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Abstract

Strategies for drug discovery and repositioning are an urgent need with respect to COVID-19. Here we present

"REDIAL-2020", a suite of computational models for estimating small molecule activities in a range of SARS-CoV-2

related assays. Models were trained using publicly available, high throughput screening data and by employing different

descriptor types and various machine learning strategies. Here we describe the development and the usage of eleven

models spanning across the areas of viral entry, viral replication, live virus infectivity, in vitro infectivity and human cell

toxicity. REDIAL-2020 is available as a web application through the DrugCentral web portal

(http://drugcentral.org/Redial). In addition, the web-app provides similarity search results that display the most similar

molecules to the query, as well as associated experimental data. REDIAL-2020 can serve as a rapid online tool for

identifying active molecules for COVID-19 treatment.



Currently, there is an urgent need to find effective drugs for treating coronavirus disease 2019 (COVID-19). Here, we

present a suite of machine learning (ML) models termed “REDIAL-2020” that forecast activities for live viral

infectivity, viral entry, and viral replication, specifically for SARS-CoV-2 (severe acute respiratory syndrome

coronavirus 2). This application can serve the scientific community when prioritizing compounds for in vitro screening

and may ultimately accelerate the identification of novel drug candidates for the COVID-19 treatment. REDIAL-2020

consists of eleven independently-trained ML models and includes a similarity/substructure search module that queries

the underlying experimental dataset for similar compounds. These models were developed using experimental data

generated by the following assays: the SARS-CoV-2 cytopathic effect (CPE) assay and its host cell cytotoxicity

counterscreen, the Spike-ACE2 protein-protein interaction (AlphaLISA) assay and its TruHit counterscreen, the

angiotensin-converting enzyme 2 (ACE2) enzymatic activity assay, the 3C-like (3CL) proteinase enzymatic activity

assay, the SARS-CoV pseudotyped particle entry (CoV-PPE) assay and its counterscreen, the Middle-East respiratory

syndrome coronavirus (MERS-CoV) pseudotyped particle entry assay (MERS-PPE) and its counterscreen and the

human fibroblast toxicity (hCYTOX) assay. Such assays represent five distinct categories: viral entry (CPE1 and host

cell cytotoxicity counterscreen2), viral replication (3CL enzymatic activity), live virus infectivity (AlphaLISA, TruHit

counter screen, and ACE2 enzymatic activity)3, in vitro infectivity (coronavirus pseudotyped particle entry, PPE, with

associated counter screens for two other coronaviruses, SARS-CoV and MERS) and human fibroblast cytotoxicity

(hCYTOX), respectively, as described in the National Center for Advancing Translational Sciences (NCATS)

COVID-19 portal.4 We retrieved these datasets from the NCATS COVID-19 portal.5 The NCATS team is committed to

performing a range of COVID-19-related viral and host target assays, as well as analyzing the results.6 A more

exhaustive description of each assay is provided in the Methods section.

For model development, three different types of descriptors were employed and a best model for each descriptor type

was developed by employing various ML algorithms. Then, the three best models from each descriptor type were

combined using a voting method to give an ensemble model. These ensemble ML models are integrated into a

user-friendly web portal that allows input using three different formats: i) drug name, both as International

Nonproprietary Name, INNs (e.g., remdesivir) or as trade name (e.g., Veklury); ii) PubChem CID,7 i.e., PubChem

Compound ID number (e.g., 121304016 for remdesivir); or iii) using the chemical structure encoded in the SMILES

(Simplified Molecular-Input Line-Entry System) format,8 respectively. The workflow and output, regardless of input

format, are identical and described below.

Drug repositioning requires computational support,9 and data-driven decision making offers a pragmatic approach to
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identifying optimal candidates while minimizing the risk of failure. Since molecular properties and bioactivities can be

described as a function of chemical structure, cheminformatics-based predictive models are becoming increasingly

useful in drug discovery and repositioning research. Specifically, anti-SARS-CoV-2 models based on high throughput

data could be used as a prioritization step when planning experiments, particularly for large molecular libraries, thus

decreasing the number of experiments and reducing downstream costs. REDIAL-2020 could serve such a purpose and

help the scientific community reduce the number of molecules before experimental tests for anti-SARS-CoV-2 activity.

This suite of ML models can also be used via the command line for large scale virtual screening. As new data sets

become available in the public domain, we plan to tune the ML models further, add additional models based on

SARS-CoV-2 assays, and make these models available in future releases of REDIAL-2020.

Results

Data Mining.

All workflows and procedures were performed using the Knime platform.10 NCATS data associated with the

aforementioned assays was downloaded from the COVID-19 portal.4,5 The files contained over 23,000 data points

generated by high-throughput screening (HTS) experiments. When possible, each compound was cross-linked to drugs

annotated in DrugCentral11–13, to retrieve the chemical structure in SMILES format (see Methods section). For

compounds that were not mapped in DrugCentral, the original SMILES strings were retained. Bioactivity data was

mined according to the “curve class” and “maximum response” parameters.14 The “ACTIVITY CLASS” and a

“SIGNIFICANCE CLASS” were defined using criteria reported in Supplementary Tables S1 and S2, respectively. As

a final data wrangling step, all compounds were categorized, and assay data grouped to have a unique record per

molecule for each assay. When more than one assay was measured for the same molecule, only the datapoint with the

best curve class was retained. At the end of this process, 4,954 unique molecules were stored.

For each assay, the data was labeled as positive and negative. The compounds with “LOW” activity class were treated

as negative, whereas “HIGH” and “MODERATE” were treated as positive compounds. Finally, the following calculated

physico-chemical property filters were applied: logP < 1, logP > 9, logS > -3, logS < -7.5; where logP is the log10 of the

octanol/water partition coefficient, and logS is the log10 of the aqueous solubility. These thresholds were initially used to

maximize the number of inactive compounds removed while minimizing the number of active compounds excluded (see

Discussion section). Upon use of the physico-chemical property filters, each dataset was reduced in size (see Table 1).

As shown in Table 1, certain datasets would have resulted in 15% or more of the active compounds being excluded.

Therefore, logP and logS filters were not applied for those datasets. Chemical structures were standardized in terms of
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SMILES representation (see Methods section). Following standardization, desalting, neutralizing and tautomer

normalization, multiple input SMILES can resolve into the same output SMILES string. Hence, the final step was

removal of duplicate chemical structures.

Model Development. For each assay, several prediction models were developed, employing three categories of features

and 22 distinct machine learning algorithms from the scikit-learn package.15 See Methods section for the complete

description of features categories. Supplementary Figure S1 shows the workflow of the model generation. The three

different categories of features employed were based on chemical fingerprints, physicochemical descriptors and

topological pharmacophore descriptors. Briefly, for fingerprint-based descriptors, 19 different RDKit fingerprints were

tested. For physicochemical descriptors, Volsurf+ and RDKit descriptors were employed. For pharmacophore

descriptors, Topological Pharmacophore Atom Triplets Fingerprints (TPATF) from Mayachemtools were used. For each

model, input data was split into a 70% training set, 15% validation set, and 15% test set using a stratified sampling.

Supplementary Table S3 reports the number of compounds used in training, validation, and test sets for each model.

Initial 6 assays (CPE, cytotox, AlphaLISA, TruHit, ACE2, and 3CL) were trained with 22 different classifiers available

in scikit-learn (see Methods).17 However, some do not output probability estimates of the class labels (e.g., OneVsOne,

Ridge, Nearest Centroid, Linear SVC, etc.). Since our “consensus based on probability” models rely on predicted

probability of each predicted label, only classifiers that output class probabilities were used for training. Two more

classifiers, Support Vector Machines and Quadratic Discriminant Analysis, were evaluated. Finally, 15 classifiers and 22

distinct features (see Methods) were trained across 11 assays, using “hypopt” for hyperparameter tuning.16

Applicability Domain. ML models have boundaries for predictability,17 traditionally called “applicability domain”,

AD.18 AD is defined by the parameter space of the training set upon which ML models are built. ML predictions are

deemed reliable when they fall within the AD of that specific model, and less reliable when outside AD. There are two

categories of methods to determine AD for classification models: novelty detection and confidence estimation,

respectively. Novelty detection defines AD in terms of molecular (feature) space, whereas confidence estimation defines

AD in terms of expected prediction reliability.19. Since confidence estimation is more efficient in reducing error rate

compared to novelty detection,19 we implemented this method for evaluating AD (see Methods). Confidence scores,

which are averaged for each query molecule, as calculated by default using 3 different models, are incorporated along

predictions in the results page. Confidence scores for each model can be examined by hovering over the confidence

score value shown on the results webpage.

Submission Webpage. By accessing REDIAL-2020 (http://drugcentral.org/Redial) from any web browser, including
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mobile devices, the submission page is displayed (Figure 2). The web server accepts SMILES, drug names, or

PubChem CIDs as input. The User Interface (UI) at the top of the page allows users to navigate various options (Figure

2). The UI provides summary information about the models, such as model type, which descriptor categories were used

for training, and the evaluation scores. The UI further depicts the processes of cleaning the chemical structures (encoded

as SMILES) prior to training the ML models. Input queries such as drug name and PubChem CID are converted to

SMILES prior to processing. Each SMILES string input is subject to four different steps, namely, converting the

SMILES into canonical SMILES,21 removing salts (if present), neutralizing formal charges (except permanent ones),

and standardizing tautomers. REDIAL-2020 predicts input compound activity across all 11 assays: CPE, cytotox,

AlphaLISA, TruHit, ACE2, 3CL, CoV-PPE, CoV-PPE_cs, MERS-PPE, MERS-PPE_cs, and hCYTOX. The workflow

of operations performed on the submitted query SMILES through the redial webapp are summarized in Supplementary

Figure S2.

Figure 3 shows an output panel example, which is loaded on the same web page. REDIAL-2020 links directly to

DrugCentral11–13 for approved drugs, and to PubChem for chemicals (where available), enabling easy access to

additional information about the query molecule. Using REDIAL-2020 estimates, promising anti-SARS-CoV-2

compounds would ideally be active in the CPE assay while inactive in cytotox and in hCYTOX; or active in the

AlphaLISA assay and inactive in the TruHit assay while not blocking (inactive) ACE2; or active in CoV-PPE while

inactive in its counterscreen (CoV-PPE_cs); or active in MERS-PPE while inactive in its counterscreen

(MERS-PPE_cs); or active in the 3CL assay with any combination of the above. A schematic representation of the “best

profile” that can be defined for a molecule, after running all the prediction models, is depicted in Figure 4.

Similarity Search. We used an ECFP4 bit vector fingerprint with 1024 bits, and Tanimoto coefficient (TC)

calculations, for the fingerprints present in the database along with that of a query molecule, are computed on the fly.

TC represents the overlap of features between molecules as the ratio of the number of common features to the total

number of features in each fingerprint. TC values range from 0 to 1, with 1 corresponding to identical fingerprints.

Thus, a fingerprint-based Tanimoto22 similarity search is conducted for each query molecule against training set

molecules, based on NCATS COVID-19 portal5 data. The top 10 similar molecules to that of the query molecule, based

on Tanimoto coefficient23 scores, are displayed in the results page.

Discussion

Prior to developing ML models, unsupervised learning can detect patterns that might guide successive steps. Hence,

upon definition of the experimental categories (see Results for details), we inspected the data using principal
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component analysis (PCA)24 on VolSurf+25 descriptors. For both CPE and cytotox, clusters emerge along the first

principal component (PC1; Figure 1). For CPE data, the majority of compounds showing high to moderate CPE activity

are grouped in the right-hand of Figure 1A. At the same time, compounds with high to moderate cytotoxicity are

grouped in the right-hand region of Figure 1B. By inspecting the loading score plot for VolSurf+ descriptors that are

likely to contribute to these patterns, we identified membrane permeability, estimated using logP and water solubility,

estimated using logS, as major contributors to the first latent variable (see Supplementary Figure S3). Compounds

with low logP/high logS, clustered in the left-hand region of the score plot, are less likely to be active in the CPE assay

and more likely to be non-cytotoxic.

The distribution of actives was also visualized for AlphaLISA and TruHit compounds in Figures 1C and 1D,

respectively (see also Table 1). For the AlphaLISA assay, although clustering is less pronounced with respect to CPE

(Figure 1A), the right-hand part of the plot does capture most of the high/moderate activity compounds. Such

distribution of actives in the right-hand region was not observed for ACE2 actives (Figure 1E). Thus, permeability and

solubility are not the major determinants of this ACE2 inhibition assay.

This preliminary analysis can point to filtering data prior to machine learning. For example, the majority of compounds

placed on the left side of the Figure 1 PCA plot are inactive (except for ACE2). Therefore, prior to developing the ML

models, we applied cutoff filters based on compounds calculated logP and logS using ALOGPS26 to every dataset

except for ACE2. These filters narrow the focus of ML models on features derived only from compounds for which

simple property criteria (e.g., logP and logS) cannot be used to distinguish actives from inactives, specifically, the

right-hand regions in Figure 1. As the fraction of active compounds excluded from the ACE2 dataset was quite high

(34%), logP and logS filters were not applied for ACE2 inhibition.

For 3CL enzymatic activity, data from NCATS was retrieved separately. The initial set contained 12,263 data points.

However, data wrangling identified 2,100 duplicates and 2,366 “inconclusive” entries, which were discarded.

Additional entries were removed during the desalting and physicochemical feature generation as VolSurf+ descriptors

could not be computed for some of the compounds. The final 3CL dataset contains 7,716 entries, with 286 active and

7,430 inactive compounds. Given that the fraction of active 3CL compounds filtered would have been 30%, the

physico-chemical property filters were not applied. There were no significant activity clusters detected in the 3CL

dataset via PCA-VolSurf+ (see Supplementary Figure S4).

Furthermore, NCATS released data for five completely new HTS assays, and updated assay data for the other six after

additional testing, between June and October 2020. Hence, we re-evaluated the entire set of assays. The total number of

compounds, after data wrangling, was 10,074. Our analysis showed that only the CPE and the cytotoxicity assays were

https://paperpile.com/c/YrqGH0/A1XOT
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enriched with more compounds. There were 2,354 more compounds, with 158 new actives in the CPE dataset and 2,332

more compounds (295 new actives) in the cytotox dataset. Since the fraction of active compounds filtered out upon

applying physico-chemical property filters was over 15%, these filters were not applied for the five new datasets (see

also Table 1).

With respect to actives vs. inactives, all 11 NCATS assays are highly unbalanced, with a disproportionate ratio of the

active (few) compounds compared to inactive (many) compounds. For example, there were ~9 times more inactives

than actives and ~3 times more non-cytotoxic compounds than cytotoxic compounds for the CPE and cytotoxicity

assays, respectively. Thus, in order to avoid over-training for the dominant category, each model was derived using

random selection wherein compounds from the majority class were selected in equal proportion to those of the minority

class. Our balanced dataset numbers were as follows: 996 for CPE, 2,252 for cytotox, 1,260 for AlphaLISA, 1,668 for

TruHit, 206 for ACE2, 572 for 3CL, 1,782 for CoV-PPE, 320 for CoV-PPE_cs, 760 for hCYTOX, 970 for MERS-PPE,

and 368 for MERS-PPE_cs, respectively.

To evaluate anti-SARS-CoV-2 activities of novel chemicals, we implemented 11 predictive models based on consensus

methods. Of the two (voting-based and probability score-based) consensus methods evaluated, the voting-based

consensus model showed better performance (see Supplementary Figures S5-10). The voting-based method was thus

implemented in the REDIAL-2020 web-app. Consensus models were generated based on the top three performing

models trained on fingerprint, pharmacophore and physicochemical descriptors. First, we selected a fingerprint model

from an initial evaluation of 19 different fingerprint descriptor methods. This was combined with a TPATF model.

Finally, RDKit or VolSurf+ provided a third model, based on physicochemical properties. Supplementary Figure S11

(a-d) summarizes our initial evaluation and the comparison between various features and ML algorithms.

Supplementary Figures S11a and S11b compare the performance of each feature across 22 ML algorithms (classifiers)

and 6 assays. Supplementary Figures S11c and S11d compare the performance of each classifier across 22 features

and 6 assays (CPE, cytotoxicity, AlphaLISA, Truhit, ACE2, and 3CL). For example, the violin plot for the “Avalon''

feature (see Supplementary Figure S11a) summarizes F1-scores from all 6 assays (and 22 classifiers). Among

descriptors, VolSurf+ and LFCFP6 outperformed others, whereas the gradient boost and the multi-layer perceptron

(MLP) classifiers performed better among ML algorithms. See Supplementary Figures S12 and S13 for the

comparison of each feature across 15 ML algorithms and 11 assays. Supplementary Figures S14-47 depict more

detailed comparisons across different features and ML algorithms with respect to individual models.

Two options for the consensus model were initially considered, based on the potential overlap between VolSurf+ and

RDKit descriptors: fingerprint+TPATF+RDKit and fingerprint+TPATF+VolSurf+, respectively. RDKit outperformed



VolSurf+ in cytotox, AlphaLISA, ACE2, 3CL, MERS-PPE_cs, CoV-PPE, CoV-PPE_cs, and hCYTOX, whilst VolSurf+

descriptors outperformed RDKit in CPE and hCYTOX along with similar results in MERS-PPE and TruHit based on

the tested evaluation metrics such as Accuracy, F1-score, and AUC in validation sets (see Supplementary Figures

S48-58). However, the situation slightly changed when considering consensus models. Inclusion of VolSurf+ yielded

better consensus model for the CPE, whereas including RDKit yielded better consensus models for the cytotox, 3CL,

TruHit, AlphaLISA, MERS-PPE_cs, CoV-PPE, and CoV-PPE_cs assays. Supplementary Figures S5-10 show a

comparison of the best models from each feature category. As the NCATS team released data for more compounds for

the 6 initial assays plus 5 new assays in September 2020, we updated the initial 6 models and developed models for the

5 new assays. The comparison of models from each category for the new and updated models were shown in Figures

S53-57. Among 11 assay models, the voting-based consensus model performed slightly better than individual feature

type models based on validation F-1 score results; in 3 assays (ACE2, MERS-PPE, and hCYTOX), the voting-based

consensus model was not the top performer, but its performance was close to the top performing model. For the web

platform, we implemented voting-based consensus models for all eleven assay models using RDKit descriptors as

opposed to Volsurf+ descriptors, since RDKit is open-source software that can be ported and dockerized without

restrictions. Tables 2 summarize the evaluation scores for all models implemented in REDIAL-2020.

To confirm the utility of our models, we collected three additional datasets from the literature and submitted these

molecules (external to our training/validation/test sets) as input for prediction. First, we used a database for COVID-19

experiments27 to explore and download published in vitro COVID-19 bioactivity data for compounds which was

reported in various recent papers.28–36 After removing compounds already included in the NCATS experiments, we

identified 27 external compounds active in anti-SARS-CoV-2 CPE assays (see Supplementary Table S4). Out of 27

compounds, 3 were excluded upon applying the logP/logS filters, and the remaining 24 were predicted by the CPE

model. 16 compounds were correctly predicted as active by the consensus model i.e., at least two models (see

Supplementary Figure S59), with 8 compounds predicted as inactive. Among those predicted to be inactive, the

majority stem from the Ellinger et al. work, derived from Caco-2 cells for CPE experiments. There is a high degree of

variability between these two CPE assays (Caco-2 vs. Vero E6), which explains the lack of predictivity using Vero

E6-trained CPE models for Caco-2 data. The second dataset of 3CL (Mpro) inhibitors36 identified 6 inhibitors: ebselen

(0.67 µM), disulfiram (9.35 µM), tideglusib (1.55 µM), carmofur (1.82 µM), shikonin (15.75 µM) and PX-12 (21.39

µM), respectively (see Supplementary Table S5). Among these 6 inhibitors, our consensus 3CL model predicted 4 of

them correctly as actives, and 5 of them as actives by at least one of the three 3CL ML models. Thus, the REDIAL-2020

suite of models correctly predicted 67% of the external compounds for CPE and 3CL inhibitors36, respectively.
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Although the external predictivity of CPE model appear to underestimate previous model performance in the validation

and external sets (see Supplementary Table S6), it has been noted that CPE experiments are affected by significant

intra- and inter-experiment variability.27 Hence, we cannot exclude the possibility that some of the experiments

performed by other laboratories are not directly comparable with NCATS COVID-19 portal5 results.

Conclusion

Here we described REDIAL-2020, an open-source, open-access machine learning suite for estimating

anti-SARS-CoV-2 activities from molecular structure. By leveraging data available from NCATS, we developed eleven

categorical ML models: CPE, cytotox, AlphaLISA, TruHit, ACE2, 3CL, SARS-CoV-PPE, SARS-CoV-PPE CS,

MERS-CoV PPE, MERs-CoV PPE CS, and hCYTOX. Such models are exposed on the REDIAL-2020 portal, and the

output of a similarity search using input data as a query is provided for every submitted molecule. The top 10 most

similar molecules to the query molecule from the existing COVID-19 databases, together with associated experimental

data, are displayed. This allows users to evaluate the confidence of the ML predictions.

The REDIAL-2020 platform provides a fast and reliable way to screen novel compounds for anti-SARS-CoV-2

activities. REDIAL-2020 is available on GitHub and DockerHub as well, and the command-line version supports large

scale virtual screening purposes. Future developments of REDIAL-2020 could include additional ML models. For

example by using the TMPRSS2 inhibition assay37 data from the NCATS COVID-19 portal or additional NCATS data

as they become available in the public domain. We will continue to update and enhance the ML models and make these

models available in future releases of REDIAL.

Methods

HTS Assays. The SARS-CoV-2 cytopathic effect (CPE) assay measures the ability of a compound to reverse the

cytopathic effect induced by the virus in Vero E6 host cells. As cell viability is reduced by a viral infection, the CPE

assay measures the compound’s ability to restore cell function (cytoprotection). While this assay does not provide any

information concerning the mechanism of action, it can be used to screen for antiviral activity in a high-throughput

manner. However, there is the possibility that the compound itself may exhibit a certain degree of cytotoxicity, which

could also reduce cell viability. Since this confounds the interpretation of CPE assay results, masking the cyto-protective

activity, a counter-screen to measure host (Vero E6) cell cytotoxicity is used to detect such compounds. Thus, a net,

positive result from the combined CPE assays consist of a compound showing a protective effect but no cytotoxicity.

The Spike-ACE2 protein-protein interaction (AlphaLISA) assay measures a compound's ability to disrupt the interaction

https://paperpile.com/c/YrqGH0/Rtp69
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between the viral Spike protein and its human receptor protein, ACE2 (angiotensin-converting enzyme type 2).38 The

surface of the ACE2 protein is the primary host factor recognized and targeted by SARS-CoV-2 virions.39 This binding

event between the SARS-CoV-2 Spike protein and the host ACE2 protein initiates binding of the viral capsid and leads

to viral entry into host cells. Thus, disrupting the Spike-ACE2 interaction is likely to reduce the ability of SARS-CoV-2

virions to infect host cells. This assay has two counterscreens, as follows. The TruHit counter screen is used to

determine false positives, i.e., compounds that interfere with the AlphaLISA readout in a non-specific manner, or with

assay signal generation and/or detection. It uses the biotin-streptavidin interaction (one of the strongest known

non-covalent drug-protein interactions) because other compounds are unlikely to disturb it. Consequently, any

compound showing interference with this interaction is most likely a false positive. Common interfering agents are

oxygen scavengers or molecules with spectral properties sensitive to the 600-700 nm wavelengths used in AlphaLISA.

The second counterscreen is an enzymatic assay that measures human ACE2 inhibition to identify compounds that

could potentially disrupt endogenous enzyme function. ACE2 lowers blood pressure by catalyzing the hydrolysis of

angiotensin II (a vasoconstrictor peptide) into the vasodilator angiotensin (1-7).40 While blocking the Spike-ACE2

interaction may stop viral entry, drugs effective in this manner could cause unwanted side-effects by blocking the

endogenous vasodilating function of ACE2. Thus, the ACE2 assay serves to detect such eventualities and to de-risk

such off-target events.

Following entry into the host cell, the main SARS-CoV-2 replication enzyme is 3C-like proteinase (3CL), also called

“main protease” or Mpro,36 which cleaves the two SARS-CoV-2 polyproteins into various proteins (e.g., RNA

polymerases, helicases, and methyltransferases, etc.), which are essential to the viral life cycle. Since inhibiting the 3CL

protein disrupts the viral replication process, this makes 3CL an attractive drug target.41 The SARS-CoV-2 3CL

biochemical assay measures compounds' ability to inhibit recombinant 3CL cleavage of a fluorescently labeled peptide

substrate.

In this category there are four assays: SARS-CoV pseudotyped particle entry and its counter screen, MERS-CoV

pseudotyped particle entry, and its counter screen. The pseudotyped particle assay measures the inhibition of viral entry

in cells but it does not require a BSL-3 facility (BSL-2 is sufficient) to be performed, as it does not use a live virus to

infect cells. Instead, it uses pseudotyped particles that are generated by the fusion of the coronavirus spike protein with a

murine leukemia virus core. Since they have the coronavirus spike protein on their surface, the particles behave like

their native coronavirus counterparts for entry steps. This makes them excellent surrogates of native virions for studying

viral entry into host cells. The experimental protocol of such an assay is described in detail elsewhere.42 The cell lines

used are Vero E6 for SARS-CoV and Huh7 for MERS-CoV, respectively.

https://paperpile.com/c/YrqGH0/sRuri
https://paperpile.com/c/YrqGH0/6DW8D
https://paperpile.com/c/YrqGH0/dFHkc
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https://paperpile.com/c/YrqGH0/Uw6hv


At the time of data extraction, compound data were available for one assay “human fibroblast toxicity”. With the human

fibroblast toxicity assay, it is possible to assess the general human cell toxicity of compounds by measuring host cell

ATP content as a readout for cytotoxicity (similarly to what is done in the various counter screenings). Therefore, this

assay is intended for discarding compounds that are likely to show high toxicity in human cells (i.e. side effects in the

organism). Hh-WT fibroblast cells are used in this assay and the highly cytotoxic drug bortezomib is used as a reference

compound.

Data Matching Operations. The matching of NCATS compounds to DrugCentral was conducted in three sequential

steps: by InChI (International Chemical Identifier),43 by synonym (name), and by matching CAS (Chemical Abstracts

Service) registry numbers. First, NCATS molecules were matched by InChI. Molecules that did not match were then

queried by drug name and associated synonyms, as annotated in DrugCentral. Finally, if not matched by either InChI or

name, molecules were matched by CAS number. If none of the above steps resulted in a match, then the molecule in

question was not classified as an approved drug. At the end of this process, 4,954 unique molecules (2,273 approved

drugs and 2,681 chemicals) were stored. Whenever possible, SMILES were retrieved from DrugCentral. Otherwise, the

original SMILES strings were retained.

SMILES Standardization. Chemical structures were standardized to ensure rigorous deduplication, accurate counts

and performance measures, and consistent descriptor generation, preserving stereochemistry, which is required for

conformer-dependent descriptors. This workflow uses the MolStandardize SMARTS-based functionality in RDKit44 to

transform input SMILES into standardized molecular representations. Five different filters were implemented via

RDKit: i) input SMILES were standardized into canonical (isomeric where appropriate) SMILES strings. The input

SMILES that failed to convert were discarded; ii) RDKit Salt Stripper was used to de-salt input compounds (i.e.,

remove the salt structures). The “donotRemoveEverything” feature leaves the last salt structure when the entire

canonical SMILES string is comprised of salts only; (iii) RDKit “Uncharger” neutralizes input molecules by

adding/removing hydrogen atoms and setting formal charges to zero (except for e.g., quaternary ammonium cations); iv)

Canonical SMILES were then formalized into specific tautomers using RDKit.

Molecular Features/Descriptors. A total of 22 features of three distinct types (fingerprints-based,

pharmacophore-based, and physicochemical descriptors-based) were implemented. Fingerprints were converted into a

bit vector of either 1,024 or 16,384 lengths. Pharmacophore type was also a bit vector of size 2,692, whereas RDKit and

https://paperpile.com/c/YrqGH0/ICvEV
https://paperpile.com/c/YrqGH0/PMc85


VolSurf+ descriptors were of length 200 and 128, respectively.

The fingerprints-based description includes the circular, path-based, and substructure keys.45,46 Circular fingerprints

include the extended-connectivity fingerprints (ECFPx) and feature-connectivity fingerprints (FCFPx), where x is 0, 2,

4, and 6 are the bond length or diameter for each circular atom environment. ECFP consists of the element, number of

heavy atoms, isotope, number of hydrogen atoms, and ring information, whereas FCFP consists of pharmacophore

features.

Avalon and MACCS (Molecular ACCess System) are two distinct types of substructure keys (fingerprints). The Avalon

fingerprint, used here, is a bit vector of size 1,024. It includes feature classes such as atom count, atom symbol path,

augmented atom, and augmented symbol path, etc. MACCS structural keys are 166-bit structural key descriptors. Each

bit here is associated with a SMARTS pattern and belongs to the dictionary-based fingerprint class. Path-based

fingerprints include RDKx (where x is 5, 6, 7), topological torsion (TT), HashTT, atom pair (AP), and HashAP. The size

of each fingerprint is 1024. The longer, 16,384-bits, versions of the fingerprint, marked by the prefix “L” (LAvalon,

LECFP6, LECFP4, LFCFP6 and LFCFP4, respectively) were used for comparison.

Topological pharmacophore atomic triplets fingerprints (TPATF) were obtained using Mayachemtools.47 TPATF

describes the ligand sites that are necessary for molecular recognition of a macromolecule or a ligand, and passes that

information to the ML model to be trained. Ligand SMILES strings were passed through a Perl script to generate

TPATF. The basis sets of atomic triplets were generated using two different constraints (i) triangle rule, i.e., the length of

each side of a triangle cannot exceed the sum of the lengths of the other two sides; and (ii) elimination of redundant

pharmacophores related by symmetry. The default pharmacophore atomic types Hydrogen Bond Donor (HBD),

hydrogen bond acceptor (HBA), positively ionizable (PI), negatively ionizable (NI), H (hydrophobic), and Ar (aromatic)

were used during generation of TPATF.48

The physicochemical description includes the RDKit molecular descriptors and VolSurf+ descriptors. For RDKit

descriptors, a set of 200 descriptors were used, which were obtained from RDKit.44 They are either experimental

properties or theoretical descriptors, which are e.g. molar refractivity, logP, heavy atom counts, bond counts, molecular

weight, topological polar surface area.

A total of 128 descriptors were obtained using VolSurf+ software. VolSurf+ is a computational approach aimed at

describing the structural, physicochemical and pharmacokinetic features of a molecule starting from a 3D map of the

interaction energies between the molecule and chemical probes (GRID-based molecular interaction fields, or MIFs).49

VolSurf+ compresses the information present in MIFs into numerical descriptors, which are simple to use and

interpret.25,50

https://paperpile.com/c/YrqGH0/SZdcN+a7BSN
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Machine Learning Classifiers. Using assay data as input (specifically, CPE, cytotox, AlphaLISA, TruHit, ACE2, and

3CL) we trained ML models using the following 24 different classifiers: Complement Naive Bayes, Extreme Gradient

Boosting, KNeighbors, Gradient Boosting, Perceptron, One Vs Rest , Extra-Tree, Ridge, One Vs One, Bagging,

Random Forest, Output Code, Passive Aggressive, Linear SVC, Stochastic Gradient Descent, Logistic Regression,

Extra Trees, Multinomial Naive Bayes, Ada Boost, Decision Tree, Nearest Centroid, Multi-layer perceptron, Support

Vector Machines and Quadratic Discriminant Analysis, respectively. All these algorithms are implemented in the

scikit-learn package.17 The 22 types of features (ECFP0, ECFP2, ECFP4, LECFP4, ECFP6, LECFP6, FCFP2, FCFP4,

LFCFP4, FCFP6, LFCFP6, RDK5, RDK6, RDK7, Avalon, LAvalon, MACCS, HashTT, HashAP, VolSurf+, TPATF, and

RDKit descriptors, respectively) that served as input to the ML classifiers are described above. All classifiers were

trained on their default configurations. For hyperparameter tuning we used hypot16 and the best suited combination of

classifiers and features (see Supplementary Table S7). All models were optimized and selected based on the validation

F1 score. The best performing models were saved and used for the evaluation of external datasets.

Confidence Scores. One way to calculate the certainty of prediction is provided by the classification algorithms

framework applied here, as implemented in the scikit-learn package. The confidence estimate associated with

predictions for each object (small molecule) recalls a basic feature of scikit-learn, “predict_proba”. For example, in the

Random Forest classifier, votes are noted for each (sub)model. Thus, for each class, “predict_proba” returns the

number of votes divided by the number of trees in that particular forest (model). This confidence score, which estimates

the model prediction's reliability, is used to gauge the applicability domain.

Implementation and Accessibility
Web Portal
REDIAL-2020 is available online at http://drugcentral.org/Redial

Code Availability
All of the codes and the trained models are available at https://github.com/sirimullalab/redial-2020

Data Availability

All data used for the model described in this work are available at https://github.com/sirimullalab/redial-2020. The

datasets were originally collected from the following links (warning: these data are subject to change without notice):

CPE https://opendata.ncats.nih.gov/covid19/export/data/assay/14

cytotox https://opendata.ncats.nih.gov/covid19/export/data/assay/15

AlphaLISA https://opendata.ncats.nih.gov/covid19/export/data/assay/1

https://paperpile.com/c/D72tEs/esU8j
https://paperpile.com/c/YrqGH0/KHiUB
https://drugdiscovery.utep.edu/redial
https://github.com/sirimullalab/redial-2020
https://github.com/sirimullalab/redial-2020
https://opendata.ncats.nih.gov/covid19/export/data/assay/14
https://opendata.ncats.nih.gov/covid19/export/data/assay/15
https://opendata.ncats.nih.gov/covid19/export/data/assay/1


TruHit https://opendata.ncats.nih.gov/covid19/export/data/assay/2

ACE2 https://opendata.ncats.nih.gov/covid19/export/data/assay/6

3CL https://opendata.ncats.nih.gov/covid19/export/data/assay/9

CoV-PPE https://opendata.ncats.nih.gov/covid19/export/data/assay/22

CoV-PPE_cs https://opendata.ncats.nih.gov/covid19/export/data/assay/23

MERS-PPE https://opendata.ncats.nih.gov/covid19/export/data/assay/24

MERS-PPE_cs https://opendata.ncats.nih.gov/covid19/export/data/assay/25

hCYTOX https://opendata.ncats.nih.gov/covid19/export/data/assay/21
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Tables & Figures

Table 1. Number and percentage of compounds outside logP and logS criteria.

Assay Actives
(relative percentage)

Inactives
(relative percentage)

CPE 44 (8%) 2913 (37%)

cytotox 193 (14%) 2764 (39%)

AlphaLISA 143 (19%) 1119 (49%)

TruHit 134 (16%) 1128 (51%)

ACE2 70 (38%) 1192 (41%)

3CL 81 (28%) 3330 (37%)

CoV-PPE 43 (27%) 881 (51%)

CoV-PPE_cs 247 (28%) 1085 (44%)

hCYTOX 81 (22%) 1306 (39%)

MERS-PPE 104 (20%) 1024 (49%)

MERS-PPE_cs 46 (24%) 1082 (45%)

Table 2. Prediction metrics for the best models. ACC, Accuracy; F1, F1 score; SEN, sensitivity; PREC, precision;

AUC, area under the receiver operating characteristic curve.

Validation set results Test set results

Model ACC F1 SEN PREC AUC ACC F1 SEN PREC AUC

CPE 0.695 0.693 0.689 0.698 0.695 0.651 0.643 0.626 0.661 0.651

cytotox 0.782 0.780 0.773 0.787 0.782 0.688 0.70 0.727 0.675 0.688

AlphaLISA 0.824 0.831 0.863 0.801 0.823 0.790 0.787 0.777 0.798 0.790

TruHit 0.828 0.836 0.873 0.802 0.828 0.734 0.737 0.746 0.728 0.734

ACE2 0.755 0.75 0.75 0.75 0.775 0.755 0.777 0.84 0.724 0.753

3CL 0.804 0.808 0.837 0.782 0.804 0.712 0.705 0.681 0.731 0.713

CoV-PPE 0.771 0.761 0.732 0.793 0.771 0.665 0.658 0.643 0.674 0.665



CoV-PPE_cs 0.872 0.869 0.869 0.869 0.872 0.659 0.636 0.583 0.7 0.661

hCYTOX 0.736 0.736 0.736 0.736 0.736 0.71 0.713 0.719 0.706 0.710

MERS-PPE 0.813 0.823 0.875 0.777 0.814 0.696 0.698 0.698 0.698 0.696

MERS-PPE_cs 0.833 0.823 0.777 0.875 0.833 0.703 0.68 0.629 0.739 0.703



Figure 1. PCA scores plots of the molecules tested in NCATS SARS-CoV-2 experiments based on VolSurf+ descriptors.

On each plot, the compound position is defined along the first and the second principal component, respectively PC1



and PC2. A) CPE compounds colored by CPE categories: high/moderate activity in yellow and low activity in black; B)

cytotoxic compounds colored by cytotoxicity categories: high/moderate cytotoxic in orange and low (not) cytotoxic in

black. C) AlphaLISA compounds colored by Spike-ACE2 interaction blockers categories: high/moderate (strong)

blockers in red and low (weak) blockers in black. D) TruHit compounds, colored by AlphaLISA readout interfering

categories: high/moderate interfering in cyan and low interfering in black. E) ACE2 compounds, colored by ACE2

inhibition categories: high/moderate (strong) inhibitors in magenta and low (weak) inhibitors in black.

Figure 2. REDIAL-2020 submission webpage.



Figure 3. Screenshot of the webpage displaying the ML estimates and for a query molecule.



Figure 4. Schematic representation of the most desirable profile for anti-SARS-CoV-2 activities that can be observed

via REDIAL-2020 predictions, based on the SARS-CoV-2 specific set of assays. The five additional assays (not

depicted here) offer supporting evidence for the decision-making process and hit prioritization.
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