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Abstract 29 
 30 
Each year, millions of premature deaths worldwide are caused by exposure to outdoor air 31 
pollution, especially fine particulate matter (PM2.5). Designing policies to reduce deaths relies on 32 
air quality modeling for estimating changes in PM2.5 concentrations from many policy scenarios at 33 
high spatial resolution. However, air quality modeling typically has high requirements for 34 
computation and expertise, which limits policy design, especially in countries where most PM2.5-35 
related deaths occur. Lower requirement reduced-complexity models exist but are generally 36 
unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally developed 37 
for the United States, to simulate annual-average primary and secondary PM2.5 concentrations 38 
across a global-through-urban spatial domain: “Global InMAP”. Global InMAP uses a variable 39 
resolution grid, with 4 km horizontal grid cell widths in cities. We evaluate Global InMAP 40 
performance both against measurements and a state-of-the-science chemical transport model, 41 
GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-Chem 42 
pollutant concentrations with a normalized mean bias of 59%–121%. Global InMAP can be run on 43 
a desktop computer; simulations here took 2.6–4.4 hours. This work presents a global, open-44 
source, reduced-complexity air quality model to facilitate air pollution policy assessment 45 
worldwide, providing a tool for reducing the deaths where they occur most. 46 
 47 
Introduction 48 
 49 
Exposure to outdoor air pollution is the largest environmental health risk factor worldwide, 50 
associated with millions of excess deaths each year1,2. The deaths are mostly attributable to fine 51 
particulate matter (PM2.5), which can either be emitted directly, or can form indirectly from 52 
precursor pollutants that are emitted from a wide variety of natural and anthropogenic emission 53 
sources, including transportation, agriculture, and electricity generation3,4. Designing strategies to 54 
reduce mortality relies on understanding how specific emission sources affect ambient PM2.5 55 
concentrations, and thereby, human health, across a range of possible technology or policy 56 
scenarios. 57 
 58 
InMAP5 (Intervention Model for Air Pollution) is a reduced-complexity, open-source air quality 59 
model that has been used to inform strategies to reduce PM2.5-related mortality from specific 60 
emission sources. For example, InMAP has been used to estimate fine-scale pollution impacts 61 
across distances6, measures of pollution inequity across racial-ethnic and socioeconomic 62 
groups7, the health impacts of specific sectors under different policy scenarios8,9, and individual 63 
impacts of commodities10. However, as with other widely used reduced-complexity air quality 64 
models such as EASIUR11, AP212, and COBRA13, InMAP has only been configured and evaluated 65 
for the United States, a country with just 4% of the world's population and around 2% of the 66 
world's air quality-related deaths2,4. 67 
 68 
Chemical transport models (CTMs) are employed for estimating the effects of emission sources 69 
on pollutant concentrations and health impacts, and are considered state-of-the-science for air 70 
quality modeling. However, they require substantial time, expertise, and computational resources 71 
(e.g., several computation days per simulation month), limiting the use-cases and therefore the 72 
extent to which they can inform many multidimensional policy decisions5,14, especially when 73 
hundreds of policy scenarios are being considered. Although GEOS-Chem is one of the most 74 
widely used CTMs, 60% of deaths from outdoor air pollution occur in countries where there are 75 
no known users or institutions using GEOS-Chem15,16. 76 
 77 
Some global air quality models are available with a lower operational difficulty than CTMs, 78 
including TM5-FASST17 and source-receptor relationships built from GEOS-Chem adjoint18 and 79 
EMEP19. Compared to the existing global air quality models with lower operational difficulty than 80 
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CTMs, InMAP has higher spatial resolution, is easier to use, and has lower computational costs.   81 
A recent notable effort20 to build a monthly life cycle assessment model for PM2.5 has not yet 82 
been tested against measurements or compared with results from a CTM. A diversity of 83 
independently evaluated reduced-complexity models will increase their applicability and the 84 
robustness of policy assessments worldwide21. 85 
 86 
Here, we developed and configured InMAP for use on a global spatial domain (“Global InMAP”). 87 
We ran a year-long, global CTM simulation using GEOS-Chem22, and used its outputs to globally 88 
parameterize the chemistry, physics, and meteorology of InMAP. We then ran InMAP on global 89 
emission inventories to predict total PM2.5 concentrations as well as changes in concentrations 90 
from three specific scenarios of emission changes. We compared the results to a global dataset 91 
of ground observations, as well as to PM2.5 concentrations and changes in concentrations 92 
predicted by GEOS-Chem. Lastly, we compared Global InMAP to the United States versions of 93 
InMAP for two emission scenarios. 94 
 95 
Materials and Methods 96 
 97 
The InMAP modeling framework, fully described in Tessum et al.5, estimates annual-average 98 
concentrations of fine particulate matter (PM2.5), including both primary (i.e., directly emitted) and 99 
secondary (i.e., formed in the atmosphere) components. InMAP explicitly tracks secondary PM2.5 100 
contributions from particulate ammonium (pNH4), particulate sulfate (pSO4), particulate nitrate 101 
(pNO3), and secondary organic aerosol (SOA), from emissions of PM2.5 precursors (sulfur oxides 102 
(SOx), nitrogen oxides (NOx), ammonia (NH3), and non-methane volatile organic compounds 103 
(NMVOCs)). InMAP estimates pollutant concentrations by approximating the steady-state solution 104 
to a set of differential equations governing pollutant emissions, reaction, advection, diffusion, and 105 
removal. It solves the equations by discretizing over space and time, using a variable resolution 106 
grid, and spatially varying parameterizations that simplify the reaction, advection, and removal 107 
terms in the equations. Whereas CTMs simulate chemistry and physics (reaction, advection, 108 
removal) using first principles and mechanistic or empirical representations for specific 109 
processes, InMAP simulates chemistry and physics using simplified representations that are 110 
parameterized by the outputs of a CTM simulation. 111 
 112 
InMAP as configured over the United States (“US InMAP”) was parameterized using outputs from 113 
WRF-Chem23,24. However, WRF-Chem is not commonly used for global simulations. Instead, 114 
InMAP was parameterized here using outputs from GEOS-Chem22, a global CTM. Details of the 115 
model configuration, GEOS-Chem simulation inputs, global emission inventories, and 116 
performance evaluation are provided below. 117 
 118 
Global InMAP computational grid 119 
 120 
As with previous InMAP configurations for the US5-10, the horizontal resolution of the Global 121 
InMAP computational grid varies across space and is higher in places with larger population or 122 
population density. Here, we used 2020 projected population data at 0.01° resolution25 to create 123 
the computational grid. We employed a population density threshold of 5.5 × 108 deg-2 and a 124 
population threshold of 100,000. For any grid cell, if either threshold was exceeded, then the 125 
model subdivided it into smaller cells until the smallest cell size was reached. 126 
 127 
The resulting computational grid (Figure S1) has ~1.5 million grid cells (ground-level: 170,358 128 
grid cells), whose horizontal resolution at ground-level ranges from 5° × 4° (which corresponds to 129 
~500 km length at the equator) in remote locations to 0.04° × 0.03° (~4 km length at the equator) 130 
in urban locations. The spatial domain encompasses the vast majority of the Earth's surface: 131 
latitudes from -87.0° to +81.0° and longitudes from -178.0° to +172.0°. Global InMAP does not 132 
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track pollution across the poles or antimeridian26. The resulting grid covers all but ~5 million 133 
people (< 0.1% of the total population) in parts of New Zealand and other islands in the Pacific 134 
Ocean. The population-weighted average grid-cell size is 1,000 km2 (for comparison, ~39,000 135 
km2 for GEOS-Chem). The resulting pre-processed gridded input data file is ~700 MB, and is 136 
provided in Dataset S1. 137 
 138 
GEOS-Chem simulation 139 
 140 
Chemical and physical atmospheric parameters used in Global InMAP, such as annual-average 141 
gas/particle-phase partitioning coefficients, were derived from the outputs of an annual GEOS-142 
Chem “Classic” (version 11-01f) simulation (2016-01-01 until 2017-01-01), with meteorology 143 
provided by MERRA-227. The GEOS-Chem outputs were used in the same way as the 144 
corresponding WRF-Chem variables were used for US InMAP (see Tessum et al.5). The full list of 145 
GEOS-Chem variables used in Global InMAP, and descriptions of how they are used, can be 146 
found in Table S1. 147 
 148 
The GEOS-Chem model code and configuration were derived from a simulation performed by 149 
Hammer et al.,28 where the chemical mechanism included complex secondary organic aerosol 150 
(SOA) formation with semi-volatile primary organic aerosol29,30. We used the standard horizontal 151 
spatial resolution for global simulations in GEOS-Chem, 2° × 2.5°, (~ 220 km × 275 km at the 152 
equator) with 47 vertical levels, following the configuration described in Hammer et al.28 153 
 154 
GEOS-Chem also allows for higher resolution grids nested within a larger domain31. Again 155 
following Hammer et al.28, we ran GEOS-Chem nested grid simulations over the same time 156 
period for Asia, Europe, and North America, at 0.5° × 0.625° resolution, which covers 75% of the 157 
world's population. First, boundary conditions for the nested grid simulations were recorded every 158 
180 minutes of simulation time, at 2° × 2.5° resolution, during the global simulation. In our 159 
application, emergent properties extracted for use in Global InMAP, such as the annual-average 160 
temperature and wind velocity vectors, are only specified up to this coarse resolution. However, 161 
Global InMAP can still be used on a higher resolution (variable) grid, and the resolution of the 162 
emission inventory is also not limited by the resolution of the GEOS-Chem output. 163 
 164 
Emission inputs 165 
 166 
To estimate concentrations of total PM2.5 and speciated components using Global InMAP, we 167 
compiled a global emission inventory of NH3, primary PM2.5, NOx, SOx, and NMVOC. For 168 
consistency, we chose the same emission inventories as those used in the GEOS-Chem 169 
simulation, but, where possible, processed to a higher spatial resolution as described below for 170 
the Global InMAP computational grid. Total annual emissions fluxes for the emission inventories 171 
used in the Global InMAP simulation are given in Table 1. 172 
 173 
Where possible, the total emission inventories used for the Global InMAP simulation were 174 
compiled using the standalone version of HEMCO32, using the same configuration as used in the 175 
GEOS-Chem simulation except at 0.25° × 0.25° horizontal resolution. Differences in grid 176 
resolutions, time steps, and environmental fields can result in small differences when the same 177 
emission inventories are processed. HEMCO standalone provides both high resolution emissions 178 
and consistency with the GEOS-Chem simulation, but cannot be used for some emission 179 
inventories that require detailed chemical or meteorological inputs. For those, we instead saved 180 
out emissions (“diagnostics”) from the GEOS-Chem simulation, gridded at 2° × 2.5°, and used 181 
these in the global InMAP simulation. Table 1 gives the total annual emissions for Global InMAP 182 
inputs, and the data source for each group of emissions used. 183 
 184 
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Only a subset of NMVOC emissions is likely to form SOA33,34. For Global InMAP anthropogenic 185 
emissions, we included isoprene, monoterpenes, benzene, toluene, xylenes, trimethylbenzenes, 186 
alkanes with more than 4 carbon atoms, and other aromatics, from the EDGAR35 v4.3.2 emission 187 
inventory. For biogenic emissions, we included limonene, isoprene, alpha-pinene, beta-pinene, 188 
sabinene, carene, and monoterpenes from the global GEOS-Chem simulation. For biomass 189 
burning, we include benzene, toluene, xylenes, alkenes with more than 3 carbon atoms, and 190 
alkanes with more than 4 carbon atoms, from the RETRO biomass burning emission inventory36. 191 
 192 
Although Global InMAP has the functionality to include vertically elevated emissions, there is a 193 
lack of global information on emission heights for many sources35. HEMCO processed emissions 194 
were thus derived at the lowest vertical layer, except for aircraft emissions, lightning NOx and 195 
volcanic SOx. For simplicity in configuring the Global InMAP emissions, here we only used the 196 
emissions from these sources in the lowest vertical layer, which excluded 8% of global NOx 197 
emissions and 16% of global SOx emissions. 198 
 199 
PM2.5 concentrations are not directly tracked in GEOS-Chem, but rather are calculated from its 200 
underlying components that are grouped in such a way as to facilitate chemical and atmospheric 201 
modeling. For example, dust is grouped by several size classes that do not perfectly map onto 202 
PM2.5. HEMCO and GEOS-Chem diagnostic outputs also typically report emissions in these 203 
groups, requiring some conversions for use in Global InMAP. Here, we did so in accordance with 204 
the standard GEOS-Chem recommendations (see Table S1 for the PM2.5 equation used). 205 
Following Hammer et al.28 and Li et al.37, irreversible aqueous formation of SOA from isoprene 206 
was included in total PM2.5 mass, whereas reversible formation was excluded. 207 
 208 
InMAP data inputs for pollutant removal through deposition likewise required modification for 209 
Global InMAP simulations. Specifically, Global InMAP requires land cover data to calculate dry 210 
deposition rates for gases and particles in each ground-level grid cell. For the United States, 211 
InMAP used land cover data from the United States Geological Survey National Land Cover 212 
Database38. For Global InMAP, we instead used the Olson 2001 Land Use Map at 0.025° × 213 
0.025° resolution39, which is also used in GEOS-Chem. 214 
 215 
Comparison with other air quality models and measurements 216 
 217 
Using the global emission inventories described in the previous section, we generated Global 218 
InMAP results and compared them against other models and measurements (1) for total 219 
concentrations; (2) for three perturbation scenarios wherein we modified global emissions from a 220 
specific sector and predicted the resulting concentration changes; and (3) for United States 221 
electricity and transportation emissions, to compare Global InMAP with US InMAP. 222 
 223 
First, we evaluated Global InMAP predictions of PM2.5 (total and speciated) against annual-224 
average ground-level measurements, as is commonly done for air quality models40,41. To this end, 225 
we compiled and vetted a global measurement dataset for total and speciated PM2.5 (see 226 
Supplementary Text and Table S2 for additional details). We reported metrics commonly used for 227 
evaluating model performance: normalized mean error and bias (NME and NMB), the squared 228 
linear correlation coefficient, R2, and the slope of the best-fit line, S (see Supplementary 229 
Information for equations used)42. Using this approach, model-measurement comparisons were 230 
generated for Global InMAP and (separately) for the GEOS-Chem simulation (described above). 231 
 232 
To provide context for the model-measurement comparison results, we reported model criteria 233 
published by Emery et al.42 (see Supplementary Information). Performance criteria were provided 234 
as a general reference point, not as “pass/fail” criteria. The criteria are intended for evaluating 235 
PM2.5 concentrations over sub-annual lengths of time43, or for daily average measurements within 236 
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1000 km, where there are more than 10 measurements42. Here, we used the criteria more 237 
broadly to identify the stronger and weaker aspects of model performance. 238 
 239 
Second, we simulated the effects of three emissions perturbations with Global InMAP and GEOS-240 
Chem simulations and compared their predicted pollutant concentration increments. The 241 
perturbations chosen were: (i) a 100% increase (4.9 Tg) in global SO2 emissions from power 242 
generation for 2 months (2016-01-01 until 2016-03-01); (ii) a 100% increase (7.5 Tg) in global 243 
NH3 emissions from agricultural soils for 3 months (2016-01-01 until 2016-04-01); (iii) a 100% 244 
increase (1.4 Tg) in global NOx emissions from road transport for 1 month (2016-01-01 until 2016-245 
02-01). All emissions changes were from the EDGAR emissions database (v.4.2, 0.1° × 0.1° 246 
resolution) as described above. For each of the scenarios chosen, we ran global, annual 2° × 2.5° 247 
GEOS-Chem simulations similar to those described above, with the change in emissions 248 
implemented using a constant temporal profile over the timescale of the perturbation. As InMAP 249 
is an “intervention” model (designed to model changes in emissions directly), for Global InMAP 250 
we ran the changes in emissions from the EDGAR emission inventories at native resolution. 251 
 252 
Lastly, because InMAP has already been configured and evaluated over the contiguous United 253 
States, we performed two simulations for United States emission changes using Global InMAP 254 
and US InMAP. To this end, we compiled emission inventories over the United States using the 255 
National Emissions Inventory (NEI) 2014v.1, processed exactly as in Thakrar et al.8 We 256 
investigated two sources of PM2.5 and precursor emissions: coal-powered electricity generation 257 
(NEI Source Classification Code: 10100212) and gasoline passenger vehicles (NEI Source 258 
Classification Code: 2201210080). 259 
 260 
Results 261 
 262 
Computational requirements 263 
 264 
The annual, global simulations described above (system: 98 processors on 1 node of a 265 
supercomputing cluster; 36 GB memory) required 4 hours for Global InMAP (1.5 million grid cells) 266 
and 100 hours for GEOS-Chem (2° × 2.5° grid resolution, 0.6 million grid cells). The perturbation 267 
simulations, when run on the same system, took 2.6–4.4 hours. 268 
 269 
Other GEOS-Chem simulations require comparably high resources44. The variable resolution 270 
InMAP grid allows for much higher spatial resolution over areas with high population density than 271 
is possible with the GEOS-Chem uniform grid, while only requiring 4% of the computational time. 272 
 273 
Model-to-measurement comparisons 274 
 275 
The Global InMAP simulation using total emissions was able to predict total PM2.5 concentrations 276 
against measurements globally with NMB = –60%; NME = 63%; and R2 = 0.35 (see Figures 1–2, 277 
S2). As with the GEOS-Chem simulation, the performance of the Global InMAP simulation varied 278 
by region (see Figures S3–S8). The Global InMAP simulation was generally most accurate in 279 
Oceana (NMB: -45%; R2: 0.64; see Figure S7), North America (NMB: -54%; R2: 0.59; see Figure 280 
S6), and Europe (NMB: -64%; R2: 0.28; see Figure S5), and least accurate in South America 281 
(NMB: -74%; R2: 0.05; see Figure S8). Across many heavily polluted regions in Asia, the Global 282 
InMAP simulation predicted much lower PM2.5 concentrations than are measured (difference: > 283 
30 μg m-3) (Figure S4), in particular across the Indo-Gangetic Plain. The underprediction may 284 
have arisen because of potentially low emissions inputs, e.g. from industrial and agricultural NH3 285 
emissions45 or missing NMVOC species from biomass burning46. The Global InMAP simulation 286 
may have underpredicted pollution from episodic events, such as biomass burning in the Indo-287 
Gangetic Plain, because Global InMAP assumes that emissions occur at an annual-average rate. 288 
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Furthermore, the chemistry that is included in Global InMAP may not be sufficiently complex to 289 
accurately predict PM2.5 in heavily polluted areas47. 290 
 291 
We also compared annual-average predicted concentrations from the Global InMAP simulation to 292 
annual-average measurements of pSO4, pNO3, and pNH4 globally (Figures 3–4). The Global 293 
InMAP simulation predicted these components reasonably well (NME: 50%–67%; R2: 0.24–0.38) 294 
and was generally biased low against measurements for pNO3 (especially in areas with pNO3 >2 295 
μg m-3), and high for pSO4 and pNH4. Because the Global InMAP simulation did not have a 296 
strong low bias against secondary inorganic PM2.5 measurements, it is likely that much of the low 297 
bias of the Global InMAP simulation against total PM2.5 measurements arose from its prediction of 298 
primary PM2.5 concentrations (see Figure 3). However, measurement data for SOA and primary 299 
PM2.5 concentrations were not available at the evaluation sites (see Figure 3 for ground-level 300 
concentrations of these species). 301 
 302 
We also compared the GEOS-Chem simulation against the same measurement data, to 303 
contextualize the Global InMAP results. The GEOS-Chem simulation predicted total PM2.5 304 
measurements with an R2 of 0.55. For comparison, a GEOS-Chem simulation that used the same 305 
code and emissions28 reported an R2 of 0.61 when using a more comprehensive measurement 306 
dataset and averaging results across years 2010–2018 instead of just 2016. 307 
 308 
Both the Global InMAP and the GEOS-Chem simulations predicted lower annual-average total 309 
PM2.5 concentrations than were observed. For all species and regions, the direction of bias 310 
against measurements was the same for the Global InMAP simulation as for the GEOS-Chem 311 
simulation. This suggests that the Global InMAP simulation was inheriting the bias from the 312 
GEOS-Chem simulation inputs to some extent. If that was the case, then future improvements to 313 
the GEOS-Chem model and to the emission inventories used here could further reduce Global 314 
InMAP biases. 315 
 316 
The Global InMAP simulation broadly reproduced spatial patterns of pollutant concentrations 317 
predicted by GEOS-Chem. However, there were some features present in the GEOS-Chem 318 
simulation that were not captured by the Global InMAP simulation. Such features included high 319 
annual-average PM2.5 concentrations from biomass burning, including the Alberta fires, crop 320 
burning in the Indo-Gangetic Plain, peatland fires in Singapore and Malaysia, and burning in 321 
Siberia. InMAP may have underpredicted PM2.5 concentrations from biomass burning relative to 322 
the GEOS-Chem simulation because it assumes emissions happen at an annual-average rate. 323 
Across Western China, the Global InMAP simulation tended to misrepresent the spatial patterns 324 
provided by the parent GEOS-Chem simulation for both primary and secondary PM2.5, including 325 
high concentrations over the Himalayas and Sichuan Basin, and low concentrations in 326 
surrounding areas. This may suggest that the annual-average advection scheme used by InMAP 327 
does not yet adequately capture complex air flows over steep terrain. 328 
 329 
Evaluation of predicted responses to changes in emissions 330 
 331 
The major intended use of InMAP is to estimate the changes in human exposure to PM2.5 332 
concentrations for given scenarios of emission changes. Therefore, its ability to reproduce the 333 
changes predicted by the original CTM could be considered its most important attribute and is 334 
more important than its ability to reproduce current absolute concentrations. However, InMAP is 335 
designed to predict human exposure with high spatial resolution in urban areas, while GEOS-336 
Chem is designed to predict global chemical transport and runs at comparatively low resolution. 337 
Directly comparing the two models requires re-gridding the higher-resolution Global InMAP 338 
results to match the lower-resolution GEOS-Chem results, which cancels out predictive 339 
advantages Global InMAP might gain from its use of higher spatial resolution. Therefore, results 340 
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in this section could be considered a conservative evaluation of Global InMAP’s predictive 341 
performance. 342 
 343 
Figure 5 shows annual-average pollutant concentration increments predicted by the GEOS-Chem 344 
and Global InMAP simulations for increases in SOx emissions from power generation, NH3 345 
emissions from agricultural soils, and NOx emissions from road transportation. When regridding 346 
Global InMAP predictions to the GEOS-Chem grid, we found that Global InMAP reproduced the 347 
GEOS-Chem results with an average area-weighted NME of 118–182% and an average area-348 
weighted NMB of 59–121% (see Table 2). For the NOx and NH3 emissions scenarios, Global 349 
InMAP exhibited better performance against GEOS-Chem on a population-weighted basis than 350 
on an area-weighted basis. For the SOx emissions scenario, Global InMAP exhibited the lowest 351 
performance against the GEOS-Chem simulation, having overpredicted changes in pSO4 352 
concentrations especially in populated areas. 353 
 354 
The Global InMAP simulations predicted greater variability in concentration changes over urban 355 
areas than the 2° × 2.5° GEOS-Chem simulations for the same emissions scenarios, owing to its 356 
higher resolution computational grid. Figure 6 compares the pNO3 concentration changes over 357 
Cairo, São Paulo, and Tokyo (the largest cities in Africa, South America, and Asia48) for the NOx 358 
perturbation scenario as predicted by Global InMAP and GEOS-Chem. Changes in 359 
concentrations predicted by Global InMAP correlated with changes in emissions at the urban 360 
scale. Higher resolution GEOS-Chem simulations that resolve intra-urban gradients would be 361 
even more computationally expensive than the GEOS-Chem simulations performed here44. 362 
 363 
Global InMAP predicted similar spatial patterns and magnitudes of changes in pollutant 364 
concentrations as did US InMAP for a given emissions perturbation (see Figure S7), with NME 365 
and NMB within ± 50% for both scenarios considered (see Table 2). This demonstrated 366 
consistency between the InMAP versions derived from WRF-Chem and GEOS-Chem inputs, 367 
suggesting that no major errors were introduced in the Global InMAP model development (see 368 
Table S1; Tessum et al.5). For InMAP applications focusing only on the United States, continued 369 
use of US InMAP is warranted, as the WRF-Chem simulation used to parameterize US InMAP 370 
provides higher spatial resolution than does the nested GEOS-Chem simulation employed for 371 
Global InMAP. 372 
 373 
Discussion 374 
 375 
Here, we extended InMAP, a reduced-complexity air quality model originally developed for use in 376 
the United States, to simulate a global-through-urban spatial domain. InMAP is designed to 377 
supplement rather than supplant tools like GEOS-Chem or other global models, e.g., for cases in 378 
which resources to implement a CTM are unavailable, or when hundreds of simulations are 379 
needed to evaluate a large variety of policy scenarios and perform an initial assessment and 380 
screening. 381 
 382 
Global InMAP requires relatively low computational resources, allowing it to be run on a desktop 383 
computer rather than a super-computer. Simulations predicting annual-average concentrations 384 
take several hours rather than days. For example, compared to the global GEOS-Chem 385 
simulation described here, the Global InMAP simulation was 25× faster at predicting total annual-386 
average PM2.5 concentrations, despite having 39× higher population-weighted average spatial 387 
resolution (down to ~4km in urban areas). 388 
 389 
As expected, the expedience of Global InMAP comes at the expense of lower predictive accuracy 390 
compared to a comprehensive CTM. This Global InMAP simulation is biased low against 391 
measurements for total PM2.5 across all regions. Among species, it is biased high against 392 
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measurements of pSO4 and pNH4, and low against measurements of pNO3. The low 393 
computational resource requirements make Global InMAP particularly well-suited to applications 394 
where hundreds of policy scenarios are evaluated, as is often done using reduced-complexity 395 
models for the United States8,10,49, or when no other air quality models are available at the urban 396 
scale. In places with higher population and pollution exposure than the United States, there is 397 
even more potential for a reduced-complexity model such as Global InMAP to inform impactful 398 
policy decisions. Global InMAP may be important for informing preliminary hypotheses about 399 
policy decisions in its early stages (e.g., “What is the best location to site a new facility that may 400 
be a major pollution source?”), allowing computational resources to be used instead for CTMs at 401 
a later stage to check consistency with the findings. 402 
 403 
Global InMAP performance varies regionally, and it tends to perform worse against 404 
measurements in places where GEOS-Chem also performs poorly (e.g., South America). This 405 
suggests that predictive accuracy in those areas is generally lower across models, so that Global 406 
InMAP may provide a comparative advantage. Further, this suggests that Global InMAP 407 
performance in those regions may improve based on future advancements in emission 408 
inventories or GEOS-Chem model inputs. 409 
 410 
By directly estimating annual-average PM2.5 concentrations at high spatial resolution, Global 411 
InMAP is configured to easily estimate changes in human exposure and health impacts. When 412 
estimating human health effects of emissions changes, there will also be sizeable uncertainties 413 
from estimating the emissions changes themselves and from the concentration-response function 414 
employed50; Global InMAP errors should thus be contextualized with those in mind. For the 415 
United States, a previous study6 found that the largest source of uncertainty in estimating 416 
monetized PM2.5 health impacts was the economic valuation of premature mortality, followed by 417 
the concentration response function, whereas uncertainty in PM2.5 concentrations from the choice 418 
of air quality model was the smallest source of uncertainty considered. 419 
 420 
Here, by providing a global, open source, air quality model with high spatial resolution and low 421 
computational requirements, we hope to facilitate the wide practice of air pollution policy 422 
assessment worldwide.  423 
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Figures and Tables 598 
 599 
Table 1. PM2.5 and precursor emissions inputs into GEOS-Chem and Global InMAP. 600 

Pollutant 
GEOS-Chem 
(Tg/yr) 

Global InMAP 
(Tg/yr) 

Global InMAP 
data source 

Maximum 
resolution 

Anthropogenic  
 

  
PM2.5 24.45 32.93 HEMCO 0.25° × 0.25° 
NH3 51.52 47.39 HEMCO 0.25° × 0.25° 
SOx 84.33 84.33 Diagnostics 2° × 2.5° 
NOx 64.85 76.28 HEMCO 0.25° × 0.25° 
NMVOC - b 58.15 EDGAR 0.1° × 0.1° 
Natural 

  
  

PM2.5 244.53 244.53 Diagnostics 2° × 2.5° 
NH3 17.38 15.97 HEMCO 0.25° × 0.25° 
SOx 28.32 0.42a Diagnostics 2° × 2.5° 
NOx 28.02 16.60a Diagnostics 2° × 2.5° 
NMVOC - b 553.14 Diagnostics 2° × 2.5° 
Biomass burning 

  
  

PM2.5 35.30 35.30 GFED-4 0.25° × 0.25° 
NH3 4.24 4.24 GFED-4 0.25° × 0.25° 
SOx 2.25 2.25 GFED-4 0.25° × 0.25° 
NOx 20.28 20.28 GFED-4 0.25° × 0.25° 
NMVOC - b 5.10 RETRO 0.5° × 0.5° 

    
aOnly NOx and SOx emissions in the lowest vertical layer were used in Global InMAP, yet the 601 
majority of natural NOx and SOx emissions are emitted from lightning and volcanoes at higher 602 
levels. bNot all NMVOC emissions from GEOS-Chem simulation are reported.  603 
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Table 2. Area- and population-weighted normalized mean bias (NMB) and error (NME) for Global 604 
InMAP predicted changes in concentrations against changes in concentrations from GEOS-Chem 605 
or US InMAP, arising from scenarios of changes in emissions. Positive bias indicates that Global 606 
InMAP has higher average concentration changes than the other model. 607 

Model comparison Scenario Weighting NME (%) NMB (%) 
Global InMAP 
against GEOS-
Chem 

NH3 increase from 
agricultural soils 

area-wtd. 118.2 58.7 
population-wtd. 88.6 52.5 

NOx increase from road 
transportation 

area-wtd. 180.7 96.2 
population-wtd. 102.2 40.8 

SOx increase from power 
generation 

area-wtd. 181.3 120.7 
population-wtd. 273.4 259.3 

Global InMAP 
against US InMAP 

Coal-powered electricity area-wtd. 38.4 -18.8 
population-wtd. 38.7 -10.5 

Gasoline passenger 
vehicles 

area-wtd. 48.4 -23.0 
population-wtd. 48.8 -46.7 

  608 
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Figure 1. Annual-average ground-level total PM2.5 concentrations from the Global InMAP and 609 
GEOS-Chem simulations for year 2016. 610 

  611 
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Figure 2. Annual-average total PM2.5 concentrations from the Global InMAP and GEOS-Chem 612 
simulations against measurements. Only values ≤100 μg m-3 are plotted here, excluding 25 613 
(1.5%) model-measurement pairs (full figure shown in Supplementary Information, Figure S2). 614 

  615 
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Figure 3. Global InMAP and GEOS-Chem annual-average ground-level pNH4, pNO3, pSO4, 616 
SOA, and primary PM2.5 concentrations.  617 

  618 
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Figure 4. Global InMAP and GEOS-Chem annual-average pSO4, pNO3, and pNH4 619 
concentrations against measurements. 620 

  621 
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Figure 5. Comparison between Global InMAP and GEOS-Chem for predicting changes in 622 
pollutant concentrations. Column (c) shows the difference in concentrations between Global 623 
InMAP and GEOS-Chem. First row: changes in pSO4 concentrations from a 100% increase in 624 
SOx emissions from power generation. Second row: changes in pNH4 concentrations from a 625 
100% increase in NH3 emissions from agricultural soils. Third row: changes in pNO3 626 
concentrations from a 100% increase in NOx emissions from road transportation. 627 

  628 
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Figure 6. First column: 100% increase in NOx emissions from road transport across Cairo, São 629 
Paulo, and Tokyo. Second and third column: resulting changes in pNO3 concentrations predicted 630 
by the Global InMAP and the GEOS-Chem simulations. For each map, blue lines indicate rivers 631 
and black lines indicate land borders.  632 
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Supplementary Information Text 
 
Measurement data description 
 
Ground-level measurements of total PM2.5, pNH4, pNO3, and pSO4 concentrations across year 
2016 were compiled from the World Health Organization database and supplemented with 
additional measurements from other official channels such as governmental and non-
governmental agencies (see Table S2). Included measurements were vetted according to quality 
control criteria, including those used by the 2012 United States National Ambient Air Quality 
Standards. Only measurements that directly measured PM2.5 were included; PM10 measurements 
that were converted to PM2.5 were excluded. Further, data without correct latitude and longitude 
were excluded. Global InMAP directly estimates annual-average pollutant concentrations, so 
measurement data from each monitoring site were averaged across the year. To avoid temporal 
biases across the day, all measurement data were averaged daily values of pollutant 
concentrations. To avoid seasonal biases, measurements had to be reported for at least 75% of 
days in the year from each monitoring site included in our dataset. 
 
After vetting, the final dataset of annual-average pollutant concentrations included ~1,700 total 
PM2.5 data points across 62 countries; 171 pNH4 data points across 1 country (the US); 334 pNO3 
data points across 4 countries, and 385 pSO4 data points across 12 countries. The final dataset is 
provided in Dataset S1. 
 
Performance metric and criteria descriptions 
 
Normalized mean bias and error (NMB and NME), are given by: 
 

𝑁𝑀𝐵 =	
∑ 𝑃( −( 𝑂(
∑ 𝑂((

× 100 

 

𝑁𝑀𝐸 =	
∑ |𝑃( − 𝑂(|(
∑ 𝑂((

× 100 

where, for monitor location 𝑖, 𝑃( are the model predictions and 𝑂( are the observations of annual-
average pollutant concentrations. 
 
Model criteria for PM2.5, pSO4, and pNH4 concentrations, are R2 ≥ 0.16, NME ≤ 50%, and |NMB| ≤ 
30%. For pNO3, model criteria are NME ≤ 115%, |NMB| ≤ 65% (with no criteria for R2). 
 
For model-to-model comparisons, weighted NMB and NME are given by: 

𝑁𝑀𝐵12(34526 =	
∑ (𝐺𝐼( −( 𝑀() × 𝑤(

∑ 𝑂(( × 𝑤(
× 100 

 

𝑁𝑀𝐸12(34526 = 	
∑ |𝐺𝐼( − 𝑀(|( × 𝑤(

∑ 𝑀(( × 𝑤(
× 100 

 
Where 𝑤( are the weights (areas or population counts) for each grid cell	𝑖, 𝐺𝐼 are the Global 
InMAP predictions, and 𝑀 are the predictions from the other model (GEOS-Chem or US InMAP). 
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Supplementary Figure 1. Detail of the Global InMAP horizontal computational grid over West 
Africa, Central America, and Europe for illustration. Grid cells are as small as 0.04° × 0.03° (~4 
km length) in areas with a higher population such as Lagos in Nigeria, San Salvador in El 
Salvador, and London in the United Kingdom. Grid cells are as large as 5° × 4° (~500 km length) 
in places with a lower population, such as across the Atlantic Ocean. 
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Supplementary Figure 2. InMAP and GEOS-Chem annual-average primary PM2.5 
concentrations against measurements, including outliers (above 100 μg m-3). 
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Supplementary Figure 3. Performance of Global InMAP and GEOS-Chem simulations against 
total annual-average PM2.5 measurements for Africa. Dots on each map show measurement site 
locations, whose color corresponds to the model-measurement difference in PM2.5 
concentrations. 
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Supplementary Figure 4. Performance of Global InMAP and GEOS-Chem simulations against 
total annual-average PM2.5 measurements for Asia. Dots on each map show measurement site 
locations, whose color corresponds to the model-measurement difference in PM2.5 
concentrations.  
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Supplementary Figure 5. Performance of Global InMAP and GEOS-Chem simulations against 
total annual-average PM2.5 measurements for Europe. Dots on each map show measurement site 
locations, whose color corresponds to the model-measurement difference in PM2.5 
concentrations. 
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Supplementary Figure 6. Performance of Global InMAP and GEOS-Chem simulations against 
total annual-average PM2.5 measurements for North and Central America. Dots on each map 
show measurement site locations, whose color corresponds to the model-measurement 
difference in PM2.5 concentrations. 
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Supplementary Figure 7. Performance of Global InMAP and GEOS-Chem simulations against 
total annual-average PM2.5 measurements for Oceana. Dots on each map show measurement 
site locations, whose color corresponds to the model-measurement difference in PM2.5 
concentrations. 
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Supplementary Figure 8. Performance of Global InMAP and GEOS-Chem simulations against 
total annual-average PM2.5 measurements for South America. Dots on each map show 
measurement site locations, whose color corresponds to the model-measurement difference in 
PM2.5 concentrations. 
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Supplementary Figure 9. Changes in Total PM2.5 concentrations from road vehicle emissions 
and from power generation emissions as predicted by Global InMAP (which has GEOS-Chem 
preprocessor inputs) alongside US InMAP (which has WRF-Chem preprocessor inputs). 
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Supplementary Table 1. Names and descriptions of GEOS-Chem outputs used to calculate 
Global InMAP parameters. 
 
Name(s) Description and use in Global InMAP 

preprocessor 
BENZ, TOLU, XYLE, NAP, POG1, POG2 Anthropogenic VOCs that are SOA 

precursors; used to determine VOC/SOA 
partitioning 

ASOA1, ASOA2, ASOA3, ASOAN Anthropogenic SOA; used to determine 
VOC/SOA partitioning 

ISOP, LIMO, MTPA, MTPO Biogenic VOCs that are SOA precursors; 
used for model evaluation 

TSOA0, TSOA1, TSOA2, TSOA3, SOAGX, 
SOAMG, SOAIE, SOAME, LVOCOA, ISN1OA 

Biogenic SOA; used for model evaluation 

NO, NO2 Components of NOx; used to determine NOx 
/pNO3 partitioning 

NIT, NITs Components of pNO3; used to determine NOx 
/pNO3 partitioning 

SO2 Gaseous SO2 and sulfate; used to determine 
SOx /pSO4 partitioning 

SO4, SO4s, DMS Particulate SO4; used to determine SOx /pSO4 
partitioning 

NH3 Ammonia; used to determine NH3/pNH4 
partitioning 

NH4 Particulate Ammonium; used to determine 
NH3/pNH4 partitioning 

1.33×(NH4 + NIT + SO4) + BCPI + BCPO + 
1.4×(POA1 + POA2) + 2.1×(OPOA1 + 
OPOA2) + 1.16×(TSOA1 + TSOA2 + TSOA3 
+ ASOAN + ASOA1 + ASOA2 + ASOA3 + 
SOAGX + INDIOL + SOAMG + SOAIE + 
SOAME + LVOCOA + ISN1OA) + DST1 + 
0.38×DST2 + 1.86×SALA 

Total PM2.5 concentration in the baseline 
simulation; used for model evaluation 

Z0M Momentum roughness length 
U, V, OMEGA Wind fields; used to determine advection and 

mixing coefficients 
PBLH Planetary boundary layer height; used to 

determine mixing coefficients 
HFLUX Surface heat flux; used to determine mixing 

and dry deposition 
USTAR Friction velocity; used to determine mixing 

and dry deposition 
T Temperature; used to calculate chemical 

reaction rates and plume rise 
PS, P Base state pressure plus perturbation 

pressure; used to calculate 
chemical reaction rates and plume rise 

OH, H2O2 Hydroxyl radical and hydrogen peroxide 
concentrations; used to cal- 
culate chemical reaction rates 

FRSNO Fraction of land covered by snow; used to 
calculate dry deposition 
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PFLCU, PFLLSAN Mixing ratio of rain; used to calculate wet 
deposition 

CLOUD Fraction of grid cell covered by clouds; used 
to calculate wet deposition 

QL Cloud mixing ratio; used to calculate aqueous-
phase chemical reaction rates 

AIRDEN Inverse air density; used to calculate mixing 
and to convert between 
mixing ratio and mass concentration 

PARDF, PARDR Downward shortwave and longwave radiative 
flux at ground level; used to calculate dry 
deposition 

 
  



 
 

14 
 

Supplementary Table 2. Measurement data sources for 2016 used in evaluating Global InMAP 
and GEOS-Chem annual-average predictions of pollutant concentrations. The World Health 
Organization data includes data from other regulatory sources and monitoring networks globally. 
 
Region Data Source 
Global PM2.5 World Health Organization 
Europe PM2.5, pNO3, pSO4 European Environment 

Agency 
Canada PM2.5 National Air Pollution 

Surveillance Program 
United States of America PM2.5, pNO3, pSO4, pNH4 Environmental Protection 

Agency 
India PM2.5 Central Pollution Control 

Board 
Australia PM2.5 Australian Government State 

of the Environment 
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Supplementary Table 3. Global InMAP and GEOS-Chem performance metrics for total PM2.5 
concentrations globally, speciated PM2.5 concentrations globally, and total PM2.5 concentrations 
regionally. Bold values do not meet the performance criteria (see Supplementary Text). NMB: 
normalized mean bias (%); NME: normalized mean error (%). 
 Global InMAP GEOS-Chem 
 NMB (%)  NME (%) R2 NMB (%) NME (%) R2 
Total PM2.5 -60 63 0.35 -37 41 0.55 

 
pSO4  48 67 0.38  18 37 0.42 
pNO3 -24 50 0.24 -12 53 0.25 
pNH4  35 65 0.24  79 110 0.08 

Africa -41 52 0.22 -42 50 0.47 
Asia -58 62 0.02 -37 40 0.18 
Europe -64 64 0.28 -35 38 0.24 
North & Central America -53 55 0.59 -29 35 0.08 
Oceana -45 47 0.64 -49 49 0.68 
South America -74 79 0.05 -79 79 0.05 
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Dataset S1 (Online at doi.org/10.5281/zenodo.4641947). Input data (including population, grid, 
and emissions data) used to perform and evaluate Global InMAP simulations. 


