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Abstract

In this paper, we demonstrate a novel application of the Transformer self-attention

mechanism. Our network, the Compositionally-Restricted Attention-Based network,

referred to as CrabNet, explores the area of structure-agnostic materials property pre-

dictions when only a chemical formula is provided. Our results show that CrabNet’s

performance matches or exceeds current best practice methods on nearly all of 28 to-

tal benchmark datasets. We also demonstrate how CrabNet’s architecture lends itself

towards model interpretability by showing different visualization approaches that are

made possible by CrabNet’s design. We feel confident that CrabNet, and its attention-

based framework, will be of keen interest to future materials informatics researchers.
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Introduction

Materials scientists constantly strive to have better understanding, and therefore predictions,

of materials properties. This began with the collection of empirical evidence through re-

peated experimentation, resulting in mathematical generalizations, theories, and laws. More

recently, computational methods have arisen to solve a large variety of problems that were

intractable to analytical approaches alone.1,2

As experimental and computational methods have become more efficient, high-quality

data has opened up a new avenue to materials understanding. Materials informatics (MI) is

the resulting field of research which utilizes statistical and machine learning (ML) approaches

in combination with high-throughput computation to analyze the wealth of existing mate-

rials information and gain unique insights.2–4 As this wealth has increased, practitioners of

MI have increasingly turned to deep learning techniques to model and represent inorganic

chemistry, resulting in approaches such as ElemNet, IRNet, CGCNN, SchNet and Roost.5–9

In specific cases,7,8,10–15 including CGCNN and SchNet, the compounds are represented using

their chemical and structural information.

Modeling approaches based on crystal structure are an excellent tool for MI. Unfortu-

nately, there are many material property datasets that lack suitable structural information.

An example of this is the experimental band gap data gathered by Zhou et al.16 Conversely,

many databases such as the Inorganic Crystal Structure Database (ICSD) and Pearson’s

Crystal Data (PCD) contain an abundance of structural information, but lack the asso-

ciated material properties of the recorded structures. In both cases, the applicability of

structure-based learning approaches are limited. This limitation is particularly evident in
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the discovery of novel materials, since it is not possible to know the structural information

of (currently undiscovered) chemical compounds a priori. Therefore, the development of

structure-agnostic techniques is well-suited to the discovery of novel materials.

A typical approach to structure-agnostic learning is done by representing chemistry as

a composition-based feature vector (CBFV).17 This allows for data-driven learning in the

absence of structural information. The CBFV is a common way to transform chemical com-

positions into usable features for ML and is generated from the descriptive statistics of a

compound’s constituent element properties. Researchers have effectively used CBFV-based

ML techniques to generate materials property predictions.17–25

One potential issue with the CBFV approach lies in the way the element vectors are

combined to form the vector describing the chemical compound. Typically, the individual

element vectors of the compound are scaled by the element’s prevalence (fractional abun-

dance) in the composition, before being used to form the CBFV. This step assumes that the

stoichiometric prevalence of constituent elements in a compound dictate their chemical sig-

nal, or contribution, to the material’s property. However, this is not true in all cases; an

extreme example of this is element doping. Dopants can be present in very small amounts

in a compound, but can have a significant impact on its electrical,23,26,27 mechanical,20,28–30

and thermal properties.31–34 In the case of a typical CBFV approach which uses the weighted

average of element properties as a feature, the signal from dopant elements would not sig-

nificantly change the vector representation of a compound. As a result, the trained ML

model would fail to capture a portion of the relevant chemical information available in the

full composition.

It is apparent that there is no generally-accepted best way to model materials property

behaviors. Different ML approaches lend themselves towards different modeling tasks. CGCNN

requires access to structural information, ElemNet operates within realm of large data, and

classical models excel when domain knowledge can be exploited to overcome data scarcity.35

To address the diversity of learning challenges, in Dunn et al., the Automatminer framework
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uses computationally-expensive searches to optimize classical modeling techniques. They

demonstrate effective learning on some data, but show shortcomings when deep-learning is

appropriate.36

In a similar spirit, we seek to overcome general challenges in the area of structure-agnostic

learning using an approach we refer to as the Compositionally-Restricted Attention-Based

network (CrabNet). CrabNet introduces the self-attention mechanism to the task of materials

property predictions, and dynamically learns and updates individual element representations

based on their chemical environment. To enable this, we use a unique featurization scheme

that represents and preserves individual element identity while sharing information between

elements. Self-attention is a procedure by which a neural network learns representations for

each item in a system based on the other items that are present. In this context, we treat

the chemical composition as the system and the elements as the items within that system.

This representation enables CrabNet to learn inter-element interactions within a compound

and use these interactions to generate property predictions.

To perform self-attention, we use the Transformer architecture, which emerged from

natural language processing (NLP) and is based on stacked self-attention layers.37–44 A

typical use of the Transformer architecture in NLP is to encode the meaning of a word

given the surrounding words, sentences, and paragraphs. Beyond NLP, other example uses

of the Transformer architecture are found in music generation,45 image generation,46 image

and video restoration,47–51 game playing agents,52,53 and drug discovery.54,55 In this work,

we explore how our attention-based architecture, CrabNet, performs in predicting materials

properties relative to the common modeling techniques Roost, ElemNet, and random forest

(RF) for regression-type problems.
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Results and Discussions

The results of this study are described in three subsections. First, we describe the collection

of materials property data used for benchmarking CrabNet. Second, we highlight the perfor-

mance of CrabNet when compared to other current learning approaches which rely solely on

composition. Third, we briefly outline how the self-attention mechanism in CrabNet enables

visualizations and inspectability unique to Transformer-based modeling.

Data and Materials Properties Procurement

For this work, we obtained both computational and experimental materials data for bench-

marking. Our benchmark data includes materials properties from the Matbench dataset as

provided by Dunn et al.36 In addition, materials properties data from a number of works6,56–59

are collected, which are referred to as the “Extended dataset”. We included 28 benchmark

datasets in total: 10 from the Matbench and 18 from the Extended datasets ranging from

312 to 341,788 instances of data.

The Matbench datasets were split using five-fold cross-validation following instructions

provided in the original publication.36 Materials properties in the Extended dataset were

split into train, validation, and test datasets. The full benchmark dataset, comprising the

Matbench and Extended datasets, were then used with Roost, CrabNet, ElemNet, and RF

models. The training and validation data were used for hyperparameter tuning. The test

data were held-out to provide a fair evaluation of performance metrics across all models. A

summary of the datasets is shown in Table 1.

All datasets are provided as pre-split csv files to facilitate future comparison to the

metrics reported in this paper. Additional data processing and cleaning details can also be

seen in the code on the dataset repository “mse_datasets”.60 To maintain consistent and

simple benchmark comparisons, we selected data suitable for regression tasks and ignored

structural information when present.
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Benchmark Comparisons

With the benchmark data described above, we generated materials predictions using the

publicly-available code repositories for Roost,9 CrabNet,69 and ElemNet.5

The performance of these benchmarked models is compared using the mean absolute

error between true values (y) and predicted values (ŷ), defined by MAE =
∑n

i=1 |y− ŷ|. This

allows for consistent comparison to past works.5–7,9

Table 2 shows the performance metrics from training and testing the models on all the

benchmark materials properties outlined above. Here we note that the models for Roost,

CrabNet, and ElemNet were all trained using the default model parameters provided with

their respective repositories. In contrast to Roost and ElemNet, the default parameters for

CrabNet were optimized using validation data from some of the same datasets on which we

benchmarked. Although it is possible this offers a small advantage to CrabNet’s performance,

we do not expect this to be significant due to CrabNet’s consistently strong performance on

all benchmark tasks.

We tested two versions of CrabNet. The default CrabNet uses a mat2vec embedding

when representing elements, similar to Roost. The second version of CrabNet (HotCrab)

uses one-hot encodings (in the form of atomic numbers) and fractional amounts to represent

each element in a composition. This is similar to ElemNet, as both models start without any

chemical information. The random forest (RF) model utilizes a Magpie-featurized CBFV to

represent chemistry. This is included as a performance baseline to match similar works.5,9,36

Overall, we see similar performance between Roost and the two versions of CrabNet

tested. Given the different architectures and modelling philosophies of Roost and CrabNet,

it is promising that both approaches converge towards the same performance metrics. We also

see that Roost, and both CrabNet versions, achieve consistent and significant improvements

to MAE compared to ElemNet and RF approaches. Interestingly, Table 2 shows that the

use of mat2vec instead of onehot with CrabNet improves prediction performance on all

materials properties except those present in the largest dataset (OQMD).
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Table 2: MAE scores of Roost, CrabNet, one-hot encoded CrabNet (HotCrab), and ElemNet
on the test dataset, compared with the random forest (RF) baseline. Cells are colored ac-
cording to relative MAE performance within each row (blue is better, and red is worse). A
NaN (not a number) value is reported for instances where the models failed to converge on a
given material property. Here we present model results trained using chemical information
(Roost, CrabNet), no chemical information (HotCrab, ElemNet), and a standard CBFV (RF).

The Matbench data provided by Dunn et al.36 was benchmarked using the Automatminer

tool. Their metrics are not included in Table 2, since all but two (expt_gap, and steels_yield)

of Automatminer’s models use structural information. Consequently, we focus on these two

materials properties when comparing CrabNet’s results to those from Automatminer. For
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these two metrics, CrabNet’s structure-agnostic approach outperforms the reported MAE

values from Automatminer on the same tasks (expt_gap: 0.416 eV vs. 0.339 eV for CrabNet;

steels_yield: 95.2GPa vs. 91.8GPa for CrabNet).

The performance of CrabNet on the steels_yield task is particularly interesting. The

steels_yield dataset contains compounds with small dopant amounts in large chemical sys-

tems (up to 13 elements per composition) and only 312 total data. CrabNet’s ability to learn

on this data-poor property, and outperform the baseline RF method (which is traditionally

better in the data-poor regime), is encouraging. We expected the steels_yield task to be

difficult for all deep learning approaches. Nevertheless, repeated training and validation

of CrabNet consistently produced error metrics equivalent, or better, than the best result

obtained by Automatminer (95.2GPa).

Visualizing Self-Attention

CrabNet’s modeling and visualization capabilities are enabled by its attention-based learn-

ing framework. In statistical machine learning (and many deep learning approaches akin to

ElemNet) the chemical composition of a compound is represented as a single CBFV. In con-

trast, Roost and CrabNet represent a composition as a set of element vectors. Distinct to

CrabNet, however, is the Transformer-based attention which learns to update these element

vectors using learned attention matrices. In Figure 1, we show example attention matrices

for each head of a CrabNet model trained on the property mp_bulk_modulus, using Al2O3

as the example composition. These matrices contain the information regarding how each

element (rows) is influenced by all elements in the system (columns). The values in these

attention matrices are used in the Transformer encoder to update the element vectors (see

Methods for details). A value of zero means that the element in the column is completely

ignored when updating the element in that row. A value of one means that the entire vector

update is based solely on that column’s element. Our implementation of CrabNet has three

layers, each with four attention heads, with each head using the same data to generate its

9



own independent attention matrix.

Figure 1: Displayed are the four attention heads (a, b, c, and d) from the first layer of
a CrabNet model trained on mp_bulk_modulus. Each row represents an element in the
system. Each column represents an element being attended to. Each element’s fractional
amount is shown on the x-axis. The values in the attention matrix are scores representing
element-element interactions for the compound. As an example, in head a), Al0.4 is attending
strongly (with an attention score of 0.92) to O0.6.

Shifting our focus to another CrabNet model trained on OQMD_bandgap data, we show

that in addition to visualization of the individual attention heads, we can also generate a

global view of attention from the perspective of individual elements. In Figure 2, we use

four periodic tables to visualize, for each attention head, the average attention that silicon

dedicates to elements when they are in the same composition. The darker colored elements

can be understood as highly influential when updating silicon’s vector representation.

Interestingly, each attention head has its own behavior, with some focusing on familiar

groups and columns in the periodic table. This behavior lends credibility to CrabNet since
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Figure 2: The average attention from each of the four attention heads (a, b, c, d) of a
CrabNet model trained on the OQMD_bandgap data is shown for systems containing Si.
The heatmap shows the average amount of attention that Si dedicates to the other elements
in silicon-containing compounds. The darker the coloring, the more strongly Si attends to
that element. We can see that each attention head exhibits its own behavior, and attends to
different groups of elements. Interestingly, head a) attends to common n-type dopants and
head c) attends to many transition metals, whereas heads b) and d) have unfamiliar element
groupings.

there is no inherent reason that data-driven learning should converge to chemical rules that

are familiar to materials scientists.

The preservation of elemental identity within a compound—as a result of the self-

attention mechanism—also enables CrabNet to generate property predictions in a way that

is unique to other approaches. Typically, one would collapse element information into a

single vector, and use that to generate the property prediction. In contrast, CrabNet uses

each element’s vector (resulting from the attention process) to directly predict the element’s

contribution to the property. Figure 3a shows the average contributions from each element

for a CrabNet model trained on AFLOW_bulk_modulus data. The darker colored elements

contribute more towards a compound’s bulk modulus value. Alternatively, elements can be
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visualized individually using their specific per-element contributions. In 3b we show distri-

bution plots for lithium and tungsten’s contributions to bulk modulus. From these plots, we

can see that CrabNet expects lithium to contribute little to overall bulk modulus, whereas it

expects tungsten to contribute largely. The visualizations from Figure 3 match closely—and

reinforce—expectations regarding which elements most influence bulk modulus. Exploration

of data in this manner hints at first steps towards model interpretability of CrabNet. We

expect these types of property visualizations to be useful for exploring and verifying model

and element behavior in detail.

Figure 3: Average contribution of all elements to Bulk Modulus predictions, computed from
the AFLOW_bulk_modulus dataset. (a) Plotted on a periodic table. (b) Plotted on his-
tograms showing the per-element contribution amounts of Li and W, respectively. The darker
colored elements in the periodic table contribute more towards a compound’s bulk modulus
value.

Finally, with per-element contributions in mind, we can demonstrate changes to CrabNet’s

expected material property behavior as a function of composition. To do this, we consider a

normalized chemical system consisting of atoms A and B, in the form of AxB1−x. We then

generate property predictions for all x ∈ {0.0, 0.02, ..., 1.0}. In Figure 4, we visualize the be-

havior of SixO1−x when predicting band gap with a model trained on the OQMD_Bandgap

data.

We first observe that the element contributions for both oxygen and silicon are similar

12



Figure 4: Model predictions over the SixO1−x system. The x axis is the fractional amount
of silicon. The y axis shows the predicted band gap value at a given composition. The blue
and red lines are the individual element contributions to the prediction. The gray shading
represents the aleatoric uncertainty for each prediction. Data from the validation set are
shown as X’s. We highlight, in red, the incorrectly reported ground truth value of SiO2 from
the OQMD dataset.

throughout the varied stoichiometry range. Second, we identify that the ground truth labels

for some SixO1−x compositions in the OQMD_Bandgap dataset do not match CrabNet’s

predictions. While SiO2 (normalized to Si0.33O0.66) is incorrectly labeled as a metal in the

OQMD dataset (with a band gap of 0 eV), CrabNet returns a non-zero band gap prediction

of 2.38 eV. Checking to see if every target is correctly labeled is impracticable given the

size of the dataset. The identification of these discrepancies was made possible through our

visualization of data. This alone is supportive of the visualization of data and the pursuit

of inspectable models.
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Methods

Self-attention and the CrabNet Architecture

Representing Composition

Chemical compositions are input using the atomic numbers and fractional amounts of their

constituent elements. The atomic numbers are used to retrieve element representations

(either mat2vec or onehot). The fractional amounts are used to obtain fractional embeddings

(described below). An element embedding matrix is generated by applying a fully connected

network to the element representations. A fractional embedding matrix is created from the

fractional embeddings. These matrices are then added together (element-wise) to generate

the element derived matrix (EDM, see Figure 5). Each row of the EDM (i-index) represents an

element and the columns (k-index) contain the element embeddings. We batch each unique

chemical composition onto a third dimension (the i-index). The resulting three-dimensional

tensor contains the input data for the CrabNet architecture.

Figure 5: Schematic illustration of the element-derived matrix (EDM) representation for
Al2O3, where B represents the batch, dmodel is the element features, and nelements represents
the number of elements. Composition slices, when concatenated across batch dimension i,
form an EDM tensor which is then used as the model input to CrabNet. When a chemical
formula has fewer elements than rows in the EDM, the extra data rows are filled with zeros.

We use the mat2vec element embeddings70 as our default source of chemical information

for each element (though there are many choices for element properties such as Jarvis,22
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Magpie,71 Oliynyk,18 or a simple onehot encoding). The mat2vec embedding has the advan-

tage of being pre-scaled and normalized, and having no missing elements or element features.

Regardless of the choice of element representation, the representation must be reshaped to

fit the the attention input dimensions of (dmodel). This is done using a learned embedding

network; the result is a matrix of size (nelements, dmodel). mat2vec.70 In addition to the default

training of CrabNet using the mat2vec embedding, a onehot embedding of the elements was

used to train an additional CrabNet model to better facilitate comparison with ElemNet.

The stoichiometric information for each element in the EDM is represented by two frac-

tional embeddings. The fractional embeddings are inspired by the positional encoder as de-

scribed in the seminal work by Vaswani et al.37 We use sin and cosine functions of various pe-

riods to project the fractional amounts into a high-dimensional space (dimension = dmodel/2)

where smooth interpolation between fractional values is preserved. The first part of the frac-

tional embedding represents the stoichiometry, using the normalized fractional amounts, on

a linear scale with a fractional resolution of 0.01. The second part of the embedding maps

stoichiometry using a log scale and spans 1× 10−6 to 1× 10−1. This log transformation of

the fractional embedding preserves small fractional amounts such as those present in dop-

ing. The two parts of the fractional embedding for all elements are concatenated across the

embedding dimension to obtain a matrix of size (nelements, dmodel).

Once the element and fractional embeddings are calculated and added together, we can

batch the finished EDMs. This gives the final input data of shape (ncompounds, nelements, dmodel),

where ncompounds is the total number of compounds in a given batch, nelements is the number

of rows in the EDM (inferred from the number of elements in the largest composition in a

given dataset), and dmodel is the size of the embeddings. Here, we also note that the exact

ordering of the element rows (j) in a compound in the EDM does not influence CrabNet due

to the permutation-invariant nature of the self-attention mechanism.
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CrabNet Network Structure

CrabNet contains two primary modules with the default hyperparameters as shown in Ta-

ble 3. The first module is a Transformer encoder with 3 layers and 4 attention heads in each

layer. The second module is a residual network that converts element vectors into element

contributions.

Table 3: List of default model parameters of CrabNet.

Parameter description default value

indims (input) dimension of element embedding 200 (mat2vec); 118 (onehot)
dmodel dimension for EDM and positional encoder 512
dff feedforward dimension for self-attention mechanism 2048
dk key dimension (equal to dq in this work) dmodel/H = 128
H number of attention heads per attention block 4
N number of stacked self-attention layers 3
resnodes number of nodes at each layer for residual network [1024, 512, 256, 128]
outdims (output) dimensions of residual network 3

To understand the Transformer encoder, we first describe the self-attention mechanism.

During self attention (Figure 6a), the EDM is operated on by three fully-connected linear

networks (FCQ, FCK, and FCV). These networks generate the query Q, key K, and value

V tensors. These tensors can be conceptualized as a learned high-dimensional space where

the model stores chemical behavior from the training data.

The K and Q tensors contain information regarding the magnitude to which elements

interact. The V tensor stores the information that is used to map from element to property

contribution. The dot product of each Q and KT tensor pair generates the relative element

importances in the system (Figure 6b). The importances are scaled using a constant
√
dk

and then normalized using a softmax function. This results in the self-attention tensor,

commonly referred to as the “attention map”. We denote this tensor as A. The matrix

multiplication of A with V updates the element-representations in the compound based on

the importance of each element.

Each of the four attention-heads independently performs self-attention with their own

Qi, Ki, Vi, and Zi tensors, where i is the head index. As a result, the network generates four
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Figure 6: Schematic of an attention block in the CrabNet architecture. (a) the initial pro-
jection of the input EDM into the Q, K and V tensors. (b) the scaled dot-product attention
operation obtaining the self-attention matrix and the updated Z element representation.
Here, the batch dimension is not shown to improve legibility.

different element representations at each layer. The individual Zi tensors are concatenated

across the last dimension to make the Z tensor (as seen in Figure 7a). The Z tensor is then

passed into a linear FC network which combines the element representations from each head.

The output of this FC network is an updated EDM′ (for each composition in the batch). This

process of converting an EDM into an updated EDM′ is referred to as a self-attention block.

CrabNet repeats the process of updating the EDM via the self-attention block three times

(hence, three layers) resulting in the final updated representations, denoted EDM′′. This

concludes the transformer encoder module.

Once the Transformer encoder has updated the element representations, each EDM′′ passes

through a fully-connected residual network hidden with layer dimensions of resnodes. The

residual network then transforms the EDMs into the shape (nelements, nelements, 3). We define

these final three vectors as the element-proto-contributions p′, element-uncertainties u′, and

element-logits (see Figure 7a). The element scaling factor s is obtained by taking the sig-

moid of the element-logits. The element-contributions are then obtained by multiplying the

element-proto-contributions p′ by their respective scaling factor s. This results in element-
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Figure 7: In a), we show a schematic of the CrabNet architecture including the input EDM,
the self-attention layers (repeated N times), the updated and final element representations
(EDM′ and EDM′′), the residual network, and the final model output. In b), we show how
element-contributions and prediction of the target and uncertainties are obtained. The
p′ and u′ vectors represent the element-proto-contributions and the element uncertainties,
respectively. y′ represent the element-contributions. The material property is obtained by
taking the mean of element-contributions (y′) for each compound. Similarly, the mean of
the element-uncertainties (u′) gives us the estimated aleatoric uncertainty.

contributions y′. Finally, the mean of the element-contributions is taken and output as the

predicted property value for each compound (see Figure 7b). Similarly, the mean of the

element-uncertainties is used in the aleatoric uncertainty prediction as described by Roost.9

Training CrabNet

After the featurization of compositions into EDMs, the dataset loading and batching is per-

formed with the built-in Datasets and DataLoaders classes from PyTorch. All target values

are scaled to zero-centered mean and unit variance for training and inference. The target

scaling is then undone for performance evaluation. Batch size during training is dynamically
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calculated using the training set size for faster training, and limited to be within the range

27 to 212. For inference, the batch size was fixed at 27.

Model weights are updated using the look-ahead72 and Lamb optimizer73 with a learning

rate that is cycled between 1× 10−4 and 6× 10−3 every 4 epochs to achieve consistent model

convergence. A robust mean absolute error (MAE)9 is used as the loss criterion for model

performance. The default parameters generalize well when predicting most of the benchmark

materials properties. Although we expect that optimization of hyperparameters may improve

CrabNet’s results for individual materials properties, we believe it is more important that

materials scientists be able to use CrabNet with little or no adjustments to the underlying

code.

It is a known phenomenon that random weight initialization can impact the performance

of the Transformer encoder architecture. Thus, to mitigate variance in the performance

metrics between different model runs, we trained CrabNet using a fixed random seed of 42

for all training runs across all materials properties. We do note that in the case of random

model initialization, the run-to-run variation between different trained models is a feature

that could be taken advantage of for determining the epistemic uncertainty. Unfortunately,

due to the sheer volume of materials properties investigated in this work and the limited

compute resources available, we have not investigated this thus far.

Finally, we note that all model training, evaluation and benchmarking (CrabNet, Roost,

ElemNet, and RF) was conducted on a single workstation PC equipped with an Intel i9-9900K

CPU, 32 GB of DDR4 RAM, and two NVIDIA RTX 2080 Ti GPUs with 10 GB VRAM per

GPU. The deep learning models were trained on the GPU, while the RF models were trained

on the CPU.
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Reference Models

Roost predictions

Predictions for all materials properties were generated using code from the Roost repository.

Minor adaptations were made to the code to allow for automated benchmarking. Overall,

Roost generates consistently impressive results. In the case of OQMD_Bandgap, Roost

failed to converge on multiple training runs, hence the reported NaN (not a number) value

for its metrics. Roost relies on a soft-attention mechanism used over a graph representa-

tion of the compound. This is in the same spirit of CrabNet, and both seek to generate

vector representations for the elements in the system without using structure information.

The residual network and robust loss function from Roost were helpfully adopted into our

architecture.9

ElemNet predictions

Predictions from ElemNet were generated using default parameters. Custom scripts were

written to train and evaluate ElemNet over all materials properties data. ElemNet consis-

tently under-performed compared to Roost and CrabNet. ElemNet also failed to converge

for multiple properties resulting in NaN values in the model outputs. An example of this

occurring is in the OQMD_Bandgap dataset. Here, we would like to note that IRNet could

have also been benchmarked and compared in this study. However, due to the prohibitively

large computational requirements, we chose to not train and evaluate IRNet. We do however

note the OQMD performance reported in the IRNet manuscript6 is consistently lower than

both Roost and CrabNet for the same properties. These following values show the perfor-

mance of IRNet vs. HotCrab, respectively, for Formation enthalpy (0.048 eV vs. 0.032 eV),

band gap (0.047 eV vs. 0.038 eV), energy per atom (0.070 eV vs. 0.035 eV), and volume per

atom (0.394Å3 vs. 0.247Å3).
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Random Forest baseline

We generate baseline metrics using a random forest regression with the Magpie CBFV as

defined by Matminer.36 This is done using the scikit-learn Python package. The RF

models were trained with nestimators = 500 and default parameters.

Data Availability

Data is provided in its cleaned and pre-split form to ensure reproducible results and with the

hope that other researchers find it useful when benchmarking their own approaches. We also

provide detailed instructions for installation, training, and general usage of this open-source

tool on GitHub.69

Finally, we recommend that readers consult the paper “Machine Learning for Materials

Scientists: An introductory guide towards best practices”4 for a detailed treatment of best

practices in machine learning and justification for many of the unmentioned experimental

design decisions used in this work.

The following files are available with this publication: (1) GitHub repository with the

source code, figures, pre-trained weights and example property predictions: https://github.

com/anthony-wang/CrabNet, and (2) Supplementary Information.

Conclusions

Unique challenges exists when applying machine learning to materials science. In this pa-

per, we address the limitations of machine learning on chemical composition by introducing

CrabNet. The CrabNet architecture uses a Transformer encoder and the EDM representa-

tion scheme to perform context-aware learning on materials properties. Using 28 benchmark

datasets, we demonstrate CrabNet’s performance compared to Roost, ElemNet, and RF base-

lines. CrabNet exhibits consistent predictive accuracy across the full range of materials
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properties.

Furthermore, we show that a Transformer-based learning technique also provides new

methods for visualizing model behavior. We demonstrate the use of attention and per-

element prediction capabilities for visualizing common trends in our trained models that

match chemical expectations. Given this novel application of self-attention in the context

of materials science, we expect that there can be many informative and impactful follow-up

works. Specifically, we believe these will largely fall into three thematic categories:

1. CrabNet directly contributing to the community’s focus towards improved

property predictions.

CrabNet consistently generates good MAE scores. The performance achieved with the

use of self-attention, combined with the innovative use of novel element and composi-

tion featurization techniques, will allow researchers to delve deeper into analyzing and

predicting materials properties. As a result, we believe that CrabNet will be relevant

in areas where other ML methods fall short (e.g., dopants, small data, and materials

extrapolation tasks). We also note that with minimal changes to CrabNet it can also

perform classification tasks; we expect CrabNet to similarly excel at this.

2. Attention-based models allow for new ways of thinking about materials-

specific problems.

In this work we briefly examined the attention mechanism. Attention highlights impor-

tant interactions and may be used to understand which element-interactions mediate

materials properties. Model explainability has thus far been elusive to the traditional

materials informatics paradigms. The inclusion of self-attention in this work has in-

troduced new areas of model inspectability that may be a step towards this goal.

3. Augmentation of CrabNet using structural and domain-specific knowledge.

This work intentionally used a compositionally-restricted EDM representation with no

structural information. Structure-agnostic learning is an important task in materials
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informatics and CrabNetdemonstrates that accurate learning is achievable using the

self-attention mechanism. However the prediction of materials properties using crystal

information is also an important task. Integration of structural information could be

done by describing elements in their structural and chemical environments. We expect

that the self-attention mechanism of CrabNet will be able to utilize this additional

information to make more accurate predictions. This application of attention-based

learning to crystal systems is an exciting and promising direction. We also expect that

materials prediction tasks involving processing steps or other non-compositional fea-

tures could be used in this approach. Both of these changes could easily be implement

as extensions to the EDM.

While further research is necessary to fully discern the utility of self-attention in materials

problems, we believe that this paper highlights a major new direction in its application in

materials informatics and suggests exciting new directions for future research.
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