingerprints are two-dimensional, topological

descriptors that define the connectivity of molecules. For the RDK fingerprints, fragments are

generated by topological paths starting from each atom up to a predefined path length (number

of bonds); the default 7 was used (Fig. 2a). The bond order and neighbour counts of each

fragment are used with a hash function to set the bits in the molecular fingerprint. Morgan circular

fingerprints, also called Extended Connectivity Fingerprints (ECFPs), initially set an identifier for

each atom based on the number of adjacent non-hydrogen atoms, number of bonds to "heavy"

atoms, atomic number, atomic mass, number of bonds to hydrogen atoms and whether the atom

is in a ring is assigned to each atom. Feature Morgan fingerprints are a variant, also known as

the Functional-Class fingerprints (FCFPs), that differ in the assignment of the atom identifier by

assigning a code for the atom’s role instead, e.g. hydrogen-bond acceptor and donor, aromatic,

halogen, basic or acidic. In both types of Morgan fingerprints, each identifier is iteratively updated

to include the identifier and bond order of neighbouring atoms (Fig. 2b) up to a specified radius.

Each iteration includes a larger circular environment around the atoms. Once the iterations are

complete, the identifiers are folded into the length of the bit vector using a hashing function. For

the purpose of this study, Morgan and feature Morgan fingerprints with radii of 1, 2 and 3 were

investigated.

Graph-based Descriptors. A molecular graph represents the topology of a molecule by a set of

nodes corresponding to the atoms, connected by a set of edges corresponding to the bonds. From

the SMILES string of each molecule in the dataset, the atomic symbol, the index of each atom, the

bond order, the index of each bond and the adjacency matrix were obtained using RDKit.38 This

information was parsed to a module within GraKel to generate molecular graph representations.61

One-hot Encodings. One-hot encodings of chemical reactions are binary vectors that denote the

presence or absence of each molecule in the dataset (Table 1). The reactions are represented

without using chemically meaningful information and by construction are not able to generalise
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to unseen chemical entities. Building machine learning models on one-hot encodings can reveal

underlying patterns in combinatorial datasets and should be used as a validation method.

2.3 Support Vector Regression Models

Machine learning models relating descriptors to reaction yield were developed using the SVR

method as implemented in scikit-learn.62 In ε-SVR, the aim is to find a function that deviates

from the observed variables by a maximum of ε for each training point. The following values were

considered for the ε hyperparameter: 1, 5 and 10. To prevent overfitting of the training data, slack

variables (ξ ) are introduced to allow for errors larger than ε. Only the points xi that fall outside of

the ε-insensitive tube contribute to the objective function, with their contribution being equal to

ξi or ξ ∗i .20 Eq. 1 describes the optimisation problem that is solved during the training of the SVR

algorithm.

min
w,ξ ,ξ ∗

1
2
‖w‖2 + C

n

∑
i=1

(ξi +ξ
∗
i )

subject to yi−wT xi ≤ ε + ξi

wT xi− yi ≤ ε + ξ
∗
i

ξi,ξ
∗
i ≥ 0

(1)

The hyperparameter, C, can be tuned to determine the toleration of points outside of ε. As

C increases, the tolerance increases. The following values were considered for C: 1, 10, 100 and

1000.

SVR uses a kernel function to map input data to a higher-dimensional feature space where re-

gression is performed linearly. The kernel functions (Table 2) explored were: linear, polynomial,

sigmoid, Gaussian radial basis function (RBF), Tanimoto and Weisfeiler-Lehman63 (WL). The Sig-

moid equation is not a valid kernel but has been successfully applied, see Schölkopf64 for further

details. The first four kernels were applied to the quantum chemical descriptors, concatenated

molecular fingerprints and one-hot encodings using scikit-learn, where the format of the descrip-

tors per reaction is a single vector (Table 1). The equations of these kernels between two reactions

(x and y) are shown in Table 2. The molecular fingerprints and molecular graphs are formatted

as a single entity per reaction component (Table 1). Tanimoto similarities between fingerprints
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were calculated using RDKit. For two molecules in a single reaction component represented by

molecular fingerprints (A and B), the Tanimoto similarity65,66 is defined as

TA,B =
c

a+b− c

where a and b are the number of bits set in fingerprints A and B, and c is the number of bits set in

common in A and B. Although small changes in the structure of small molecules can lead to large

changes in the Tanimoto similarity, it is a very well-established measure and thus appropriate for us

to consider. Weisfeiler-Lehman subtree (WL) graph kernels63 were calculated using GraKel. Kriege

et al.23 suggest there is little benefit in the combination of the WL graph kernel with non-linear

kernels. Therefore the WL graph kernel was used in combination with a linear kernel function and

we did not explore beyond this. To calculate the Tanimoto and Weisfeiler-Lehman kernels between

two reactions (x and y), the Hadamard product of reaction component kernels was taken (Table

2). This is shown in Eq. 2, where ai, hi, bi and li are the additive, aryl halide, base and ligand in

reaction i, respectively.

k (x,y) = k (ax,ay)k (hx,hy)k (bx,by)k (lx, ly) (2)

Table 2 Kernel Equations for Reactions x and y (γ (> 0), c (≥ 0 for the polynomial kernel) and d (≥ 0) are
hyperparameters set to the default in scikit-learn: γ = 1.0/n f eatures where n f eatures is the number of features,
c = 1 and d = 3.)

Kernel Name Equation, k(x,y)
Linear xTy
Polynomial

(
γxTy+ c

)d

Sigmoid tanh
(
γxTy+ c

)
RBF exp

(
−γ || x− y ||2

)
Tanimoto Tax,ayThx,hyTbx,byTlx,ly
WL Kax,ayKhx,hyKbx,byKlx,ly

The descriptors must account for the missing molecules included in the proposed reactions.

For the descriptors that represent a reaction in the form of a single vector (i.e. quantum chemical,

concatenated molecular fingerprints and one-hot encodings), the bits corresponding to the missing

molecules were set to zero. Where descriptors represent a single entity per reaction component, the

missing molecules were incorporated in the calculation of the kernel of each reaction component.

For example, the graph kernel between two molecules (A and B) represented by molecular graphs
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is defined below.

K′A,B =


KA,B +1, if A and B are both present

2, if A and B are both missing

1, otherwise

If both molecules are present the kernel of the two molecules is the Weisfeiler-Lehman kernel

plus one, if both molecules are missing the kernel equals two, otherwise the kernel is equal to one.

This method is only applied to the datasets that include missing molecules.

2.4 Model Building and Evaluation

The hyperparameters of the SVR models (ε and C) were optimised in scikit-learn by performing

an exhaustive grid-search over the specified parameter grid (see section 2.3) on the training set,

using five-fold cross-validation. For each train-test split of the data, the training set was split into

five groups. In turn, each of the five groups was used to test a model trained on the remaining

four groups. The average performance statistics were calculated and compared to identify the best

combination of hyperparameters. This set of hyperparameters was used to build the SVR model

on the training set for the particular train-test split.

Test sets were designed to assess model generalisability to unseen molecules along each re-

action component (additive, aryl halide, base and ligand). The models were tested on a specific

set of molecules that were withheld from model training. Activity ranking was used to generate

the additive and aryl halide test sets, to ensure the models were trained on a range of reaction

yields.53 The mean yields of the reactions containing each additive and aryl halide were ranked

from lowest to highest. The highest and lowest yielding additives and aryl halides were included

in all training sets for the additive and aryl halide tests, respectively. Test sets were constructed of

every nth molecule where n = 4 for the additives (Table S2) and n = 3 for the aryl halides (Table

S3). Due to the small number of bases (three) and ligands (four) in the dataset, two leave-one-

out test were performed. In the first leave-one-out test, the dataset was split into three test sets

based on the base used in the reactions, herein called the leave-one-base-out. For the second test,

the dataset was split into four test sets based on the ligand used in the reactions, herein called

leave-one-ligand-out. In turn each test set was withheld from model training. The performances of

the regression models were evaluated by the coefficient of determination (R2) and RMSE for data
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points outside of the training set. The coefficient of determination can be negative if the mean of

the data is a better fit to the observed values than the predicted values, i.e. SSres > SStot , see Eq. 3.

R2 (y, ŷ) = 1− ∑
n
i=1 (yi− ŷi)

2

∑
n
i=1 (yi− ȳ)2 = 1− SSres

SStot
(3)

where ȳ = 1
n ∑

n
i=1 yi; ŷi is the predicted value of the i-th sample; yi is the corresponding observed

(experimental) value; and n is the total number of samples. The residual sum of squares, SSres

is the discrepancy between the observed and predicted values. The total sum of squares, SStot is

proportional to the variance of the data. All analysis was performed in scikit-learn. SVR models

built on one-hot encodings were used as a baseline, for comparison.

3 Results and Discussion

3.1 Diversity of the Train-Test Splits

The reactions in the Doyle et al.19 dataset cover a range of yields (Fig. 3), with the majority

low yielding (0 to 10%) and few high yielding (90 to 100%). It is important in an assessment

of model performance, to split the data into training and test sets that ensure an even spread of

chemical reactivity is included in each. Chuang and Keiser have shown that splitting this dataset

by high-throughput plate (where all inhibitory additives were present on a single plate) leads to an

inaccurate estimation of performance due to an uneven cover of reaction yields (Fig. S6a†).52 A

similar conclusion is expected when assessing the models along the aryl halide dimension, if split

based on halide or ring type (Fig. S6b† and S6c†). Splitting data using activity ranking ensures

models are trained and tested on similar distributions of reaction yields (Fig. S7). Details of the

activity ranking test sets, including the calculated mean reaction yields are presented in the ESI†.

It is important to assess whether the reactions in the test set are within the domain of applica-

bility. The similarity of test reactions to the training reactions was evaluated using the maximum

product of pairwise Tanimoto scores, calculated using the Morgan2 fingerprint, of the reaction

components. The maximum similarity to training reactions for the additive and aryl halide ranked

tests range from 0.30 to 0.65 and from 0.30 to 0.55, respectively (Fig. 4). The models are ex-

pected to predict instances with low maximum similarity scores less accurately than those with

high maximum similarity scores.
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Fig. 3 Distribution of experimental yields, excluding control reactions and reactions containing 5-phenyl-
1,2,4-oxadiazole (additive 7), corresponding to 3955 data points.

Fig. 4 Distributions of maximum similarity to training reactions for the additive ranked test sets (dark blue
bars) and aryl halide ranked test sets (pale pink bars). Maximum similarity to training was calculated
using the maximum product of pairwise Tanimoto scores (with the Morgan2 fingerprint) of the reaction
components.

3.2 Prediction of Reaction Yield

The performance of the yield prediction models built on quantum chemical descriptors, molecular

fingerprints and molecular graphs for the tests without activity ranking and with activity ranking

are shown in Table 3 and Table 4, respectively. The performance metrics are reported as the

average over the test sets for the specified split of the data. The effect of bit length and type of

molecular fingerprint on the performance of the SVR models is presented and discussed in the

ESI† (Table S4, Fig. S12, S13, S14, S15). The performance of the SVR models built on one-hot

encodings are reported to assess whether the models were fitting any underlying combinatorial

structure in the training reactions.
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Without Activity Ranking The following tests did not take into account the distribution of reac-

tion yields in the training and test sets: additive plate split, aryl halide ring type and halide splits.

The lower average performances of these tests (Table 3) in comparison to the activity ranked splits

(Table 4) underscore the importance of test set design.52,53 These splits of the data give a low, mis-

representative estimate of model performance, due to the uneven distribution of reaction yield

across the test sets (Fig. S6†). The average model performances for the base and ligand leave-

one-out tests were modest (Table 3, S11† and S12†). The SVR model built on the topological RDK

finerprint (R2 = 0.58) is the only model to outperform the one-hot encoding model (R2 = 0.53) in

the base leave-one-out test. For the ligand leave-one-out test, the quantum chemical model has a

poor performance across all ligand test sets (Table S12†). All models have a negative R2 for the

XPhos test set due to the uneven representation of yields in the training and test set (Fig. S5b†),

which resulted in overprediction of the reaction yields.

Table 3 Mean Performance Statistics for the Top Reaction Yield Prediction Models Built Using the SVR
Algorithmb

Reaction Component Split Descriptor Kernel R2 RMSE (%)
Additive Plate Quantum Chemical Polynomial 0.25 (0.26) 22.6 (1.7)

Morgan2 Tanimoto 0.54 (0.30) 17.3 (4.6)
Graphs WL 0.49 (0.34) 18.2 (4.7)
One-hot Encodings Polynomial 0.47 (0.28) 18.8 (3.9)

Aryl Halide Ring Type Quantum Chemical RBF −0.64 (0.65) 34.0 (12.8)
MACCS Fingerprint RBF 0.27 (0.08) 22.6 (5.3)
Graphs WL −0.04 (0.27) 26.4 (1.4)
One-hot Encodings Polynomial −0.21 (0.29) 28.6 (1.7)

Halide Quantum Chemical RBF −0.71 (0.82) 30.2 (5.1)
Morgan2 Fingerprint Tanimoto −0.22 (0.98) 24.4 (7.9)
Graphs WL −0.40 (1.22) 25.6 (9.8)
One-hot Encodings Polynomial −0.45 (1.10) 26.8 (7.8)

Base Leave-one-out Quantum Chemical RBF −0.04 (0.08) 27.1 (4.0)
RDK Fingerprint RBF 0.58 (0.17) 16.8 (3.5)
Graphs WL 0.53 (0.20) 18.0 (5.6)
One-hot Encodings RBF 0.53 (0.20) 18.0 (4.8)

Ligand Leave-one-out Quantum Chemical RBF −0.27 (0.68) 27.2 (2.4)
Morgan2 Fingerprint Tanimoto 0.39 (0.68) 16.2 (6.2)
Graphs WL 0.38 (0.84) 15.3 (6.2)
One-hot Encodings RBF 0.38 (0.70) 16.6 (4.3)

b R2 and RMSE statistics are reported in the format "mean (standard deviation)" for the specified test sets.

With Activity Ranking The performance of the yield prediction models built on quantum chemi-

cal descriptors, molecular fingerprints and molecular graphs for the additive and aryl halide ranked
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tests are shown in Table 4 and Fig. 5. The random forest model built on quantum chemical descrip-

tors from Doyle et al.53 was included for comparison. The performance of the SVR and random

forest models built on one-hot encodings are reported to assess whether the models were fitting

any underlying combinatorial structure in the training reactions.

A few trends in the performance of the algorithms, kernels and descriptors were present in

both the additive and aryl halide ranked tests. The SVR models built on one-hot encodings had

a better predictive performance than the random forest models built on the same one-hot encod-

ings. Random forest and methods based on decision trees may not handle well the sparsity that

one-hot encoding introduces into the dataset. This therefore sets a higher baseline for the SVR

models (additive split: R2 < 0.69, RMSE > 15.2%; aryl halide split: R2 < 0.37, RMSE > 20.7%)

than random forest, for model comparison. The one-hot encoding models in the aryl halide ranked

test have a much lower performance than in the additive ranked test. This could be due to the

aryl halide present in the reaction, generally having a larger effect on the reaction yield than the

additive (Fig. S11), base or ligand (Fig. S5) present. There are only four additives that are con-

sidered reaction poisons (additives 1, 4, 7 and 13) and hence have a large effect on the reaction

yield. One-hot encoding models tend to fit the intrinsic pattern in the combinatorial training data

(i.e. the presence/absence of each molecule). In the additive ranked test, the models learn the

reactivity of the aryl halides, bases and ligands in training and are able to predict the yield of

reactions in the test set to a relatively high level. However, in the aryl halide ranked test, the

models struggle to extrapolate to unseen aryl halides as they have a larger effect on the reaction

yield than the additives, bases and ligands that were fitted in training. This is supported by the

following observation. In the aryl halide ranked test, the predicted yields (made by the one-hot

encoding model) of the reactions containing the four inhibitory additives, that have a clear effect

on lowering the reaction yield, are closer to experimental values than most of the other additives.

If the molecules in the test set have a clear effect on the reaction yield and are also observed in

training, the model can learn the reactivity of these molecules and appear to extrapolate well. The

quantum chemical descriptors do not have a linear relationship to reaction yield, as the linear SVR

model predictions show no statistical correlation. Non-linear kernels (polynomial, RBF and sig-

moid) were considered, to transform the input data into higher dimensional feature space where

regression could be performed linearly. The performance of the quantum chemical, concatenated

molecular fingerprints and one-hot encoding SVR models, implementing the polynomial and RBF

17



kernels, tend to be higher than the linear and sigmoid kernels. The SVR algorithm performs bet-

ter with structure-based descriptors (molecular fingerprints and molecular graphs) compared to

the quantum chemical descriptors. It is encouraging that the Morgan fingerprints capture enough

chemical information that they out-perform the quantum chemical descriptors which were adopted

by Doyle et al.19

Table 4 Mean Performance Statistics for the Reaction Yield Prediction Models Built Using the SVR Algo-
rithm and Baseline Random Forest (RF) Models in the Activity Ranked Testsb

Descriptor Kernel
Additive Split Aryl Halide Split

R2 RMSE (%) R2 RMSE (%)
Quantum Chemical Linear 0.06 (0.41) 26.0 (5.7) <−1 (>1) > 100 (> 100)

Polynomial 0.60 (0.07) 17.3 (1.8) −0.57 (1.50) 29.9 (13.5)
RBF 0.53 (0.10) 18.5 (2.3) 0.36 (0.11) 20.8 (2.5)
Sigmoid 0.35 (0.04) 21.9 (1.2) 0.04 (0.26) 25.2 (2.3)

Morgan1 Linear 0.50 (0.09) 19.3 (2.1) 0.56 (0.05) 17.3 (1.4)
Polynomial 0.71 (0.11) 14.4 (2.9) 0.68 (0.02) 14.8 (0.9)
RBF 0.70 (0.12) 14.8 (3.1) 0.70 (0.03) 14.2 (1.1)
Sigmoid 0.44 (0.05) 20.4 (1.2) 0.40 (0.06) 20.1 (1.2)
Tanimoto 0.73 (0.12) 13.9 (3.3) 0.65 (0.05) 15.3 (1.0)

Morgan2 Linear 0.57 (0.08) 17.9 (2.0) 0.52 (0.06) 18.0 (1.5)
Polynomial 0.72 (0.10) 14.4 (2.8) 0.65 (0.05) 15.4 (1.6)
RBF 0.71 (0.11) 14.4 (3.0) 0.65 (0.06) 15.4 (1.6)
Sigmoid 0.44 (0.05) 20.4 (1.2) 0.39 (0.03) 20.3 (1.1)
Tanimoto 0.72 (0.11) 14.4 (2.8) 0.61 (0.03) 16.3 (1.1)

Morgan3 Linear 0.61 (0.09) 17.0 (2.1) 0.52 (0.07) 18.0 (1.8)
Polynomial 0.73 (0.10) 14.1 (2.8) 0.62 (0.08) 16.0 (2.2)
RBF 0.73 (0.11) 14.0 (3.0) 0.63 (0.08) 15.9 (2.1)
Sigmoid 0.43 (0.05) 20.5 (1.1) 0.37 (0.03) 20.7 (1.3)
Tanimoto 0.70 (0.10) 14.7 (2.5) 0.55 (0.04) 17.4 (1.3)

MACCS Linear 0.50 (0.11) 22.1 (1.4) 0.52 (0.01) 18.0 (0.7)
Polynomial 0.71 (0.11) 19.0 (2.1) 0.63 (0.02) 15.8 (0.9)
RBF 0.70 (0.10) 19.4 (1.9) 0.60 (0.05) 16.5 (1.4)
Sigmoid 0.44 (0.06) 23.7 (1.1) 0.21 (0.08) 23.0 (0.9)
Tanimoto 0.56 (0.13) 17.9 (2.7) 0.61 (0.04) 16.3 (1.2)

RDK Linear 0.55 (0.05) 18.3 (1.1) 0.52 (0.04) 17.9 (1.1)
Polynomial 0.63 (0.07) 16.6 (1.4) 0.64 (0.09) 15.5 (2.1)
RBF 0.63 (0.07) 16.6 (1.4) 0.64 (0.09) 15.4 (2.1)
Sigmoid 0.26 (0.04) 23.4 (0.6) 0.24 (0.07) 22.7 (1.1)
Tanimoto 0.63 (0.05) 16.6 (1.3) 0.57 (0.13) 17.0 (2.4)

Graphs WL 0.67 (0.18) 15.3 (4.2) 0.61 (0.08) 16.2 (1.7)
One-hot Encodings Linear 0.59 (0.05) 17.4 (1.5) 0.31 (0.06) 21.6 (0.5)

Polynomial 0.68 (0.05) 15.4 (1.5) 0.35 (0.04) 20.9 (0.5)
RBF 0.69 (0.05) 15.2 (1.6) 0.37 (0.05) 20.7 (0.6)
Sigmoid 0.49 (0.03) 19.4 (1.0) 0.24 (0.03) 22.6 (0.4)

Quantum Chemical RF N/A 0.68 (0.11) 15.3 (3.1) 0.21 (0.09) 23.0 (0.6)
One-hot Encodings RF N/A 0.59 (0.11) 17.4 (2.8) −0.04 (0.34) 26.2 (3.5)

b R2 and RMSE statistics are reported in the format "mean (standard deviation)" for the specified test.
Performance statistics for the individual test sets can be found in Table S5†, S6†, S7†, S8†
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Fig. 5 Predictive accuracy (coefficient of determination) comparison of the SVR models built on quantum
chemical descriptors, molecular fingerprints (Morgan1-3, RDKit, MACCS), molecular graphs and one-hot
encodings with a range of kernels, in the activity ranked tests. Marker size is proportional to R2. Numeric
values can be found in Table 4.

The best descriptor-kernel combinations for the additive ranked split were Quantum-Polynomial,

Morgan1-Tanimoto, Graphs-WL and One-hot-RBF, with R2 in the range 0.60 to 0.73 and RMSE

17.3% to 13.9% (Table 4). Each of these best performing models are significantly different to one

another, according to the χ2 test (p-value < 10−5 for all combinations, Table S9) under the null

hypothesis that the distributions of the residual yield (Fig. S16a) are the same. The best quantum

chemical SVR model (Quantum-Polynomial) has a wider distribution of residual yields than the

other highest performing SVR models (Fig. S16a), meaning larger associated errors. The random

forest algorithm learns more from the quantum chemical descriptors (R2 = 0.68, RMSE = 15.3%)

than the SVR algorithm (R2 ≤ 0.60, RMSE ≥ 17.3%). The performance of the Morgan fingerprints

are relatively robust, with only minor variations depending on the choice of kernel and radius.

The Morgan1-Tanimoto, Morgan3-Polynomial and Morgan3-RBF SVR models have the highest R2

of 0.73 and RMSE of 13.9%, 14.1% and 14.0%, respectively. Morgan1-Tanimoto was chosen as the

best SVR model built on molecular fingerprints, for further analysis, as it has the lowest RMSE

score and required the smallest radius of neighbouring atoms to be encoded in the fingerprints.

Model performances along the aryl halide dimension were lower than along the additive di-

mension for the baseline and quantum chemical models (Table 4, Fig. 5). Models built on

structure-based descriptors had a similar performance to those in the additive ranked test. The best

descriptor-kernel combinations for the aryl halide ranked test were Quantum-RBF, Morgan1-RBF,
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Graphs-WL and One-hot-RBF. There is a large difference in performance between the structure-

based descriptors, with an R2 of 0.70 and 0.61 for the Morgan1-RBF and Graphs-WL respectively,

compared to the Quantum-RBF (0.36) and One-hot-RBF (0.37) models. The similarity in perfor-

mance between the quantum chemical and one-hot encoding models suggests that the quantum

chemical models may only be fitting the intrinsic pattern in the training set and therefore, struggle

to extrapolate to unseen aryl halides. In general, there is an even distribution of residual yields

around 0% for the best descriptor-kernel combinations (Fig. S16b). However, the models have a

tendency to underpredict the reaction yields of the unseen aryl halides as shown by the smaller,

secondary peaks (between 12.5% to 37.5%) in the distribution of residual yield (Fig. S16b). This

is partially due to the under-representation of higher reaction yields, resulting in poorer model

performances (Fig. S17b). This issue is also observed in the additive ranked test (Fig. S17a).

3.3 Prediction Performance by Similarity to Training Data

Assessing model performance with respect to maximum similarity to training reactions helps to

identify molecules that may be outside the domain of applicability. Maximum similarity to training

is defined as the maximum product of pairwise Tanimoto scores (between molecules in the training

and test sets) of the reaction components. If all combinations of the additives, aryl halides, bases

and ligands are in the dataset (this is not always the case as reactions with missing yield data

were removed), the maximum similarity to training is dependent upon the unseen molecules in

the test sets (i.e. the additives in the additive ranked test and the aryl halides in the aryl halide

ranked test). For example, if the reaction r1 = a1+h1+b1+ l1 is in the training set and the reaction

r2 = a2 + h1 + b1 + l1 is in the test set, then the similarity score would only be dependent on the

additives in the reactions as shown in Eq. 4. The maximum similarity to training scores of the

additives and aryl halides for both activity ranking tests can be found in Table S10 in the ESI†.

Tr1,r2 = Ta1,a2Th1,h1Tb1,b1Tl1,l1 = Ta1,a2 ·1 ·1 ·1 = Ta1,a2 (4)

In the additive ranked test, the models performed poorly for reactions in the lowest maximum

similarity to training interval, 0.30 to 0.35 (Fig. 6a, S18a†). These reactions contain the additives:

benzo[c]isoxazole (additive 10) and benzo[d]isoxazole (additive 15). The performance of the

models, considering the additives individually, are generally good for additive 15 (Fig. S19d) but
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very poor for additive 10 (Fig. S19a). The models overpredict the yield of reactions containing the

inhibitory additive 10 and result in negative R2 and high RMSE scores. These reactions may there-

fore be outside the domain of applicability. Generally, the performance of the models improves

with maximum similarity to training (Fig. 6a, S18a†), as expected. The models have a high RMSE

(≥ 15%) for the reactions in the maximum similarity to training intervals 0.35 to 0.40 (additives

1, 3, 5, 14) and 0.55 to 0.60 (additives 4, 6, 9). This is mainly due to the underprediction of

high yielding reactions, which is a result of the under-representation of higher reaction yields (Fig.

3, S17a). The Morgan1-Tanimoto, Graphs-WL and One-hot-RBF SVR models demonstrate good

prediction statistics for reactions with a maximum similarity to training greater than 0.35.

(a)

(b)

Fig. 6 RMSE against maximum similarity to training for (a) the additive ranked test and (b) the aryl halide
ranked test.

For the aryl halide ranked test, there are no obvious trends between maximum similarity to
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training and the performance statistics (Fig. 6b, S18b†). The higher yielding reactions containing

ethyl substituted aryl halides (0.30 to 0.40) and halopyridines (0.45 to 0.50) are underpredicted

by the models (Fig. S20†), due to the under-representation of higher reaction yields (Fig. 3,

S17b). Reactions containing the trifluoromethyl and methoxy substituted aryl halides (0.50 to

0.55) are generally predicted well by the models. It is important to consider the coefficient of

determination (R2) and RMSE together, when assessing goodness of fit.67 This is demonstrated

in the model performance of reactions containing 1-chloro-4-ethylbenzene (aryl halide 7) and 1-

chloro-4-(trifluoromethyl)benzene (aryl halide 1). These reactions are low yielding and therefore

only cover a small range of reaction yields. While this leads to low R2 scores across all models (Fig.

S20), the RMSE scores are good (≤ 15%) for at least half of the models.

3.4 Predictions of Prospective Reactions

A set of combinatorial reactions was compiled to validate the generalisability of the SVR models,

particularly along the aryl halide dimension. Here, we present predicted yields of these reactions

prior to experimentation. The SVR model with the best predictive performance for each descriptor

in the aryl halide ranked test was employed: Quantum-RBF, Morgan1-RBF, Graph-WL and the

One-hot-RBF baseline. The aryl halides in the prospective reactions cover a range of maximum

similarity to training scores between 0.15 to 0.55 (Fig. 7). This excludes the five aryl halides that

are present in the Doyle et al. training set, where the maximum similarity to training was 1.00. In

the aryl halide ranked test, the models predicted the yield of reactions containing the aryl halide

with the lowest maximum similarity to training score (0.30 to 0.35) reasonably well (Fig. 6b).

The models may however, struggle to extrapolate to the aryl halides in the prospective reactions

with maximum similarity scores lower than 0.30 (over half of the unseen aryl halides). All models

except Morgan1-RBF were identified as the best kernel-descriptor combinations in the base and

ligand leave-one-out tests. The Morgan1-RBF model showed comparable correlation to the top

SVR model built on molecular fingerprints in both leave-one-out tests (Table S11, S12†). The poor

performance of the quantum chemical model in these tests indicates that the model is limited and

may be unable to extrapolate to unseen bases and ligands.

Two tests were designed to investigate the predictive ability of the SVR models identified as the

top descriptor-kernel combinations in the aryl halide ranked test. The first test considered all 1416

proposed reactions for the comparison of the structure-based descriptors and one-hot encodings.
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Fig. 7 Distributions of maximum similarity to training for all prospective reactions. Maximum similarity to
training was calculated using the maximum pairwise Tanimoto scores (using the Morgan2 fingerprint) of
the aryl halides in the training and test set.

These descriptors can be applied to any molecule and are quick and easy to calculate. In this test,

the Morgan1-RBF, Graph-WL and One-hot-RBF models were trained on the Doyle et al. dataset,

including additive control reactions (i.e. no additive present); a total of 4135 reactions. The

second test only considered a subset of the proposed reactions to compare the quantum chemical

descriptors with the structure-based descriptors. The quantum chemical descriptors have a limited

application range as they require predefined, key shared atoms to be present for each reaction

component. The subset excluded any molecules where quantum chemical descriptors could not be

calculated; this included aryl iodides (see the ESI† for details). This prospective test set contained

a total of 882 reactions, a combination of 49 aryl halides, two additives, three bases and three

ligands. The SVR models were trained on a subset of 2757 reactions from the Doyle et al. dataset,

including additive control reactions. The predicted yields of each reaction, calculated in both tests,

are shown in Fig. S21, S22†.

The models built on chemically meaningful descriptors predicted the yield of in-sample reac-

tions, present in both the training and test set, accurately, with R2 ≥ 0.95 and RMSE ≤ 6.6% (Fig.

S23, S24†). In both tests, the one-hot encodings model showed negligible coefficient of deter-

mination (R2 ≤ 0.02) between the experimental and predicted yields. An arbitrary number was

predicted irrespective of the aryl halide present in the reaction. The predictions were primarily

dependent on the type of base in the reaction, as shown by the three clear peaks in the distribution

of predicted reaction yield (Fig. 8, S25†). The peaks at approximately 35%, 40% and 50% in the

distribution of predicted yield for the subset of proposed reactions (Fig. 8), correspond to DBU,
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BTMG and MTBD, respectively (Fig. S26†). The same trend was observed when all prospective

reactions were considered (Fig. S27†). There is minimal difference in the distributions of pre-

dicted yield of the reactions containing each base for the chemically meaningful SVR models. The

baseline one-hot encodings model was unable to extrapolate to unseen aryl halides and could not

fit any underlying patten in the training data. Therefore, it is anticipated that the models built

on quantum chemical and structure-based descriptors were learning from chemically meaningful

information.

Fig. 8 Distributions of predicted reaction yield for the subset (882) of validation reactions.

Reactions performed without a catalyst were included in the prospective reactions to evaluate

the following synthetic hypothesis; the reactions containing ortho-substituted halopyridines are

proceeding via an alternative reaction pathway, leading to higher reaction yields. No examples of

these reactions were provided in training and therefore, may be beyond the limits of the models.

The Quantum-RBF model predicted the yield of reactions without the presence of a catalyst to

be 17.1%, irrespective of the other reaction components. Predictions of this arbitrary number

suggest these reactions are outside the domain of applicability for the Quantum-RBF model. These

predictions largely contributed to the distinct peak in the distribution of predicted yield between

15% and 20% (Fig. 8). The graph-based model predicted a smaller range of yields for reactions

performed without a catalyst (∼ 30%) compared to the reactions containing a catalyst (& 50%,

Fig. S28, S29†). This could indicate a potential limitation in the ability of the Graph-WL model to

predict reactions without a catalyst. The chemically meaningful models predicted similar trends

in the reactivity of the catalyst ligands (Fig. S28, S29†), following the order: BrettPhos (where

applicable) < no catalyst < t-BuBrettPhos < t-BuXPhos.
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The prospective reactions were designed to validate the applicability of the SVR models to

unseen aryl halides that are not present in the training set. The models built on chemically

meaningful descriptors predicted higher yields for reactions containing aryl bromides and aryl

iodides (where applicable) compared to reactions containing aryl chlorides (Fig. S30, S31†). Us-

ing the reactions containing the ortho-halo-substituted isopropylbenzene and para-halo-substituted

methylpyridazine molecules as examples, there is an increase in mean predicted yield from the

chloride to bromide to iodide (Table 5). This trend is plausible, as it follows the trend in the

training reactions (Fig. S6c†). Comparing the mean yield of reactions containing 1-chloro-4-

isopropylbenzene (∼ 30% to 45%) with a similar alkyl-substituted aryl halide used in training (1-

chloro-4-ethylbenzene, ∼ 4%), suggests the models may have overpredicted these reaction yields.

Aryl halides with substituents at the ortho position are sterically hindered which could potentially

lower the reactivity. As there are no reactions containing ortho-substituted aryl halides in the train-

ing set, it is possible that the predictions were influenced by the higher yielding ortho-substituted

pyridines (Table 5). The pyridazine molecules contain a nitrogen atom at both the ortho and meta

positions. It is interesting that the structure-based models again appear to make predictions based

on the higher yielding ortho-substituted pyridines, whereas the quantum chemical model predicts

reactivity closer to the lower yielding meta-substituted pyridines (Table 5).

Despite the similar trends between the quantum chemical model and the structure-based mod-

els, the predictions are only slightly correlated (Pearson correlation coefficient of 0.53 with Morgan1-

RBF and 0.68 with Graph-WL, Fig. S32†). The structure-based models are expected to be more ro-

bust than the quantum chemical models for extrapolating to unseen chemical entities. The predic-

tions of the two structure-based models are reasonably correlated and have a Pearson correlation

coefficient of 0.90 (Fig. S33†).
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Table 5 Mean Experiment Yields of Aryl Halides in the Training Set (Top) and Mean Predicted Yields of
Aryl Halides in the Prospective Reactions (Bottom)c

Mean Experimental Yields (%) of Aryl Halides in the Training Set

3.9 (3.8) 43.5 (24.6) 52.6 (24.2)

44.1 (26.8) 53.3 (26.5) 59.3 (26.6)

14.9 (16.2) 43.9 (29.1) 52.3 (29.0)

Mean Predicted Yields (%) of Aryl Halides in the Prospective Reactions

Subset All Subset All Subset All
Quantum-RBF 31.2 (3.6) N/A 64.6 (6.8) N/A N/A N/A
Morgan1-RBF 39.6 (4.0) 35.3 (9.7) 62.9 (4.3) 56.5 (12.7) N/A 60.5 (10.5)
Graph-WL 45.9 (3.7) 45.7 (9.0) 57.3 (4.3) 55.2 (10.4) N/A 56.9 (9.6)
One-hot-RBF 42.5 (7.8) 46.0 (8.8) 42.5 (7.8) 46.0 (8.8) N/A 46.0 (8.8)

Subset All Subset All Subset All
Quantum-RBF 10.8 (5.4) N/A 25.2 (3.3) N/A N/A N/A
Morgan1-RBF 48.5 (4.9) 42.1 (12.4) 63.5 (4.5) 56.9 (12.3) N/A 61.7 (9.9)
Graph-WL 51.2 (4.2) 47.0 (10.0) 58.6 (4.3) 56.3 (10.6) N/A 56.5 (9.9)
One-hot-RBF 42.5 (7.8) 46.0 (8.8) 42.5 (7.8) 46.0 (8.8) N/A 46.0 (8.8)

c Experimental and predicted yields are reported in the format "mean (standard deviation)". Reactions
performed without a ligand were excluded.
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4 Conclusions

SVR models built on structure-based and quantum chemical descriptors, for the prediction of reac-

tion yield, were compared. The models were applied to a set of Buchwald-Hartwig reactions and

the performance was assessed along the dimension of each reaction component. The models built

on structure-based descriptors (molecular fingerprints and graphs) demonstrated good prediction

statistics and outperformed the quantum chemical SVR models, along the dimension of each re-

action component. The models built on molecular fingerprints consistently surpassed the other

descriptors in each test, proving fingerprints to be robust descriptors. The moderate performances

of the SVR models in the base and ligand leave-one-out tests, suggest they may benefit from in-

cluding a larger variety of bases and ligands in training. The applicability, ease and quickness of

calculating molecular fingerprints makes them particularly attractive (Table 6).

Table 6 Comparison of the Molecular Descriptors used in this Studyd

Descriptor Representation Speed
Applicability Generalisability
to molecules Additive Aryl Halide

Quantum Chemical Calculated Properties + Subset + +
Molecular Fingerprints Structural Topology +++ All ++++ ++++
Molecular Graphs Structural Topology +++ All ++ +++
One-hot Encodings Presence or Absence ++++ All +++ ++

d Speed and generalisability are ranked from poor (+) to good (++++). The ranking of generalisability
refers to the performance of the top SVR model for each descriptor.

Predictions of reaction yield for the proposed reactions, not present in the Doyle et al. dataset,

were reported prior to experimentation. Similar trends in the reactivity of the molecules along

each reaction component were observed across the chemically meaningful models. The reaction

yields predicted by the structure-based models are reasonably correlated. Based on the perfor-

mance of the models in the preceding tests and the analysis of the predicted yields of the proposed

reactions, it is anticipated that the structure-based descriptors will extrapolate better than the

quantum chemical model. The reaction yields of the proposed reactions will be attained using

high-throughput experimentation, and used to validate and assess the limits of the SVR models.

Overall the results presented show the applicability of the structure-based SVR models to the

prediction of reaction yield, across all dimensions of a single reaction class. The machine learning

models learnt from a relatively small (a few thousand instances) combinatorial dataset, proving

their use in facilitating the optimisation of reaction conditions for the synthesis of new molecules.
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In the future, it would be interesting to explore the transferability of the structure-based SVR

models to different reaction types or other regression related problems.

Data and Software Availability

The data and code used in this study is available online at https://github.com/alexehaywood/

yield_prediction. The prospective reactions and corresponding predictions are included in

the supporting information.
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