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Abstract. We introduce a new agent-based framework for materials discovery

that combines multi-fidelity modeling and sequential learning to lower the number

of expensive data acquisitions while maximizing discovery. We demonstrate

the framework’s capability by simulating a materials discovery campaign using

experimental and DFT band gap data. Using these simulations, we determine how

different machine learning models and acquisition strategies influence the overall

rate of discovery of materials per experiment. The framework demonstrates that

including lower fidelity (DFT) data, whether as a-priori knowledge or using in-tandem

acquisition, increases the discovery rate of materials suitable for solar photoabsorption.

We also show that the performance of a given agent depends on data size, model

selection, and acquisition strategy. As such, our framework provides a tool that enables

materials scientists to test various acquisition and model hyperparameters to maximize

the discovery rate of their own multi-fidelity sequential learning campaigns for materials

discovery.

materials, machine learning, density functional theory

1. Introduction

Materials discovery and optimization is a key process in the development of new

technology and is particularly critical to emerging energy technologies for mitigating

fossil fuel use. Current materials for fuel cell catalysts, batteries, thermoelectrics, and

other such technologies are frequently costly, unsafe, unstable, or otherwise limited in

their efficacy. This motivates the discovery of improved materials and the improvement

of the materials discovery process itself. The current material discovery process remains

time-intensive and ad-hoc, frequently requiring multiple researcher-years of effort.

Computational simulations of materials, particularly from density functional theory

(DFT)[1, 2], have become an important complement to the discovery process and have

even guided the experimental discovery of materials in a number of cases.[3, 4, 5, 1, 2, 6]

As both these simulations and high-throughput experiments have been automated for

materials property prediction and measurement, large datasets[7, 8, 9, 10] have become
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available to researchers. This in turn has enabled the development of accurate and

interpretable surrogate models from machine learning designed to quickly predict the

desired property of material before either experiment or simulation[3].

While materials discovery and property prediction have been partially addressed by

several machine learning strategies and frameworks [11, 12, 13, 14, 15, 16, 17, 18, 19], the

diversity of materials measurement and simulation methods, along with the requirement

to carry out experiments under budget constraints, require building systems that acquire

new data efficiently according to their most recent results. Thus, using sequential

learning (SL) and Bayesian optimization (BO) strategies[20, 21, 22, 23, 24, 25, 26, 27]

to obtain a property with experiments and/or simulations at varying fidelities and

acquisition costs[28, 29, 30, 31, 32, 33, 34, 35] are particularly promising. In SL or

BO for materials design, decisions to synthesize, characterize or simulate candidate

materials are made with the aid of machine learning in an iterative process. The

results of new experiments or computations are fed back to the model and used in

subsequent iterations. Recently demonstrated applications of SL in materials science

include systems that learn how to perform only the most valuable or relevant DFT

simulations using previous iterations[5, 36, 23], improve force fields more rapidly for

molecular dynamics simulations[22, 37, 38], or even synthesize carbon nanotubes at new

conditions that promote higher yields and higher qualities of product [25]. Multi-fidelity

models, on the other hand, combine measurements or experiments performed at varying

degrees of accuracy in their fitting and prediction procedures. The advantage of such

methods is that they can combine large quantities of cheaply acquired, less accurate data

with data acquired via more expensive but accurate methods. Multi-fidelity models can

be significantly more accurate in their predictions than similar models trained on single-

fidelity datasets.[16, 29, 28] They may also help mitigate resource limitations that make

sampling at higher fidelities impractical or impossible in high-throughput.[28, 30, 31] SL

and multi-fidelity modeling methods are typically used and investigated independently

in the scientific literature, i.e. the relationship between the acquisition strategy and the

modeling strategy is chosen on an ad-hoc basis. Therefore, there remains an opportunity

to investigate how scientists can optimally use SL and multi-fidelity methods together

and develop a framework to experiment with different strategies for their simultaneous

use.

In the present work, we introduce a multi-fidelity SL framework for materials

discovery with an objective to lower the number of high fidelity acquisitions while

maximizing discovery. We demonstrate the framework’s capability using band gap data

of inorganic compounds at two fidelities; namely, experimental measurements as the

high fidelity source and GGA-level DFT simulations as the low fidelity alternative.

Band gap is a fundamental electronic property relevant for a wide range of technological

applications[39, 40, 41], and hence been the subject of various high-throughput efforts

which have provided large amount of data available at multiple fidelities.[28, 29, 42]

Using the framework, we performed several simulations of iterative SL campaigns for

the discovery of inorganic materials with a target electronic band gap window under two



Multi-fidelity Sequential Learning for Accelerated Materials Discovery 3

different settings. In the first setting, DFT data was considered as prior knowledge and

made available for model fitting before any experimental measurements were acquired.

In the second setting, DFT and experimental data were acquired together in sequential

iterations. These SL procedures determined how different ML models and acquisition

strategies influence the overall rate of discovery of materials per experiment. Our

results suggest that, even in a simple, automated process, consideration of lower fidelity

DFT data in conjunction with experimental data can increase the rate of discovery

of materials suitable for solar photoabsorption. We also demonstrate that the type of

machine learning model used in the SL procedure controls the extent of an increase in

the number of discoveries in the multi-fidelity setting compared to the single-fidelity

baseline.

2. Methods

2.1. Dataset Collection and Representation

The band gap dataset was collected from two sources: (1) experimentally reported

band gaps aggregated by Zhuo et al.[16] and disseminated via Matminer[43] and (2)

GGA-level DFT-computed band gaps disseminated via the Materials Project.[7, 44]

The experimental band gaps include 3906 unique compositions. Compositions with

multiple measurements were averaged to obtain a mean band gap value. For each

composition, the band gap corresponding to the most phase-stable (i.e. lowest computed

energy per atom) crystal structure was obtained from the Materials Project. In our

discovery campaign simulations, these band gaps from DFT using the Perdew-Burke-

Ernzerhof (PBE) functional[45] were considered low fidelity data, as GGA has well-

known systematic errors that underestimate experimentally measured band gaps by

∼0.9 eV.[46]

We processed the data by using a fixed-length vector to encode both the

compositions of each material and the level of fidelity. More specifically, stoichiometric

compositions were featurized with the matminer ElementProperty featurizer[43]. The

levels of fidelity were captured with one-hot encoding, where a binary variable was added

for each fidelity level. For example, for experimental data, a “1” was placed under the

“experiment” feature and a “0” under the “theory” feature. The final overall features

were scaled such that their distribution had a mean of 0 and a standard deviation of 1.

2.2. Multi-fidelity Sequential Learning Procedure

The multi-fidelity SL framework is built on the recently introduced system for

Computational Autonomy for Materials Discovery (CAMD)[23]. CAMD follows an

agent-based abstraction for convenient design and testing of acquisition strategies from

candidate pools in SL-based optimization. Figure 1 outlines the CAMD framework and

highlights the newly constructed multi-fidelity acquisition feature. In a given campaign,

the (multi-fidelity) seed data and candidate data (search space) go into an agent. A
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Figure 1. A schematic outlining the multi-fidelity sequential learning framework. The

major components of the framework include an agent, experiment, and analyzer. The

agent is responsible for the selection of new experiments based on the current state

of known data. The experiment acquires new data based on candidates the agent has

selected. The analyzer post-processes any experimental data acquired and provides

them to the agent for the next round of experiment selections.

preprocessing step in the agent featurizes each member of the seed and candidate data’s

composition and fidelity as described in the previous section. The featurized seed data

is used to train a machine learning model, which makes predictions on the candidate

data for the target property. Using the predictions, the agent then selects candidates at

different fidelities. The selected candidates (i.e. those hypothesized as promising by the

agent) are sent to an Experiment API, which in our case is an “after-the-fact” (ATF)

API that emulates DFT simulation and experimental measurement, respectively, and

returns the results from the known dataset. We note that ATF experiment API can later

be exchanged for a “true” experiment API to run the actual experiments or simulations

with an agent of choice [23]. The analyzer monitors the campaign results and provides

an analysis of the experiments in the context of the previously collected data (seed data)

and the progress of the campaign. New experimental results are then appended to the

seed data and removed from the candidate data, after which the process begins again

in the agent phase.

2.3. Agent Design for Materials Discovery

Designing the agent for a multi-fidelity SL procedure required two steps: (1) Selecting an

appropriate machine learning model and (2) developing a CAMD-compatible[23] multi-

fidelity procedure for acquisition. For model selection, we compared several well-known

regression methods, including support vector regression (SVR), k-nearest neighbors

(KNN), random forest regression (RFR), and Gaussian process regression (GPR).

The selection process included hyperparameter tuning and comparative performance

analysis, whose details were provided in Supplementary document section S1. Based
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on the results, SVR, RFR, and GPR with noted hyperparameters had qualitatively

similar performances and were used consistently for the framework construction and

demonstration. However, note that the developed framework (detailed next) allows

users to input their ML model and model hyperparameters of choice for the agent.

For the multi-fidelity framework itself, We designed two agents, an epsilon-greedy

multi-fidelity agent (ε-greedy-MF) and a Gaussian process lower confidence bound[47]

derived multi-fidelity agent (GPRLCB-MF). The ε-greedy-MF agent takes any supervised

machine learning regressor from scikit learn[48] as input and allocates the desired

budget for experiment versus theory data, and acquires candidates in each fidelity

via exploitation (Algorithm S1). This algorithm prioritizes doing experiments on

predicted ideal compositions if they are structurally similar to some known compositions

(in seed data). Otherwise, lower-fidelity computations are performed first. The

GPRLCB-MF agent (uses GPy[49] package) operates under a total acquisition budget.

It acquires candidates factoring in GPR predicted uncertainties in the LCB setting

and hallucination of information gain from DFT acquisitions analogous to work

of Desautels et al. in batch mode LCB[50] (Algorithm S2). The agent aims

for prioritizing exploitation primarily with high-fidelity experimental measurements,

offloading exploratory (higher risk) acquisitions first to lower-fidelity computations. As

noted in Algorithm S2, three critical acquisition hyperparameters require optimization -

α, β, and γ. α is the uncertainty mixing parameter, which is the weight of uncertainty in

the LCB setting. β occur as a threshold for uncertainty percentile. A small beta means

the agent wants to be very confident about the prediction on experiments. Unless the

uncertainty on a given prediction is very low, it will acquire lower fidelity data first.

If β is large, the agent is tolerant to high uncertainty for experiments and will add

prospective experimental. γ estimates the influence of lower fidelity data. If γ is 0, then

the prospect of the lower fidelity data has to increase the chances of the experiment being

successful. Otherwise, lower fidelity data will be acquired first. If γ is very large, then

the agent does not care about how much DFT result affects the potential experiment.

We simulated various scenarios of these two hyperparameters to optimize the agents.

The details and results are in Supplementary document section S4. Details of agents

are also made explicit in the code available via the open-source CAMD repository at

https://github.com/TRI-AMDD/CAMD.

2.4. Performance Metrics for Sequential Learning

In this work, we used previously established active learning metrics (ALM)[37] to

quantify the performance of SL agents, and benchmarked the multi-fidelity SL against

single-fidelity SL. These metrics are allALM, acceleration factor (AF), and enhancement

factor (EF), as shown in Figure 2. allALM ranges from 0 to 1. It is the fraction of ideal

materials identified at an iteration given an SL run. AF is the reduction of required

budget (e.g. in time, iterations, or some other consumed resource) between an agent and

a benchmark case (e.g. random selection, single-fidelity, or manual human selection) to



Multi-fidelity Sequential Learning for Accelerated Materials Discovery 6

Figure 2. The performance metrics[37] used to evaluate sequential learning

procedures. allALM (on the y-axis) is the fraction of ideal materials discovered at

a given budget. Acceleration factor (AF) is the reduction of the required budget

between an agent and a benchmark case to achieve a certain amount of discovery.

Enhancement factor (EF) is the performance improvement of an agent compared to

the benchmark at a given budget.

reach a particular fraction of ideal candidates (AF = Nbudget,benchmark - Nbudget,agent).

Here, a positive value of AF indicates multi-fidelity campaigns outperform their

corresponding single fidelity campaigns because they reduce the required budget needed

to achieve a certain amount of discovery. EF shows the performance enhancement at the

same consumed experiment budget. More specifically, at the same number of iterations,

amount of elapsed time, or some other metric of expended resources, EF quantifies the

improvement of materials discovery by a given SL method versus a benchmark method

(EF =
Ndiscovery,agent

Ndiscovery,benchmark
). Here, EF greater than one indicates multi-fidelity campaigns

outperform their corresponding single fidelity campaigns at a given budget.

2.5. Sequential Learning Objective

For multi-fidelity SL campaign simulations and subsequent performance evaluations

of the agents, materials with experimentally measured band gap ⊆ [1.6, 2.0] eV [51],

i.e. those with reasonable solar photoabsorption, were considered ideal and set as the

“target”.
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3. Results

3.0.1. Boundary condition acquisitions: when all DFT data were available. We first

tested the acquisition performance of multi-fidelity agents where DFT was considered

as a-priori knowledge. The objective here was to determine how an automated

experimental SL procedure would be enhanced by a-priori knowledge of a large

theoretical dataset. The enhancement is primarily through the transfer of knowledge

from the large, low-fidelity dataset in making predictions and subsequent acquisitions

under the high-fidelity, expensive setting. We simulated runs with three agents: ε-greedy

agents that used SVR and RFR, and GPRLCB agent. For each agent, we supplied: (1)

no seed data and (2) all the DFT data as seed data. The candidate data were the

experimental data for both cases, where 202 of 3906 were considered ideal based on the

target band gap window defined above. Therefore, (1) represents acquisition based on

single (high) fidelity, and (2) represents acquisition based on multi-fidelity (low fidelity

present in the seed, high fidelity as target). For convenience, we name them SVR-

SFboundary, RFR-SFboundary, and GPRLCB-SFboundary, SVR-MFboundary, RFR-MFboundary,

and GPRLCB-MFboundary (SF denotes single fidelity, MF denotes multi-fidelity). We gave

all the agents a budget of 20 experiment requests in each iteration and simulated each

campaign for 100 iterations. We also provided two limiting cases: (1) a simple agent

that randomly chooses data from candidate space and (2) the maximum achievable

performance where all the acquisitions are ideal candidates. Put differently, (1) defined

a lower bound to ensure that a given agent is delivering some value relative to a trivial

selection algorithm, whereas (2) defined the upper bound on agent performance that

may be considered a target for when engineering the selection algorithm.

Figure 3 shows the results of the simulated discovery campaigns. For our

initial benchmark, all of our SL agents consistently outperformed random acquisitions,

demonstrating their ability to deliver value in an automated system. However, the

underlying regressors used in each agent influenced their performance. In the single-

fidelity case, where there was no access to low-fidelity DFT data, RFR-SFboundary

outperformed SVR-SFboundary until ∼1100 experiment requests, at which roughly 70%

of the ideal candidates had been discovered. It also outperformed GPRLCB-SFboundary

starting ∼750 experiment requests. In the multi-fidelity case where all low-fidelity

(DFT) data was made available, the SVR-MFboundary agent consistently outperformed

RFR-MFboundary and GPRLCB-MFboundary until ∼1500 experiment requests, at which

≥90% of ideal candidates had been discovered. More importantly, we observed that

multi-fidelity agents that used SVR-MFboundary (Figure 3b) and GPRLCB-MFboundary

(Figure 3d) outperformed their single fidelity counterparts, demonstrating that these

regression algorithms can transfer the knowledge available from the lower-fidelity dataset

in making predictions for the high-fidelity target, whereas RFR-MFboundary (Figure 3c)

cannot.

To illustrate the comparative performance of single and multi-fidelity agents in more

detail, we tabulated acceleration factors at 50% and 90% of the total discovery of ideal
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Figure 3. Simulated performance of various campaigns with and without supplying

the lower fidelity (DFT) data in the seed. a) shows performance of all campaigns. c-d)

shows performance of campaigns separately based on the underlying ML model. For

each figure, Nexperiment on the x-axis corresponds to the high-fidelity (experiments)

acquisition budget. Discoveries (allALM ) on the y-axis corresponds to the fraction of

ideal materials discovered from the search space. SVR, RFR, GPRLCB correspond to

agents using support vector regressor, random forest regressor, and gaussian process

regressor lower confidence bound, respectively. The random acquisition and ideal

acquisition baselines are also labeled in the figure, representing the lower and upper

bounds of agent performance.

candidates in Table 1. For a multi-fidelity agent with either of the SVR or GPRLCB, 320

or 120 fewer experiments were required to achieve the discovery of 50% of the candidates

designed as ideal. Similarly, 460 or 480 fewer experiments were needed to achieve a

90% discovery. In comparison, the RFR-MFboundary agent displayed a much smaller

enhancement (40 at 50% and 80 at 90% discovery) over its single-fidelity counterpart.

The enhancement factors shown in Figure 4 provided a clearer picture of the comparative

performance throughout the campaign. We observe that SVR and GPRLCB multi-

fidelity agents briefly underperformed their single-fidelity counterparts in the early stages

of campaigns (until ∼100 and ∼250 experiments, respectively). After this point, SVR-

MFboundary outperformed SVR -SFboundary by a notable margin to achieve enhancement

of a factor of ∼1.5 to 1.6. This factor diminished slowly as candidates were exhausted for

the remainder of the campaign. GPRLCB-MFboundary outperformed GPRLCB-SFboundary
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by a smaller amount at the beginning, but the performance further enhanced at ∼
750 experiments, which corresponds to the results in Figure 3d. Lastly, EF of RFR-

MFboundary stayed around 1, which means there was not any difference in RFR MF and

SF agents’ performance. As an additional analysis, for each set of agents (multi-fidelity

and its corresponding single fidelity) during their various stages of the campaign, We

computed the reduction in seed data MAE from single fidelity to multi-fidelity. The

results again showed having DFT in seed data improved the agent’s prediction ability.

The details of the analyses are included in Supplementary document section S2.

Agents
Single fidelity

experiments performed

for 50% discovery

multi-fidelity

AF50%

Single fidelity

experiments performed

for 90% discovery

multi-fidelity

AF90%

SVR 880 320 1740 460

RFR 740 40 1680 80

GPRLCB 780 120 1940 480

Table 1. Acceleration factor of multi-fidelity agents in simple acquisitions. The

AF’s are the reduction in number of experiments performed by multi-fidelity agents to

achieve a certain amount of discoveries. For each row, we highlighted the agents used,

the experiments performed by single fidelity agents to achieve 50% and 90% discovery,

and the acceleration factor (AF) of the multi-fidelity agents at those discoveries.

3.0.2. In-tandem acquisitions: when both DFT and experiment data were acquired

Having looked into two limiting scenarios of with or without low fidelity data prior

to campaigns, we now turn to our next main question: when and how should we

decide to acquire DFT calculations to support and minimize the number of experimental

measurements during a sequential, closed-loop data acquisition procedure? To answer

this, we simulated another set of campaigns. First, to mimic a more true-to-life discovery

process, we split the compositions into seed data and candidate data based on the year

of discovery according to the ICSD[52] timeline of their first publication[53], which also

mitigated the effect of a random initial seed (Figure 5). For single fidelity campaigns,

the data of the first 500 experimentally discovered compositions, up to the discovery

year of 1965, were included in the seed data, the remaining were included in the seed

data. For multi-fidelity campaigns, the data split was identical, with the addition of

corresponding DFT data in each set. Next, we set up the campaigns with a ε-greedy

agent that used SVR and a GPRLCB agent. We excluded ε-greedy agent that used RFR

based on its weak a-priori performance. Therefore, a total of four SL campaigns were

set up: SVR-SFtandem, GPRLCB-SFtandem, SVR-MFtandem, and GPRLCB-MFtandem (SF

denotes single fidelity, MF denotes multi-fidelity). We also provided the two limiting

cases of (1) random acquisition and (2) maximum achievable acquisition. For acquisition

budget, both SVR-SFtandem, GPRLCB-SFtandem, along with the two limiting case, had a

budget of 5 experiment requests. SVR-MFtandem had a fix-ratio budget of 5 experiments

and 5 DFT. GPRLCB-MFtandem had a budget of 10 acquisitions, each acquisition can
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Figure 4. The enhancement factor for quantifying the added value of DFT in the

campaigns. The enhancement factors were
Ndiscovery,multi−fidelity

Ndiscovery,singlefidelity
at any given budget.

be either experiments or DFT, depending on the uncertainties and hallucination of

information gain from DFT. Based on optimization results in Supplementary document

section S4, alpha=0.1, beta=10, and gamma=0 were used for GPRLCB-MFtandem

to compare against the other SL campaigns.

Figure 6 shows the qualitative results of the simulated campaigns using in-tandem

acquisition. Figure 6b shows the SVR-MFtandem agent outperformed its single-fidelity

counterpart starting when Nexperiments reached around 400. It then stayed slightly ahead

until 1000 experiments were acquired, at which point 90% of the ideal materials have

been discovered. Figure 6c shows the GPRLCB-MFtandem agent also outperformed its

single-fidelity counterpart until 90% of the ideal materials have been discovered (at

∼1200 experiments). Compare among all four agents (Figure 6a), SVR-MFtandem agent’s

performance was similar to GPRLCB-MFtandem until 750 experiments and became better

after that. Furthermore, GPRLCB-MFtandem agent’s performance fell behind SVR-

SFtandem’s once ∼1100 experiments had been conducted.

The AF (Table 2) of multi-fidelity acquisitions for SVR-MFtandem and GPRLCB-

MFtandem at 50% discovery were 100 and 226, respectively. At 80% discovery, they

were 145 and 111, respectively. The enhancement factors (Figure 7) of SVR-MFtandem
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Figure 5. The seed data and candidate data selection for single fidelity campaigns

and multi-fidelity campaigns in in-tandem acquisitions. They were decided based on

the year of discovery for compositions in the band gap dataset.
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Figure 6. Simulated performance of various campaigns when both DFT and

experiment data were acquired during runs. a) were the results of all campaigns

combined in one figure. b-c) were the results based on underlying ML used in the

agents. Nexperiment on the x-axis corresponds to the experimental acquisition budget.

Discoveries (allALM ) on the y-axis corresponds to the fraction of ideal materials

discovered from the search space. The random acquisition and ideal acquisition

baselines are also labeled in the figures.
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Figure 7. The enhancement factors of in-tandem acquisitions as the campaign

progresses.

increased then decreased drastically at first, then stayed slightly above 1 until Nexperiments

reaches ∼1100. The enhancement of GPRLCB-MFtandem was high at the beginning

but decreased as the acquisition continued and converged to 1 at ∼1200 experiments.

Combining the results, we noticed that AF and EF were not as large as the previous

runs, where all the DFT data was available in the seed space. This was because DFT

data were now part of the acquisition, so there was less DFT data in the seed data

provided to ML models for the transfer of information from lower fidelity.

Agents
Single fidelity

experiments performed

for 50% discovery

multi-fidelity

AF50%

Single fidelity

experiments performed

for 80% discovery

multi-fidelity

AF80%

SVR 605 100 990 145

GPRLCB 720 226 1060 111

Table 2. Acceleration factor of multi-fidelity agents in in-tandem acquisitions. For

each row, we highlighted the agents used, the experiments performed by single fidelity

agents to achieve 50% and 80% discovery, and the acceleration factor (AF) of the multi-

fidelity agents. The AF’s are the reduction in number of experiments performed.
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4. Conclusion

In this work, we demonstrate a framework that combines multi-fidelity machine learning

models and sequential learning procedures. Using this framework, we simulated a

materials discovery process that can acquire band gap data at two fidelities. When

all low-fidelity data were provided as a-priori knowledge, both SVR and GPR multi-

fidelity agents outperformed their single-fidelity counterparts within 500 experiments

and sustained a materials discovery acceleration of 20-60% until over 90% of the

target materials had been discovered. When acquiring low and high-fidelity data in-

tandem, SVR and GPR multi-fidelity agents still outperformed their single fidelity

counterparts. However, the enhancement was lower, based on both the acceleration

factor and effectiveness factor.

In summary, we observed a clear trend of multi-fidelity sequential learning agents

outperforming those which may only sample at a single fidelity. The results demonstrate

that the inclusion of one-hot labeled DFT data either a-priori or acquired in-tandem

with experiments can increase the rate at which valuable experiments are acquired.

However, the relative performance of multi-fidelity acquisition strongly depends on the

dataset size, ML model selection, and acquisition strategy.

Given these dependencies, our framework offers a critical capability that enables

the scientific method on the automated discovery process itself. In CAMD, we examine

the effects of these hyperparameters not only on ML model performance but the rate

at which autonomous agents with ML capabilities can select valuable experiments to

perform. Thus, CAMD’s multi-fidelity sequential learning campaigns lay a foundation

for future research in which both simulations and experiments can be conducted in

tandem with strategies optimized for their relative cost and accuracy.

5. Supporting Information

The supporting information contains details on the preliminary model selection before

constructing the multi-fidelity framework. Error rate analyses during boundary

condition acquisition, the algorithms related to the two multi-fidelity agents mentioned

in the paper, and hyperparameter tuning for GPRLCB multi-fidelity agent. The full

details of the code are provided in an open-source repository at https://github.com/TRI-

AMDD/CAMD.
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[31] Tian H and Rangarajan S 2019 J. Chem. Theory Comput. 15 5588

[32] Greenhill S, Rana S, Gupta S, Vellanki P and Venkatesh S 2020 IEEE Access 8 13937

[33] Tran A, Tranchida J, Wildey T and Thompson A P 2020 Journal of Chemical Physics 153 074705

[34] Batra R and Sankaranarayanan S 2020 JPhys Materials 3 031002

[35] Chen C, Zuo Y, Ye W, Li X and Ong S P 2021 Nature Computational Science 1 46

[36] Seko A, Togo A, Hayashi H, Tsuda K, Chaput L and Tanaka I 2015 Phys. Rev. Lett. 115 205901

[37] Rohr B, Stein H S, Guevarra D, Wang Y, Haber J A, Aykol M, Suram S K and Gregoire J M 2020



Multi-fidelity Sequential Learning for Accelerated Materials Discovery 15

Chemical Science 11 2696

[38] Vandermause J, Torrisi S B, Batzner S, Kolpak A M and Kozinsky B 2019 Preprint at https://arxiv.

org/abs/1904.02042

[39] Jain A, Shin Y and Persson K A 2016 Computational predictions of energy materials using density

functional theory vol 1 (Nature Publishing Group)

[40] Chaudhry A, Boutchko R, Chourou S, Zhang G, Grønbech-Jensen N and Canning A 2014 Phys.

Rev. B 89 155105

[41] Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C 2016 Science 352

[42] Kiselyova N N, Dudarev V A and Korzhuyev M A 2016 Inorganic Materials: Applied Research 7

34

[43] Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J,

Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I and Jain A 2018

Computational Materials Science 152 60

[44] Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G and Persson K A 2015 Computational

Materials Science 97 209

[45] Perdew J P, Burke K and Ernzerhof M 1996 Physical review letters 77 3865
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