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Abstract: Global food production needs to increase in order to meet the demands of an ever 

growing population. As resources are finite, the most feasible way to meet this demand is to 

minimize losses and improving efficiency. Regular monitoring of factors like animal health, 

soil and water quality for example, can ensure that the resources are being used to their 

maximum efficiency. Existing monitoring techniques however have limitations, such as 

portability, turnaround time and requirement for additional reagents. In this work, we explore 

the use of micro and nano scale electrode devices, for the development of electrochemical 

sensing platform to digitalize a wide range of applications within the Agri-food sector. With 

this platform, we demonstrate the direct electrochemical detection of pesticides, specifically 

clothianidin and imidacloprid with detection limits of 0.22 ng/mL and 2.14 ng/mL 

respectively, and nitrates with a detection limit of 0.2 µM. In addition, interdigitated electrode 

structures also enable an in-situ pH control technique to mitigate pH as an interference and 

modify analyte response. This technique is applied to the analysis of monochloramine, a 

common water disinfectant. Concerning biosensing, the sensors are modified with bio-

molecular probes for the detection of both bovine viral diarrhea virus particles and antibodies, 

over a range of 1 ng/mL to 10 µg/mL. Finally, a portable analogue front end electronic reader 

is developed to allow portable sensing, with control and readout undertaken using a smart 

phone application.   Finally, the sensor chip platform is integrated with these electronics to 

provide a fully functional end-to-end smart sensor system compatible with emerging Agri-

Food digital decision support tools.  
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Control; Virus Detection 

 

1. Introduction 

With the global population continuing to expand, there is now an urgent need to produce more 

food, up to 70% by 2050, more efficiently with the available existing finite resources.[1] This is a key 

societal challenge that is a call to action for global political leaders.  To this end, the World 

Government Summit published, in 2018, their report called “Agriculture 4.0 – The Future of Farming 

Technology”, which addressed the four main developments they identified as placing pressure on 

agriculture: Demographics, Scarcity of natural resources, Climate change, and Food waste.[2]  

Similarly, in 2019, the European set forth its European Green Deal for the European Union (EU) and 

its citizens.  This is “a new growth strategy that aims to transform the EU into a fair and prosperous 
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society, with a modern, resource-efficient and competitive economy where there are no net emissions 

of greenhouse gases in 2050 and where economic growth is decoupled from resource use”.[3] 

Producers and processers on the front line are key to managing the transition to more sustainable 

systems of food production to reduce air, water and soil pollution, biodiversity loss and climate 

change, and excessive consumption of natural resources.  New digital technologies are therefore 

required, at all stages of production, to enhance food security, reduce losses, increase sustainable 

production (through precision agriculture), increase economic return while also protecting 

biodiversity.  Agriculture 4.0 is the term for this challenge facing the Agri-food industry, and will 

necessarily include a greater focus on, the use of the internet of things (IoT) and big data to drive 

greater business efficiencies.   

 

Digital technologies have the potential to revolutionize the whole Agri-food and the 

environment supply chain and will play a great role in transforming the traditional based agriculture 

industry to a knowledge based one. The increased connectivity of a global agriculture would enable 

producers to use their data to apply the 4R farm management strategy Right product, Right place, 

Right time, Right rate, while processors can employ data to reduces losses, maximize production, 

increase quality and address consumer concerns, e.g., traceability.  To enable this paradigm shift, new 

decision support tools and advanced analytics based on embedded and connected point-of-use 

sensors and systems are required to yield (quasi)real time data that will provide informed decision 

making capacity to stakeholders.  Given the huge diversity in potential uses-cases, for example, plant 

and animal health monitoring,[4-6] to pesticide and antibiotics residue detection,[7-9] through to soil 

and water quality measurements[10-13] a suite of new connected sensor systems that are fit for 

purpose are proposed.  To date a number of sensors based on optical,[14-16] chemical,[17, 18] 

electromechanical detection mechanisms[19, 20] have been developed, by a number of research 

groups, but can be limited in terms of portability, deployment incompatibilities and cost.   

 

By contrast, electrochemical sensors have a number of adventitious properties that make them 

particularly suitable for point-of-use applications.  They are highly sensitive and portable, are 

relatively low cost, exhibit a rapid time-to-result, are highly versatile e.g., different, electrode 

materials (C, Au, Pt) are suitable for a variety of different chemical molecules, and may also be 

modified with a large variety of biomolecules for bio-sensing applications.[21-24] Furthermore, they 

are low power and provide an electrical transduction signal; which may be fed directly into electronic 

systems (without conversion) amplified, undergo edge analytics with the resultant data sent to the 

cloud.[25]  Further advantages may be accrued when nanoscale or ultra-microelectrodes (typically 

smaller than the diffusion zone) are employed as the sensing element.  These include: greater 

sensitivity arising from enhanced analyte mass transport due to radial diffusion profiles, faster 

analysis, lower solution resistance reducing/eliminating the need for background electrolyte and 

greatly reduced capacitive charging.[26-28] Consequently, electrochemical nanosensors have 

tremendous potential for use in sustainable Agri-Food and environmental point-of-use deployment 

applications.   

 

In recent years, advances in fabrication techniques have enabled the development of solid-state 

micro/nano electrochemical sensor devices.[27, 29-31]  Using these fabrication approaches, we are 

developing a highly versatile silicon chip-based electrochemical sensor platform that incorporates 

multiple sensing electrodes, on-chip counter and reference electrodes, with electrical connection of 

the sensors to custom electronics facilitated through edge connectors based on SD card pinouts.  This 

sensor platform is highly versatile, may be easily integrated with analogue front end electronics and 

can address a number of sensing challenges described above.  Consequently, in this paper we present 

for the first time: (i) highly sensitive detection of neonicotinoid insecticides (~ 1 part per billion) in 

water using gold nanowire arrays, (ii) copper modified sensors for selective nitrate detection (1 – 100 

µmol/L), (iii) bio-modified sensors for Bovine Viral Diarrhoea disease detection (both viruses and 

antibodies), (vi) we demonstrate generator-collector electrochemical approaches for both pH 
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measurements and in-situ pH control, required for remote analysis.  Finally, (v) we integrate these 

sensor devices with bespoke electronics controlled using a custom written app on a Smart phone and 

thus demonstrate an end-to-end sensor system.   

 

 2. Materials and Methods 

2.1 Nanowire fabrication: 

Silicon chip based devices were fabricated using methods similar to those described by Dawson et 

al.[32, 33] Chips were designed to interface with external electronics via a microSD port to facilitate 

facile electrical connection. Gold nanowire array electrodes are fabricated using a hybrid electron 

beam / photolithography process on a four-inch wafer silicon substrates bearing a 300 nm layer of 

thermally grown silicon dioxide. Blanket metal evaporations of Titanium (10 nm) and Gold (100 nm) 

using a Temescal FC-2000 E-beam evaporator and lift-off technique yields single, and arrays of 

nanowires. A second metal evaporation and lift-off process yields the interconnection tracks, contact 

pads and the gold counter electrode (90 µm x 7 mm). Finally, a third metal evaporation was 

performed to create the platinum pseudo reference electrode. To prevent unwanted interactions 

along the connection tracks, silicon nitride, which acts as an insulating layer was deposited by 

plasma, enhanced chemical vapour deposition. Photolithography and dry etching were utilised to 

selectively open windows (45 μm x 100 μm) in the insulating SiN layer over the microband electrodes 

for exposure to the electrolyte. Openings were also created over the counter and pseudo-reference 

electrodes and the contact pads. Each device contains six interdigitated electrode (sensors) which are 

separated by 0.94 mm. Once the sensor fabrication is completed, a wafer was diced into 28 separate 

chip devices. 

2.2 Ultramicro Electrode Array Fabrication 

Single microbands and interdigitated arrays were fabricated as in the previous section, with the 

initial lithography step being photolithography rather than e-beam lithography. Each chip consisted 

of two combs of gold working interdigitated electrodes (55 µm x 1 µm x 60 nm), platinum pseudo 

reference and gold counter electrode. The interdigitated structures had gaps between the combs of 2 

µm. 

2.3 Optical Characterisation  

Optical micrographs were acquired using a calibrated microscope (Axioskop II, Carl Zeiss Ltd.) 

equipped with a charge-coupled detector camera (CCD; DEI-750, Optronics). Scanning electron 

microscopy analysis was undertaken to characterize the substrate surface after the fabrication 

procedure. SEM images were acquired using a calibrated field emission SEM (JSM-7500F, JEOL UK 

Ltd.) operating at beam voltages between 3 and 5 kV.  

2.4 Electrochemical Characterisation for Nanowire Arrays 

All electrochemical experiments were performed using Autolab Bipotentiostat (MAC80150) and a 

Faraday Cage connected to a PC. A three electrode electrochemical system was implemented; using 

a single microband (1 µm wide, 45 µm long) or an array of 4 gold nanowires (100 nm wide, 45 µm 

long separation 500 nm) as the working electrodes versus the on-chip platinum pseudo-reference and 

gold counter electrodes.  The cell incorporates a custom chip holder and microSD edge connector to 

permit electrical contact to the working electrodes, and a sample well for the electrolyte solution. 

Prior to all electrochemical measurements, electrodes were cleaned using a mixed solvent clean 

process (acetone, isopropyl alcohol and DI water) for 15 minutes and dried under a stream of 

nitrogen.  To confirm electrode functionality cyclic voltammetry (CV) experiments were first 

undertaken in a 1 mM Ferrocenemonocarboxylic acid (FCA, Sigma Aldrich) solution in 10 mM 
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phosphate buffer saline solution (PBS, pH 7.4, Sigma Aldrich).  CV measurements were carried out 

in the potential range -0.2 to 0.6 V at a scan rate of 100 mVs−1.  

2.5 Electrochemical Characterisation for Interdigitated Arrays 

Each chip was inspected using optical microscopy to identify any obvious defects or faults. Prior to 

any electrochemical characterisation, chips were cleaned by immersion in acetone, then iso-propyl 

alcohol and finally de-ionized water, each for a period of ten minutes. The chips were dried in a flow 

of nitrogen and placed in the chip holder. Electrochemical analysis was performed using a with BA 

Module, Metrohm). Cyclic voltammograms (CV) were performed from 0 V to 0.6 V at 50 mV/s in 1 

mM FCA. During these scans, the second interdigitated comb of electrodes were held at 0 V. All 

electrochemical measurements were recorded versus a saturated calomel electrode (SCE). 

2.6 Electrochemical Analysis of Neonicotinoids 

Imidacloprid and clothianidin were purchased from Sigma-Aldrich and used as received. Acetate 

buffer was purchased from Sierra Sensors, Germany. Square wave voltammetry (SWV) was 

performed by sweeping the potential from -0.2 V to -1.4 V in acetate buffer.  All scans were performed 

using a frequency of 10 Hz, amplitude of 50 mV and a potential step of 4 mV. Blank SWV of acetate 

buffer (pH 5) were also obtained for the purpose of background subtraction. Imidacloprid and 

clothianidin stock solutions (in methanol– DI water, 1:1) were prepared at different concentrations, 

and were added sequentially to 90 μL AB in the cell using a serial addition approach.  Five replicate 

SWV scans were undertaken for each addition. All experiments were performed at room 

temperature.   

2.7 Electrochemical Reduction of Nitrate  

SWV was also used for the electroanalysis of nitrate. First, copper was deposited onto a platinum 

electrode to facilitate selective nitrate detection. The deposition was done using chronoamperometry 

in an electrolyte of copper sulphate with boric acid (pH 2). A constant voltage of -0.3V was applied 

to the working electrode versus the reference electrode for 300 s. The electrochemical studies were 

done using 0.1M Na2SO4 buffer adjusted to pH 2 using H2SO4. Different nitrate concentration (1 mM-

100 mM) were made using sodium nitrate (NaNO3) additions. The SWV was undertaken at a working 

electrode in the range of -0.4 to -1 V, with a scan rate of 0.01 V s−1 with a frequency of 20 Hz and 

modulation amplitude of 0.02 V. 

2.8 pH Control at µIDE Arrays  

A series of buffers of differing pH was used to study the gold oxide reduction reaction. 0.1 M citric 

acid (Riedel-de Haën, 99.5% anhydrous) and 0.2 M sodium phosphate dibasic (Merck, 99% 

anhydrous) were mixed in appropriate ratios to yield buffers with pH values of 3.6, 4.6 and 7.6, 

respectively. 0.2 M sodium phosphate dibasic and 0.2 M sodium phosphate monobasic (Sigma 

Aldrich, 99%) were mixed to make a pH 8.6 buffer, while 0.1 M sodium carbonate (Sigma Aldrich, 

99%) and 0.1 M sodium bicarbonate (Sigma Aldrich, 99.5%) were mixed to yield pH 9 and 10 buffers. 

Voltammetric analysis was performed in each buffer over the potential range 0 to 1.4 V (versus 

Ag/AgCl) at 50 mV/s. Potential range was adjusted to account for pH variability. The pH control 

method was tested in a sample of 1 mM Sodium Bicarbonate in DI water. Generation of acidic 

conditions was done by biasing the protonator electrode at 1.8 V vs. Ag/AgCl, basic conditions were 

generated by biasing the protonator at -1.3 V vs. Ag/AgCl.  

Stock solutions of 200 parts per million (ppm) monochloramine (MCA) were prepared and diluted 

with the relevant matrix to make MCA working samples. The MCA stock solution was prepared by 

slowly mixing a 1:1 ratio of sodium hypochlorite (NaOCl, 5% Milton Sterilising Fluid) and 
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ammonium chloride (NH4Cl, Sigma Aldrich >99%). The NaOCl was prepared by diluting a 5% bleach 

solution in DI water and adjusting to pH 8.3 with 1M NaOH. The NH4Cl was dissolved in DI water 

and adjusted to pH 8.3 using 1 M HCl. The slow mixing ensures that NH3 is in excess, which 

promoted the formation of MCA. The solution was then let sit for 5 minutes to ensure that the reaction 

was complete. Electrochemical analysis of MCA solutions via pH control was undertaken. The 

starting potential was reduced to 0.95 V for later work. The protonator electrode was held at 1.75 V. 

Working samples were made by diluting the MCA stock solution with DI water. In this case, a 5 

(ppm) sample was used for analysis.  

2.9 Electrode Functionalisation for Biosensor Application 

CV was employed for electropolymerisation deposition of o-aminobenzoic acid (o-ABA, 50 mM in 

0.5 M H2SO4) to create a carboxylic terminated polymer layer at a gold electrode surface.  Following 

polymerisation, the electrodes were carefully rinsed with DI water to remove any remaining 

monomer solution.  A fresh mixture of 1:1 EDC/NHS (75 mg/mL EDC and 11.5 mg/mL NHS) was 

deposited onto a chip for 20 min to activate the carboxylic acid surface.  Working electrodes were 

coated with capture biomolecules and allowed incubate for 1 hour at 4 °C to allow covalent 

attachment to the electrode surface.  Following this immobilisation, the electrodes were rinsed well 

with acetate buffer solution containing 0.1% Tween-20 (AB-T) and DI water to remove any unbound 

capture biomolecules.  The un-reacted active sites were blocked by immersing in 1M ethanolamine 

HCl, pH 8.5 for 20 mins.  Impedance measurement undertaken following this step were considered 

as the “baseline” for the on-chip sensors. To undertake analysis, as-modified electrodes were exposed 

to target solutions BVD antibody or virus in buffer by spotting with 2 µL aliquots followed by 

incubation for 10 min at room temperature.  Electrodes were again rinsed thoroughly with HBS-EP 

buffer and DI water to remove non-specifically bound target biomolecules prior to subsequent 

electrochemical measurement. All data were fitted using an equivalent circuit using NOVA software 

and experimental data were background subtracted using the values for the ethanolamine baseline 

as defined. 

2.10 Detection of BVD Antibodies and Virus 

For antibody detection, electrodes were modified using with BVD Virus-1 Erns antigen as the capture 

biomolecule.  A concentration of 100 µg/mL (acetate buffer, pH 4) was prepared, deposited and 

allowed incubate for 1 hour at 4°C.  BVDAb detection was then investigated in solutions of increasing 

biological complexity.  BVDAb in HBS-EP buffer, prepared using BVD monoclonal antibody 

(RAE0823 as purchased stock sample) diluted into working solutions of varying dilution (1:10 to 

1:1000, respectively) using HBS-EP buffer, ( 

For virus detection, electrodes were modified using BVD monoclonal antibody, specific to Erns 

antigen, as the capture biomolecule (100 µg/mL, acetate buffer, pH 4); incubated for 1 hour at 4 °C.  

Employing antibodies to detect the Erns protein requires minimal processing as Erns is secreted from 

infected cells during virus replication at an adequate concentration to be used for testing serum.[34, 

35] BVDV in HBS-EP buffer, prepared using target Erns viral antigen (as purchased stock sample) 

diluted into working solutions of varying dilution (1:10 to 1:1000, respectively) using HBS-EP buffer. 

2.11 Integation with electronics 

A commercially viable means of interfacing to ultra-micro scale electrochemical sensors was 

developed, as described by Murphy et al.[25] This was achieved by utilising an inexpensive 

potentiostatic system on chip, the ADuCM350.[36] Utilising a system on chip dramatically reduced 

the cost of the system as discrete components were not required to realise the potentiostat. A digital 

to analog controller, the AD5683R was also used to enable an interface to dual electrode 

electrochemical sensors.[37] Voltammetric tests such as Cyclic, Square Wave and Generator Collector 
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voltammetry can be performed by the device. The system can be interfaced to a smartphone through 

Bluetooth. Test parameters can be easily programmed through a smartphone application and the 

results can be saved as a text file to the cloud. It is battery powered and of suitable form factor for 

point of sample electrochemical measurements.  

3. Results 

3.1 Electrode Array Characterisation 

Electrode arrays were fabricated as described in the experimental section above. Each chip contains 

6 gold working electrodes, along with single Pt reference and Au counter electrodes. The devices 

were characterised using optical microscopy. Figure 1 (a) shows an optical micrograph of the fully 

fabricated chip device containing the 6 electrically isolated electrode arrays with the Au counter and 

Pt reference electrodes respectively. Figure 1 (b) shows an optical micrograph of a typical IDE sensor 

with a 2 µm gap between electrode combs.  The protonator comb (left hand side) contains 14 

electrodes, while the sensor comb (right hand side) has 13 electrodes. Figure 2 (c) shows an optical 

micrograph of a typical array with four nanowire electrodes 100 nm wide and separated by 500 nm. 

The width of the passivation window (central dark rectangle) defined the exposed electrode length 

at 45 μm for both arrays.  

 

Figure 1: (a) Image of the fully fabricated chip with 6 sensors, counter and reference electrodes. (b) 

Higher magnification image of one IDE sensor. (c) Higher magnification image of one nanowire array. 

Nanowire electrodes were structurally characterised in detail previously, by Barry et al., using a 

combination of optical, electron and atomic force microscopy and electrically characterised using two 

point current voltage measurements.[38] Furthermore, cyclic voltammetry characterisation was 

performed by applying a potential range of −0.2 V to 0.6 V to the nanowire arrays in 1 mM FCA in 10 

mM PBS, pH 7.4, at 100 mV s−1; see Figure 2 (a). The magnitude of the current (~2.5 nA) is typical of 

a nanoelectrode array and exhibits steady-state behaviour, as expected. This confirms that the silicon 

nitride passivation layer has been removed to expose the gold nanowire array and successfully 

shields the rest of the chip from unwanted electrochemical reactions. Only chips that exhibit this 

current behaviour in FCA were used for experiments; chips that demonstrated low or no 

electrochemical current were discarded and not used for further experiments.  Figure 2 (b) shows a 

typical SWV of 1 mM FCA in 10 mM PBS, pH 7.4 (frequency 10 Hz, amplitude 50 mV and a potential 

step 4 mV) displaying a current peak in the voltage range of 0.15 to 0.25 V vs. the on-chip Pt pseudo-

reference electrode. This oxidation peak is in agreement with the CV data, and further validated the 

oxidation of FCA is occurring at the electrodes. 

  



 7 of 17 

 

Figure 2: (a) Cyclic voltammogram and (b) Squarewave voltammogram of 1 mM FCA in 10 mM PBS, pH 7.4, 

at 100 mV s−1 vs. on-chip Pt pseudo-reference electrode; illustrating the steady-state behaviour of a 4x 100 nm 

nanowire array separated by a distance of 500 nm. 

Similarly, the 2 µm gap IDE arrays were characterised in FCA, initially with no bias at the 

collector electrodes. As the arrays consist of micron scale electrodes separated by gaps of the same 

scale, diffusional overlap was expected. Figure 3 (a) shows the effect that varying the scan rate had 

on the IDE array. The slower scan rates exhibited a quasi-steady state behaviour, displaying a plateau 

rather than a peak shape. As the scan rate was increased, the behaviour changed significantly, 

exhibited diffusion limited peaks were observed rather than plateaus. This is indicative of the arrays 

behaving like one larger electrode due to radial diffusion overlap, rather than multiple smaller 

electrodes. Each IDE was then further characterised in generator-collector mode by biasing a collector 

electrode at a fixed potential and scanning the generator at a varied scan rate. Figure 3 (b) shows the 

result of biasing the collector electrode at 0 V while scanning the generator at 10, 100 and 1000 mV/s. 

In generator-collector mode, the oxidised FCA species produced at the generator diffuses across to 

the collector where it is subsequently reduced. This has two significant benefits. Firstly, there is no 

diffusional overlap as the collector prevents this from happening, resulting in the array behaving as 

desired. Secondly, The FCA is redox cycled between the two combs of electrodes amplifying signal 

response. The scan rate is shown to have very little impact for the generator-collector scans, as each 

electrode is acting independently.  

Figure 3: Cyclic voltammograms of 1 mM FcCOOH in 10 mM PBS, pH 7.4, at various scans rates with the 

collector (a) unbiased and (b) biased at 0 V vs. Ag/AgCl 

3.2 Neonicotinoid Detection at Nanowire Arrays 

Following electrochemical characterisation, nanowire arrays were applied to the detection of the 

neonicitinoid pesticides: clothianidin and imidacloprid.  The voltametric reduction signals observed 

for these compounds arise from the reduction of NO2 groups to NH2 groups, via a two- step electro-
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reduction pathway, which is well documented.[39-42] Firstly, a nitro intermediate followed by a 

hydroxylamine intermediate are formed via a 4e−/4H+ electron and proton transfer system. The 

hydroxylamine group is further reduced to an amine via a 2e−/2H+ electron and proton transfer 

system. Compared to CV, SWV is a very sensitive electrochemical method that permits fast scan rates, 

significantly reduces background noise and as such is suitable for remote electroanalysis.  Combining 

this approach with the sensitivity of nanowire electrodes permits detection in simple acetate buffer 

thereby obviating the requirement for more complex mixed acid solutions such as Britton-Robinson 

buffer.[40, 43, 44] It was demonstrated previously that pH 4 to 9 is optimum for imidacloprid 

determination.[45] On this basis a pH of 5 was chosen for imidacloprid determination.  Figure 4 (a) 

shows typical SWV following background subtraction for clothianidin in the concentration range of 

0.88 nM – 378 nM (0.22 ng/mL – 94.57 ng/mL). The reduction peaks at -1.07 V and -1.18V represent 

the two-step reduction of the nitro group of imidacloprid; supporting the reduction mechanism for 

nitro group reduction. The first reduction is attributed to the four electron transfer of the nitro group 

to yield the corresponding hydroxylamine derivative. The second reduction peak ~-1.18 V is 

attributed to the two electron transfer from the hydroxylamine to produce its amine derivative.[46, 

47] To demonstrate the suitability of the nanowire arrays as sensors for clothianidin, calibration 

experiments were undertaken to examine the effects of increasing concentration on the SWV signals 

using a serial addition approach. Figure 4 (b) shows the calibration plot obtained by plotting the peak 

height at ~-1.07 V versus log of concentration. Each measurement was undertaken five times to 

monitor the stability and reproducibility of the electrodes and the error bars represent one standard 

deviation from the mean value of the five replicates.  The measured detection limit for clothianidin 

was 0.22 ng/mL (0.88 nM) and a calibration coefficient of R2 = 0.984 shows good linearity with 

increasing concentration in this concentration range.   

 
Figure 4: (a) Square wave voltammogram of Clothianidin recorded at different concentrations in acetate buffer 

(pH 5) versus on-chip Pt pseudo reference electrode. (b) Calibration plot of peak current vs. log concentration 

of clothianidin solution. Error bars are included in clear data points. 

Similarly, Figure 5 (a) shows the SWV of imidacloprid in the concentration range of 8 nM – 4.1 

µM (2.15 ng/mL – 1.05 µg/mL) following background subtraction. The CV again shows the two 

reduction peaks representing the nitro-group reduction of imidacloprid with the peaks at ~ -1.05 and 

-1.2V being attributed to the first and second reduction steps, respectively. The quantitative 

determination of imidacloprid at gold electrodes is based on the semi-log relationship between peak 

current intensity (nA) and imidacloprid concentration. Figure 5 (b) shows the calibration plot 

obtained by plotting the peak current at approx. -1.2V versus log of concentration. Again, each 

measurement was undertaken five times to monitor the stability and reproducibility of the electrodes 

and the error bars represent one standard deviation from the mean value of the five replicates.  The 

measured limit of detection was 2.14 ng/mL (8 nM) and a coefficient of R2 = 0.989 shows good linearity 

with increasing concentration in this concentration range. This concentration range is lower than the 
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lowest legal residue limit of ~10 ng/mL for food products thus demonstrating the suitability of this 

technique.[48] 

 
Figure 5: (a) Square wave voltammogram of Imidacloprid recorded at different concentrations in acetate buffer 

(pH 5) versus on-chip Pt pseudo reference electrode. (b) Calibration curve of peak current vs. log concentration 

of imidacloprid. Error bars are included in clear data points 

3.3 Electrochemical Detection of Nitrates  

An electrochemical deposition process described in the experimental section was used to deposit 

copper nanostructures on the surface of the platinum microband electrode, and is shown in the inset 

of figure 6 (a). The reaction and kinetics of the copper nucleation on platinum microelectrodes could 

be used to explain morphology achieved during the deposition. Longer deposition times resulted in 

larger copper nanostructures being formed. Since the electrochemical deposition is performed in 

acidic pH, hydrogen evolution occurs simultaneously with the copper deposition (Eq-1,2). 

 𝐶𝑢2+ + 2𝑒−  → 𝐶𝑢 Eq.1 

 2𝐻+ + 2𝑒−  → 𝐻2 Eq.2 

As the deposition voltage of -0.3 V is applied, a constant stream of H2 is evolved, resulting in 3D 

nanoporous copper structures being formed on the surface of the platinum microelectrode. 

SWV was used for the electroanalysis of nitrate, the results of which are shown in figure 6 (a). It 

has been shown that under acidic conditions, nitrate can be reduced to ammonium ions according to 

the following equation (Eq.3). 

 𝑁𝑂3
− + 8𝑒− + 10𝐻+  → 𝑁𝐻4

+ + 3𝐻2𝑂 Eq.3 

To examine the sensor performance a linear calibration plot was obtained as seen in Figure 6 (b). 

It was obtained by increasing the concentration of NO3 using the standard addition method (i.e. 1, 

10, 15, 25, 50 100 µM) resulted in a corresponding increase in current. On-chip reference and the 

counter electrode of platinum and gold was used for the measurement. The sensitivity of the 

electrode was at 0.038 A/µM with R2= 0.99. The sensitivity of the microelectrode was found to be 

enhanced because the deposited copper layer shows a porous structure. The large surface area on 

microelectrode makes it more effective electrocatalyst in facilitating nitrate reduction than the 

standard macro electrode. The LOD calculated to be 0.2 µM with a range of 1-100 µM. 
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Figure 6: SWV in increasing concentrations of NaNO3 in 0.1 M Na2SO4 at pH 2. SWV were performed from 

-0.4 to -1 V at 10 mV/s with an amplitude of 20 mV and a frequency of 20 Hz. A SEM image of the copper 

modified electrode is shown in the top inset. The calibration plot is shown in the bottom inset.  

 

3.4 Electrochemical pH measurement and in-situ pH Control for the conversion of Monochloramine to 

Dichloramine 

The gold oxide reduction peak was used as a probe for the pH condition of the electrodes.[49, 

50] An oxide was formed on a gold electrode by scanning to a sufficiently positive potential, typically 

around 1.2 V. The electrode was then swept cathodically to the initial potential and the position of 

the oxide reduction peak was noted. This procedure was repeated at different pH values in a series 

of buffers to establish the linearity of the technique. Figure 7 (a) shows the oxide reduction peaks for 

the different buffer solutions. In each case, four replicate scans were performed to determine 

reproducibility. As expected, the oxide peaks shifted to more positive potentials at lower pH values. 

The calibration plot, shown in figure 7 (b), indicates a strong linearity with an R2 = 0.999. The oxide 

approach to pH analysis shows a sensitivity of 74 mV/pH, indicated by the slope of the linear fit. The 

pH control experiments are shown in figure 7 (c). The initial scan, where no protonator bias was 

applied, indicates that the sodium bicarbonate sample had an initial pH of approximately pH 8. This 

was established based on the position of the oxide reduction peak at 0.45 V, which correlates to pH 8 

using the calibration plot (Figure 7b). With the application of 1.8 V potential bias at the protonator, 

local acidic conditions were created. The potential of 1.8 V is in the oxygen evolution region; thus an 

excess of protons was produced from the water splitting. Therefore, the sensor electrode was exposed 

to conditions that were more acidic than the bulk environment, in this case it was approximated to 

be pH 3, as above. Similarly, more basic conditions could be created by applying a potential of -1.3 V 

at the protonator electrode. With this potential bias, hydrogen gas was produced and an excess of 

hydroxyl were produced in the vicinity of the sensor electrode. The position of the oxide reduction 

peak indicated a pH environment outside of the calibration range, but assuming linearity, was 

approximated to be around pH 11.5. 

The acidic pH control method was subsequently applied to the conversion of monochloramine 

to dichloramine. At pH 8 and above, chloramines tend to exist predominantly as monochloramine. 

As sample pH becomes more acidic, this monochloramine is converted to dichloramine. This 

conversion can be monitored electrochemically as dichloramine shows electro-reduction at potentials 

more anodic than the reduction of monochloramine. Figure 7 (d) shows the result of applying the pH 

control method to a 5 ppm sample of monochloramine. Without a protonator bias, no reduction event 

was observed attributable to the chloramine species. The oxide reduction peak also indicated a pH 

environment of approximately pH 8. By imposing a 1.75 V bias at the protonator, acidic conditions 
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were generated, indicated by the shift in the oxide reduction peak potential. The anodic shift 

indicated that the local environment was significantly more acidic than the initial conditions. A 

reduction event with an onset potential of ~ 0.5 V was also observed, which was attributed to the 

reduction of dichloramine, confirming the conversion of monochloramine to the new species. There 

were two major advantages to applying this technique to the detection of monochloramine. The first 

was that variability of pH was eliminated. In real water samples, pH conditions can vary dramatically 

as a result of numerous environmental factors. As such, this introduces complications, particularly if 

the species is pH sensitive. The second advantage was that the conversion of monochloramine to 

dichloramine eliminated oxygen as an interfering species. The reduction potential of 

monochloramine overlaps with the reduction of dissolved oxygen, leading to convoluted signals. 

Dissolved oxygen is common at various concentrations in water, therefore it cannot be easily 

background subtracted. The reduction of dichloramine however was found to be free of oxygen 

interference, thus simplifying its quantification. 

 
Figure 7: (a) LSV’s in various pH buffers from 1.4 V to 0 V at 50 mV/s. (b) Calibration of the oxide reduction 

peak potential vs pH. (c) LSV’s of 1 mM Sodium Bicarbonate in DI water from 1.3 V to 0 V at 50 mV/s with 

various biases applied to the protonator electrode. (d) CV’s, from 1.2 V to 0.2 V at 50 mV/s, in a 5 ppm sample 

of monochloramine with and without a potential bias of 1.75 V at the protonator electrode. 

 

3.5 BVD Antibody Detection: 

Concerning BVD antibody detection, Figure 8 (a) shows the nyquist diagrams, in presence of 

1mM FCA, measured an electrode surface following modification and exposure to different 

concentration of target antibody. An increase in the semi-circle diameter, i.e., charge transfer 

resistance (Rct) and the global capacitance was observed with increasing antibody concentration. This 

suggests that the antibodies bound to the immobilised Erns antigen, blocking the electrode surface 

and subsequently restricting electron transfer, i.e. a charge transfer resistance increases with 
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increasing concentration of antibody was observed. A modified equivalent circuit, to account for the 

additional electrode bio-layers, was used to fit the results. This circuit is almost identical to a Randles 

fit except that an additional resistive and capacitive elements have been added. R1 and R2 both 

represent the charge transfer resistance, while C1 and C2 represent the double layer and coating 

capacitances respectively. All the capacitances shown in the equivalent electrical circuit are 

mathematically modelled using a constant phase element (CPE) in NOVA software; and represent all 

the frequency dependent electrochemical phenomena. 

Figure 8 (b) shows that a semi-log linear relationship exists between the charge transfer 

resistance across the wire, and different dilutions of the stock antibody solution enabling quantitative 

detection of the antibody.  The error bars represent n=3 replicates.  

 

Figure 8: (a) Nyquist plots obtained of o-ABA modified gold nanoband electrode with: BVDV (100 

μg/mL) modification, ethanolamine blocking and binding of BVDAb in HBS-EP buffer; recorded in 10 mM PBS 

containing 1 mM FCA. (b) Semi-log relationship of the charge transfer resistance versus antibody dilution 

(error bars represent n=3 replicates) background subtracted using ethanolamine baseline. 

3.6 BVD Virus Detection: 

Figure 9 (a) shows the nyquist diagrams, in presence of 1mM FCA, measured an electrode surface 

following modification and exposure to different concentration of viral protein in HBS-EP buffer 

ranging from 1 ng/mL to 10 μg/mL.  A corresponding increase in measured Rct (~200MΩ to ~425 

MΩ) was observed.  This increase can be attributed to the virus binding as it acts as kinetic barrier 

for electron transfer.  These results also suggest that the antibody specificity/functionality is not 

hindered by its covalent attachment to an electrode.  Figure 9 (b) shows the semi-log linear 

relationship between the Rct sensor response and virus concentration thereby suggesting 

quantitative viral detection is possible with high sensitivity and a large dynamic range (1ng/mL to 

10µg/mL).  Error bars represent n=3 replicates.  These results show that the sensor platform is suitable 

for detection of pathogens and expressed antibodies at physiological concentrations 
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Figure 9: (a) Nyquist plots of 1mM FcCOOH showing quantitative detection of recombinant BVDV1 Erns 

protein in HBS-EP buffer. (b) Semi-log relationship of the charge transfer resistance versus virus concentration 

(error bars represent n=3 replicates) background subtracted using ethanolamine baseline. 

3.7 System integration 

A bespoke potentiostat system was developed, using a commercial potientiostat integrated 

circuit chip, that was capable of controlling the sensor platform, reading the electrochemical response 

and displaying these results via a smartphone app as shown in figure 10. The system was designed 

to perform cyclic voltammetry and square wave voltammetry with a 2 volt window, from -1 V to +1 

V and also operates in bi-potientiostat mode. The system was benchmarked against a laboratory 

potentiostat, the PGSTAT302N to show that it is fit for purpose for ultra micro and nano scale 

electrochemical sensors,.  

 

Figure 10 Developed system interfacing to electrochemical sensor with (a) Bluetooth module, (b) developed 

system printed circuit board, (c) Lithium Ion battery connected to charge protection circuit, (d) electrochemical 

sensor holder and (e) Smartphone with using developed application. 

 

A cyclic voltammogram was performed using FCA on both systems. As seen from figure 11 the 

cyclic voltammograms of the two potentiostats are in close alignment. A reduced steady-state current 

of the developed systems’ voltammogram was expected as it was the second measurement taken in 

the calibration. It’s €90.30 bill of materials price means that the system is a cost effective alternative 

to portable potentiostats. Similarly, as the data is displayed by means of the smartphone app, no 

additional interface devices are required to achieve an analytical response.   
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Figure 11: Cyclic Voltammogram swept at 200mV/s using 1mM FCA using both the developed system 

and the PGSTAT302N. 

4. Conclusion 

In this work, we have shown the versatility of the electrochemical sensor platform by 

demonstrating a wide range of applications from chemical sensing to biological sensing along with 

system integration. With the advancement of electrode modification techniques, along with tailored 

electrochemical analysis, these devices can address many of the sensing requirements associated with 

the emerging agricultural 4.0 industry. With these devices, the detection of pesticides, fertilisers and 

infectious diseases was possible on extremely short timescales. These devices can be tailored to be 

free of matrix interference effects by mitigating pH variability. This particular technique can promote 

the detection of a species of interest, or alternatively mask detection of an interfering species. Finally, 

we have shown a portable electrochemical reader system, capable of performing the desired analysis 

on farm. The significance of this is that the turnaround time between getting an analytical result and 

treating the issue is at an absolute minimum, as the two events can be completed in a matter of 

minutes.  
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