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ABSTRACT: Archaeal glycerol dibiphytanyl glycerol tetraethers (GDGT) are some of the most unusual membrane lipids identified 
in nature. These amphiphiles are the major constituents of the membranes of numerous Archaea, some of which are extremophilic 
organisms. Due to their unique structures, there has been significant interest in studying both the biophysical properties and the 
biosynthesis of these molecules. However, these studies have thus far been hampered by limited access to chemically pure samples. 
Herein, we report a concise and stereoselective synthesis of the archaeal tetraether lipid GDGT-0 and the synthesis and self-assembly 
of derivatives bearing different polar groups. 

Organisms belonging to the domain Archaea are ubiquitous 
in nature.1,2 Originally discovered in hostile conditions, these 
prokaryotes are now known to thrive in many terrestrial and 
aquatic environments. Organisms of this type are also present 
in the human microbiome and may have implications for human 
health and disease.3 Archaeal membranes contain some of the 
most structurally-exotic lipids known and are distinguished by 
three structural differences compared to the other domains of 
life. First, in contrast to canonical fatty acids, these lipids are 
isoprenoid derived. Second, the hydrophobic portions of the 
molecule are joined to glycerol-based headgroups by ether 
bonds rather than ester linkages. Finally, the glycerol headgroup 
features opposite stereochemistry to that found in other domains 
of life.4 The most distinct of these molecules are the macrocy-
clic bipolar glycerol dibiphytanyl glycerol tetraether (GDGT) 
lipids. An archetypal member of this class is GDGT-0, also re-
ferred to as isocaldarchaeol, (1)5 which contains two biphytanyl 
diols (2, Figure 1). These molecules appear to form monolayer 
membranes6 and are thought to be an evolutionary adaptation to 
facilitate survival in the face of extreme environments.7 Specif-
ically, it was hypothesized that these lipids promote the for-
mation of fluid membranes which maintain their integrity under 
conditions of thermal and acidic stress that would compromise 
membranes formed from canonical lipids.4,7 For example, vesi-
cles comprised of a mixture of GDGT lipids display anoma-
lously low proton permeability that is maintained up to 70–80 
°C.8d Based on the unique biophysical and physicochemical 
properties displayed by these molecules, they have garnered 
significant interest.8 However, likely due to challenges in isola-
tion and separation,9,10i the vast majority of studies have been 
performed on lipid mixtures,8 model lipids,10 or in silico.11 Stud-
ies on chemically homogenous samples of naturally occurring 
lipids have been highly limited.12  

In addition to the intriguing physicochemical properties of 
these lipids, their biosynthesis is also of significant interest. 

However, this remains poorly understood.4,13 There is interest-
ing structural diversity within the GDGTs, with some members 
of the family incorporating five- and six-membered cycloal-
kanes within their hydrocarbon core as exemplified by GDGT-
8 (3, Figure 1). Only recently have the enzymes responsible for  

Figure 1. Representative tetraether archaeal lipids 1 and 3, biphyt-
anyl core structure 2, previous synthetic approaches, and this ap-
proach. 
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Scheme 1. Enantioselective Synthesis of GDGT-0.a  

   
aReagents and conditions: (a) [Ir(L*)COD]BArF

4
 (2.5 mol %), H2 (50 bar), CH2Cl2, rt; PPh3 (2.3 equiv), CBr4 (2.2 equiv), PhH, 0 °C, 

94%; (b) NiCl2•Glyme (5 mol %), (t-bu)3tpy (5 mol %), NaI (1.0 equiv), Mn (5.0 equiv), DMF, 80 °C; K2CO3 (7.5 equiv), MeOH, rt, 64%; 
(c) PPh3 (4.6 equiv), CBr4 (4.4 equiv), PhH, 0 °C, 84%; (d) NaH (5.0 equiv), 10 (4.8 equiv), THF then neat, 130 °C, 55%; (e) AcCl (3.0 
equiv), MeOH, CH2Cl2, 0 °C, 88%; (f) Jones reagent (7.5 equiv), CH2Cl2, Acetone, 0 °C, 65%; (g) 12 (2.0 equiv), 2-Cl-DMC (18.0 equiv), 
KH (16.3 equiv), DMAP (24.0 equiv), CH2Cl2, 0 °C to 40 °C, 48%; (h) InBr3 (ca. 0.2 equiv), Et3SiH (8.0 equiv), CHCl3, 60 °C; TBAF, THF, 
rt, 56%.  COD = 1,5-cyclooctadiene, BArF

4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate,  (t-bu)3tpy = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-
terpyridine, PMB = para-methoxybenzyl, 2-Cl-DMC = 2-chlorodimethylimidazolinium chloride, DMAP = 4-dimethylaminopyridine, TBAF 
= tetrabutylammonium fluoride.

the formation of these cycloalkanes been identified, but the ex-
act substrates for cyclization are still unknown.14 In vitro and in 
vivo studies towards investigating this biosynthesis would 
greatly benefit from access to pure individual GDGTs and ana-
logues. Motivated by the aforementioned questions, we have 
sought to provide synthetic access to pure lipids and putative 
natural intermediates. Herein, we report a concise eight-step en-
antioselective synthesis of GDGT-0 and their functionalization 
to vesicle-forming amphiphiles.  

Three groups have previously reported synthetic studies on 
GDGT-0.15–17 The absolute and relative stereochemistry of the 
biphytanyl core (2) of 1 was established through the synthesis 
by Heathcock, which uses an enantioselective aldol-Ireland–
Claisen sequence to set the syn-1,5 methyl stereocenters of the 
natural product.15 Eleven-carbon fragment 4 was then repeat-
edly used to construct 2 in 25 total steps. Czeskis16a,16b later 
joined two chiral building blocks derived from (R)-5-acetoxy-
4-methylpentanoic acid16c via cross-coupling to 5, which was 
transformed into 2 in 13 steps. Shortly thereafter, Kakinuma 
completed the first total synthesis of macrocycle 1 from cit-
ronellol via regioselective opening of Sharpless asymmetric 
epoxidation product 6.17 syn-1,5-Dimethyl diol 7 was then elab-
orated into 1 in 28 steps. While successful in setting the requi-
site stereochemistry, these strategies suffer from numerous 
functional and protecting group manipulations that result in 

high step counts and poor scalability. The shortest total synthe-
sis of GDGT-0 to date requires over 30 steps to complete.17 

For our approach, we initially traced 1 back to biphytanyl diol 
2 via a non-trivial bimolecular macroetherification that is, to the 
best of our knowledge, unprecedented for this ring size (Figure 
1). This direct approach to macrocyclization was designed to 
limit the number of functional group interconversions required 
for C–C bond-forming ring closures as in previous work.17b,17c 
Furthermore, inspired by the work of Pfaltz on the asymmetric 
hydrogenation of isoprenes,19 it was envisioned that a global 
asymmetric hydrogenation of oxidized geranylgeraniol would 
simultaneously set all of the methyl stereocenters present in the 
natural product. Dimerization of the saturated building block 
would then enable the rapid construction of GDGT-0 via the 
proposed macroetherification.  

In practice, the hydrogenation substrate 8 was readily pre-
pared from geranylgeranyl acetate20 via a known allylic oxida-
tion sequence (Scheme 1).21 Using the conditions developed by 
Pfaltz, we were successfully able to fully hydrogenate 8. In or-
der to determine the stereoselectivity of this key transformation, 
we assayed both the triisopropylsilyl- and acetate-protected hy-
drogenation products (Figure 2). We found that derivatization 
as MTPA22 or MαNP23 chiral esters enabled determination of 
the stereoselectivity of the hydrogenated products at C3 (8.3:1 
d.r.) and C15 (≥20:1 d.r.), respectively. A degradation-based 
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approach, performed on a silyl ether analogue, then allowed for 
the assignment of the innermost C7 and C11 stereocenters. Spe-
cifically, removing carbon units from either the right- or left-
half of the molecule then allowed for determining the diastere-
omeric ratio at C7 (≥20:1 d.r.)  and C11 (≥20:1 d.r.) after MaNP 
derivatization (Figure 2). Overall, the hydrogenation displayed 
excellent selectivity at C7, C11, and C15 and impressive but 
somewhat diminished selectivity at C3. Attempts to further im-
prove this were unsuccessful, having either no or deleterious 
effects on the overall diastereoselectivity (See Supporting In-
formation). 

Following asymmetric hydrogenation of 8, we found that 
bromination could be directly carried out on the crude reaction 
mixture to afford bromide 9 in 95% yield.  A Weix nickel-cata-
lyzed reductive dimerization24 followed by acetate deprotection 
then afforded biphytanyl diol 2 in 64% yield from 9 on gram 
scale. This highly efficient sequence allowed us to drastically 
improve upon the step count of Heathcock and Czeskis’ previ-
ous syntheses. Installation of the glycerol units proved surpris-
ingly challenging and required considerable investigation. Ulti-
mately, it was discovered that the dibromide derived from 2 un-
derwent double displacement with the sodium alkoxide of glyc-
erol 10 under solvent-free conditions10c to afford the desired 
product in 55% yield. Deprotection of the trityl groups in meth-
anolic HCl delivered diol 11 in 41% overall yield from 2.   

Figure 2. Chiral ester analysis of each stereocenter after global 
asymmetric hydrogenation. 

 
We had hoped that, through careful reaction optimization, we 

would be able to perform a direct bimolecular etherification–
macroetherification via Williamson-type chemistry. However, 
attempts to achieve these transformations with 11 and various 
derivatives of 2 were met with little success, affording complex 
mixtures of unreacted starting material, elimination side prod-
ucts, and other uncharacterized materials. This lack of encour-
aging results from a direct macroetherification led us to con-
sider the use of more precedented macrolactonizations25 to 
forge our desired C–O bonds. We envisaged that reduction of 
the esters to the corresponding ethers via a catalytic hydrosi-
lylation26 would then effect a formal macroetherification. This 

macrolactonization-reduction strategy represents an underuti-
lized, yet attractive approach to macrocyclic ethers. 

Jones oxidation of 2 proceeded smoothly to yield bis-carbox-
ylic acid 12. Yamaguchi conditions27a were initially successful 
at combining 12 and 11 in the macrolactonization,27b providing 
superior results to Corey-Nicolaou27c or Mitsunobu-type27d pro-
cedures. However, we found the Yamaguchi protocol per-
formed poorly on scale, producing numerous side products, 
which proved difficult to separate from the desired macrocycle. 
After pursuing a wider range of conditions, we obtained our 
most promising results using a procedure employed by Fürstner 
in their synthesis of cycloviracin B.28 The use of dimethylimid-
azolinium chloride (2-Cl-DMC)29 in the presence of NaH and 
DMAP cleanly afforded the desired product in a scalable fash-
ion. Through careful adjustments to the reaction conditions, it 
was found that using KH in lieu of NaH and increasing the re-
action time and temperature in the presence of excess diacid 12 
afforded the desired diolide in 48% yield. This impressively ef-
ficient double esterification–72-membered ring formation is, to 
the best of our knowledge, among the largest recorded macro-
lactonizations.25 

Reduction of the esters of the macrocyclic diolide to their 
corresponding ethers was all that remained for our synthesis of 
GDGT-0 (1). After some experimentation, we discovered that 
the use of catalytic indium tribromide in the presence of tri-
ethylsilane accomplished the desired reductions.30 These condi-
tions also led to serendipitous PMB-ether deprotection. Minor 
amounts of TES-protected 1 are formed from in situ-generated 
Et3SiBr. Treatment of the crude reaction mixture with TBAF 
liberated any silyl-protected material and afforded GDGT-031 in 
56% yield. 

With the core lipid in hand, we then turned our attention to-
ward the installation of polar headgroups for subsequent bio-
physical studies. Consistent with prior reports,12 phosphate 
headgroups are readily incorporated onto 1 to give GDGT-0 bis-
phosphate 13 (Scheme 2). However, naturally occurring GDGT 
lipids are predominantly non-C2-symmetric, bearing different 
functionality on the two glycerol units.4,13a,7b These unsymmet-
ric natural products predominantly feature mono- and/or oligo-
saccharides that are either directly connected to the glycerols or 
via a phosphate linkage, as well as common phosphate esters 
and acids. Thus, we needed to develop a strategy to desymme-
trize 1. As a proof of concept, this was accomplished via a dou-
ble protection-monodeprotection sequence. While the effi-
ciency of this sequence is not ideal, the only other compounds 
formed are bis-TBDPS-GDGT-0 and GDGT-0, both of which 
can be recovered. Acid-catalyzed glucosylation with glucosyl 
donor 14 followed by fluoride silyl ether cleavage afforded the 
monoglucosylated GDGT-0 15 as a mixture of anomers. Intro-
duction of a phosphate and global debenzylation then delivered 
16. This represents the first synthesis of a natural GDGT with 
differentially functionalized glycerols and the first synthesis of 
a natural GDGT bearing a carbohydrate head group.  

Motivated by the dearth of biophysical studies on homoge-
nous GDGT lipids, we first sought to investigate the self-assem-
bly of 13 and 16 into vesicles. Gentle hydration of these lipids 
resulted in the observation of giant unilamellar vesicles (GUVs) 
with uniform incorporation of fluorescently labeled lipid Texas 
Red-DHPE (Scheme 2B,2D). These vesicles are also capable of 
encapsulating water-soluble carboxyfluorescein dye (Scheme 
2C,2E). While the self-assembly of 13 has been reported,12 our 
studies with 16 are the first evidence of the formation of GUVs 
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from unsymmetric synthetic GDGT lipids. This discovery will 
enable further biophysical studies into vesicles derived from 16 
and holds great promise for studies into other unsymmetric de-
rivatives of 1.  

 
Scheme 2. Installation of Polar Headgroups and Observed 
Self-assembly.a  

 
A. aReagents and conditions: (a) (i-Pr2N)P(OBn)2 (5.0 equiv), 

tetrazole (8.0 equiv), CH2Cl2, rt; then t-BuOOH (20.0 equiv), –40 
°C to rt; (b) Pd(OH)2, THF/EtOH, rt, 79% overall; (c) TBDPSCl 
(3.0 equiv), imidazole (4.0 equiv), CH2Cl2, rt, 84%; (d) TBAF (1.0 
equiv), THF, rt, 44%; (e) 14 (2.1 equiv), TMSOTf (0.1 equiv), 
CH2Cl2, 4Å MS, rt, 67%; (f) TBAF (5.0 equiv), THF, rt, 64%; (g) 
(i-Pr2N)P(OBn)2 (5.0 equiv), tetrazole (8.0 equiv), CH2Cl2, rt; t-
BuOOH (20.0 equiv), –40 °C to rt; (h) Pd(OH)2, THF/EtOH, rt, 
73% overall. B–E Fluorescence microscopy images of GUVs. B. 
13, 0.1% TR-DHPE. C. 13, 0.5 mM carboxyfluorescein. D. 16, 
0.1% TR-DHPE. E. 16, 0.5 mM carboxyfluorescein. TR-DHPE = 
Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanola-
mine triethylammonium salt. 

We next turned our attention toward studying the phase be-
haviors of these synthetic lipids. While 13 behaved as a fluid at 
room temperature, 16 demonstrated more gel-like behavior. 
Differential scanning calorimetry (DSC) studies of 13 and 16 
were unable to identify any endothermic transitions between –
40 °C and 90 °C, indicating that no significant phase transitions 
were observed within this temperature range. In order to further 
study the packing characteristics of these lipids, we measured 
the fluorescence spectra across various temperatures of the 
solvatochromic dye Laurdan incorporated into membranes of 
13 and 16.32 A gradual decrease in generalized polarization oc-
curred in both lipid samples as the temperature was increased, 
suggesting the membranes were becoming increasingly fluid. 
However, consistent with the DSC experiments, no discrete 
phase transitions were observed from the spectra. 

A rapid and enantioselective synthesis of the archaeal tetrae-
ther lipid GDGT-0 and the synthesis and self-assembly of de-
rivatives bearing different polar head groups is reported. The 
approach relied on the use of a global asymmetric hydrogena-

tion to set all syn-1,5 methyl stereocenters present in the hydro-
carbon core. A macrolactonization-hydrosilylation sequence 
was then employed to construct the natural product via a formal 
macroetherification. Subsequent desymmetrization enabled the 
first synthesis of an unsymmetric GDGT-0 bearing two differ-
ent polar headgroups.  Finally, phase transition and self-assem-
bly studies provided evidence that these synthetic lipids self-
assemble into fluid giant unilamellar vesicles. This highly effi-
cient approach to GDGT-0 will enable future studies into both 
the unique biophysics and biosynthesis of this molecule and its 
derivatives. 
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