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Abstract	
Understanding	 and	 controlling	 aqueous	 speciation	 of	 metal	 oxides	 are	 key	 for	 the	 discovery	 and	
development	of	novel	materials,	and	challenge	both	experimental	and	computational	approaches.	Here	
we	 present	 a	 computational	method,	 called	 POMSimulator,	which	 is	 able	 to	 predict	 speciation	 phase	
diagrams	 (Conc.	 vs	 pH)	 for	 multi-species	 chemical	 equilibria	 in	 solution,	 and	 which	 we	 apply	 to	
molybdenum	and	tungsten	isopolyoxoanions	(IPAs).	Starting	from	the	MO4	monomers,	and	considering	
dimers,	 trimers,	 and	 larger	 species,	 the	 chemical	 reaction	 networks	 involved	 in	 the	 formation	 of	
[H32Mo36O128]8-	and	[W12O42]12-	are	sampled	in	an	automatic	manner.	This	information	is	used	for	setting	
up	~105	speciation	models,	and	from	there,	we	generate	the	speciation	phase	diagrams,	which	show	an	
insightful	picture	of	the	behavior	of	IPAs	in	aqueous	solution.	Furthermore,	we	predict	the	values	for	107	
formation	constants	for	a	diversity	of	molybdenum	and	tungsten	molecular	oxides.	Among	these	species,	
we	could	 include	several	pentagonal	shaped	species	and	very	reactive	tungsten	 intermediates	as	well.	
Last	but	not	least,	the	calibration	employed	for	correcting	the	DFT	Gibbs	energies	is	remarkably	similar	
for	both	metals,	which	suggests	that	a	general	rule	might	exist	for	correcting	computed	free	energies	for	
other	metals.		
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Introduction	

	
Self-assembly	processes	of	discrete	metal	oxide	nanoclusters	are	driven	by	a	combination	of	many	factors,	
the	pH,	the	ionic	force,	and	the	presence	of	additional	species	being	the	main	players.	Although	in	this	
chemistry	there	are	not	well	stablished	rules	as	in	organic	chemical	synthesis,1	stable	anionic	metal-oxo	
compounds	 have	 been	 characterized	 continuously	 for	 almost	 two	 centuries.	 One	 of	 the	 first	
polyoxometalate	(POM)	examples	was	the	molybdenum	α-Keggin	synthesized	by	Berzelius	in	18262	.	Since	
then,	POMs	have	extended	throughout	the	periodic	table,	thus	we	can	find	examples	with	lanthanides3,	
actinides4	and	other	transition	metals5.	This	chemical	variety	has	been	accompanied	by	a	broad	range	of	
topologies:	 molybdenum	 blue	 wheels6,7,	 keplerates,8,9	 and	 polyperoxouranates10,11.	 Metal-oxo	
compounds	also	present	different	applications	 in	relevant	fields	such	as	biochemistry12–15,	catalysis16–21	
and	nuclear	reprocessing22,23.		

Hitherto,	polyoxometalates	chemistry	has	 largely	succeeded	 in	discovering	new	compounds	and	novel	
applications.	However,	it	is	becoming	more	and	more	apparent	that	a	deeper	understanding	of	metal-oxo	
speciation,	and	thus	of	the	self-assembly	process,	is	needed.24	Currently,	different	techniques	are	used	to	
study	POMs	in	solution:	electronic25	and	vibrational26	spectroscopy,	nuclear	magnetic	resonance27,	mass-
spectrometry	experiments28,	small-angle	X-ray	scattering29	and	kinetic	investigations30.	Despite	that,	the	
experimental	determination	of	unstable	metal-oxo	equilibrium	constants	is	proving	to	be	difficult.	To	the	
best	of	our	knowledge,	there	is	no	information	yet	on	the	thermodynamic	constants	of		pentagonal-based	
units	 {MxM6},	 which	 are	 a	 recurrent	 motif	 for	 providing	 curvature	 and	 sphericity	 to	 metal-oxo	
nanoclusters.		

Speciation	of	metal	oxides	in	solution	is	determined	by	a	myriad	of	chemical	equilibria	that	coexist	in	the	
reaction	 medium.	 Therefore,	 the	 cornerstone	 for	 predicting	 the	 relative	 abundance	 of	 species	 is	 to	
elucidate	 the	 chemical	 reaction	 network	 (CRN)31,32	 along	with	 its	 dependency	 on	 physical	 conditions:	
temperature,	ionic	strength	and	concentration.	Quantum	mechanical	calculations	are	consolidated	as	an	
effective	and	accurate	method	for	predicting	reaction	mechanisms	through	the	analysis	of	the	potential	
energy	surfaces	(PES).33	In	fact,	computing	static	energy	profiles	based	on	chemical	intuition	has	been	the	
workhorse	of	quantum	chemistry	for	the	past	three	decades.34	For	example,	a	group	additivity	method,	
based	on	ab	initio	calculations,	can	describe	the	aluminum	cluster	speciation	and	its	Pourbaix	diagrams.35	
Alternatively,	metadynamics	simulations	have	also	achieved	great	success,	for	instance,	in	explaining	the	
aggregation	process	of	the	Lindqvist	structure	in	concordance	with	mass-spectrometry	experiments.36–38	
However,	both	 static	and	dynamic	approaches	 strongly	 rely	on	human	guidance	 in	either	 locating	 the	
transition	states	(TS)	or	determining	the	collective	variables.	Because	of	this,	the	analysis	of	large-scale	
PES,	 purely	 based	 on	 human	 intuition	 and	 in	 a	 non-automated	 fashion,	 is	 time-consuming	 and	 error-
prone.39		

The	study	of	coupled	reactions	requires	a	meticulous	determination	of	all	the	chemical	reactions	involved.	
Indeed,	how	to	build	a	robust	and	scalable	reaction	network	is	a	subject	of	discussion	in	the	literature.40,41	
First	of	all,	it	is	important	to	choose	a	general-purpose	molecular	representation	for	the	chemical	species.	
Broadbelt	et	al.	showed	that	molecular	graphs	are	a	straightforward	option	in	which	atoms	are	assigned	
as	nodes	and	chemical	bonds	as	edges.42	Moreover,	the	parallelism	between	chemistry	and	graph	theory	
can	be	further	extended	to	chemical	reaction	networks.43	Therefore,	graphs	provide	a	unified	framework	
to	 both	 represent	 chemical	 compounds	 and	 ease	 the	management	 of	 the	CRNs.	 There	 are	 numerous	
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examples	 of	 this	 methodology	 in	 very	 different	 chemical	 processes	 such	 as:	 prebiotics44,	
hydroformylation45,	water-shift46	and	combustion47	reactions.	

We	 recently	 introduced	 the	 basics	 of	 a	 new	 methodology	 aimed	 at	 dealing	 with	 the	 multi-species	
equilibria	involved	in	the	formation	of	metal-oxo	clusters	in	aqueous	solution	from	first-principles	and	in	
an	automated	manner.48	In	that	first	implementation,	we	considered	a	small	set	of	small	molybdates	(up	
to	octamolybdate)	and	 started	by	capturing	 raw	 results	derived	 from	Density	Functional	Theory	 (DFT)	
calculations,	which	were	transformed	into	molecular	graphs	based	on	the	topological	properties	of	the	
charge	 density.	 In	 the	 next	 step,	 our	 method	 performed	 heuristic	 searches	 to	 determine	 the	 CRNs	
connecting	all	 species	 in	 the	 set.	 Finally,	 the	 reaction	network	was	used	 to	 set	up	multiple	 speciation	
models,	which	were	 solved.	We	 found	 that	 the	 DFT	 derived	 formation	 constants	were	 systematically	
overestimated,	 so	we	 came	up	with	 a	 calibration	 procedure	 that	 enabled	 constructing	 the	 speciation	
diagram	(%	species	vs	pH,	at	fixed	metal	concentration)	.		

Herein	we	present	the	first	full	application	of	our	new	method,	called	POMSimulator,	towards	the	in-silico	
prediction	of	speciation	phase	diagrams	(Conc.	vs	pH)	of	molybdenum	and	tungsten	medium-sized	IPA	
(isopolyanions)	nanoclusters.	On	the	one	hand,	we	have	considered	a	large	set	of	molybdates,	including	
pentagonal	{MoxMo6}	and	medium	sized	{Mo36}	nanoclusters.	On	the	other	hand,	we	have	expanded	this	
methodology	to	tungsten	IPAs.	A	general	overview	of	the	workflow	followed	in	this	work	is	depicted	in	
Scheme	1.	We	start	by	optimizing	the	geometries	and	compute	the	harmonic	frequencies	for	all	the	metal-
oxo	compounds.	Then	POMSimulator,	(1)	creates	the	CRN	and	estimates	the	free	reaction	energy	of	each	
transformation,	 (2)	 sets	 up	 and	 solves	 all	 the	 possible	 speciation	models,	 (3)	 calibrates	 the	 DFT	 free	
reaction	energies,	∆GDFT,	using	experimental	data,	and	(4)	predicts	speciation	phase	diagrams	and	not	yet	
reported	thermodynamic	constants.	
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Results	and	Discussion	

We	have	started	describing	a	class	of	anionic	molecular	oxides	which	contain	a	unique	type	of	transition	
metals,	also	known	as	IPAs.	On	the	one	hand,	the	molecular	set	of	polyoxomolybdates	(POMos)	is	formed	
by	 a	 total	 of	 72	 compounds	with	 the	 general	 formulas	 [HzMopO3p+1]z-2,	 [HzMopO3p+2]z-4,	 [HzMopO3p+3]z-6,	
pentagonal	 based	 structures	 {MoxMo6}	 and	 the	 largest	 existing	 IPAs:	 [H16+z	 Mo18O65]z-6	 and	
[H32+zMo36O128]z-8,	abbreviated	as	{Mo18}	and	{Mo36}.	On	the	other	hand,	the	set	of	polyoxotungstanates	
(POTs)	is	formed	by	50	species	with	the	general	formulas:	[HzWpO3p+1]z-2,	[HzWpO3p+2]z-4,	[HzWpO3p+3]z-6.	It	
also	 includes	 medium-sized	 structures,	 such	 as	 	 [HzW11O40]z-14,	 [HzW12O42]z-12	 and	 𝛼-[HzW12O40]z-8,	
abbreviated	as		{W11},	{W12}	and	𝛼-{W12}.	In	both	groups,	multiple	protonation	states	are	considered,	and	
a	detailed	overview	of	the	complete	molecular	set	can	be	found	in	Figure	S1.	The	molecular	geometries	
have	been	optimized	using	a	DFT	methodology	that	is	described	in	the	Supporting	Information.	A	dataset	
collection49	is	available	in	the	ioChem-BD	repository.50	

	

	

Scheme	1.	General	overview	of	POMSimulator	workflow.	(1)	Compute	DFT	Gibbs	energies	of	metal	oxides	and	determine	reaction	
free	energies	(195	reactions	in	total)	through	heuristic	searches.	(2)	Solve	systems	of	non-linear	equations	(NLE).	Our	parallelized	
code	needs	48	hours	in	a	28-core	CPU	to	solve	1·107	systems	of	equations.	(3)	Calibrate	DFT	intrinsic	error.	Eight	experimental	
formation	constants	(Kf)		for	molybdenum	(e.g.,	{Mo36},	{Mo8})	and	five	for	tungsten	(e.g.,	{W12},	{𝛼-W12})	were	used,	respectively.	
(4)	Generate	speciation	and	phase	diagrams	using	corrected	DFT	energies,	and	predict	unreported	thermodynamic	constants.			
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In	 the	 first	place,	POMSimulator	 collects	 the	 results	of	 the	DFT	 calculations.	 It	 starts	by	 capturing	 the	
optimized	geometries	of	the	metal	oxides	and	transform	them	to	molecular	graphs.	Atoms	are	translated	
to	nodes	and	bond	critical	points	to	edges.	Additionally,	chemical	properties	such	as	the	total	charge	and	
the	Gibbs	free	energy	are	stored.	Once	all	the	relevant	information	has	been	processed,	POMSimulator	is	
ready	to	create	a	CRN.	To	do	so,	 the	 isomorphism	property	 is	used	(i.e.,	morphological-like	graphs)	 to	
define	relationships	between	all	the	species.	If	two	graphs	are	isomorphic,	we	subtract	the	atoms	between	
both	compounds	to	determine	which	chemical	reaction	could	interrelate	them:	acid-base,	condensation,	
addition	or	dimerization.	Following	this	methodology,	we	automatically	sample	large	reaction	networks	
with	their	associated	reaction	free	energies	(∆GDFT).	Then,	the	CRNs	are	employed	to	set	up	the	speciation	
models	in	order	to	predict	the	behavior	of	polyoxometalates	in	solution.	However,	the	larger	the	size	of	
the	 CRN,	 the	 larger	 the	 number	 of	multi-species	 chemical	 equilibria	 (MSCE).	 Furthermore,	 the	MSCE	
consists	of	systems	of	non-linear	equations,	the	resolution	of	which	is	slow	and	numerically	instable.	Thus,	
the	bottleneck	of	POMSimulator	is	the	resolution	of	the	speciation	models	derived	from	the	CRNs.	In	order	
to	find	a	good	balance	between	thoroughness	and	computational	efficiency,	we	have	come	up	with	two	
solutions.	Firstly,	we	have	parallelized	the	solving	step	in	order	to	run	POMSimulator	in	a	multi-core	CPU.	
Secondly,	 POMSimulator	 applies	 heuristic	 searches	 to	 disregard	 meaningless	 reactions,	 which	 would	
otherwise	increase	the	computational	cost.	Scheme	S1	provides	a	complete	overview	of	the	protocol,	as	
well	as	an	exhaustive	explanation	of	the	implementation	details.		

Chemical	reaction	networks	scale	rapidly	with	the	size	of	the	molecular	set.	Because	of	this,	CRNs	tend	to	
be	dense	and	convoluted,	as	they	contain	an	extensive	number	of	transformations.	One	way	of	analyzing	
complex	 networks	 is	 to	 represent	 them	 as	 distributions.	 In	 our	 case,	 we	 have	 examined	 the	
thermochemistry	of	 the	CRNs	employing	 violin	 plots.	 Figure	1A	 shows	eight	 energy	distribution	plots,	
organized	 according	 to	 the	 type	 of	 reaction	 and	 IPA	 metal.	 Colors	 green	 and	 orange	 correspond	 to	
molybdenum	and	 tungsten	systems,	 respectively.	Moreover,	plots	are	also	organized	according	 to	 the	
reaction	type:	acid-base,	condensation,	addition	or	dimerization.	Note	that	acid-base	equilibria	are	key	
reactions	 in	 driving	 the	 nucleation	 of	 metal	 oxides.	 For	 instance,	 molybdenum	 and	 tungsten	 oxides	
aggregate	at	low	pH,	whereas	niobium	and	tantalum	only	form	large	clusters	at	alkaline	conditions.	The	
other	 three	 types	of	 reactions	handle	 the	 growth	and	dissemble	 transformations.	 The	median	 values,	
depicted	in	Figure	1A	provide	a	first	estimation	of	the	thermochemistry	within	the	CRNs.	For	example,	the	
median	rates	in	acid-base,	condensation	and	dimerization	are	below	0	kcal·mol-1,	in	contrast	to	addition	
reactions.	 Thus,	 acid-base,	 condensation	 and	 dimerization	 reactions	 are	mostly	 spontaneous	whereas	
additions	 are	 mostly	 endergonic.	 Notice	 that	 this	 trend	 is	 very	 similar	 for	 both	 metal-oxo	 families.	
Moreover,	 the	distribution	plots	 also	provide	 information	 about	 the	 variances	 for	 each	 reaction	 type.	
POMos	present	 a	 larger	 variance	 in	 condensation-type	 reactions	whereas	POTs	 show	an	even	greater	
variance	for	dimerization-type	reactions.	Overall,	Figure	1A	only	shows	a	purely	energetic-based	picture.	
Therefore,	reactions	which	have	a	∆GDFT	above	0	kcal·mol-1	might	turn	out	to	be	favorable	when	pH	or	
ionic	strength	are	considered.	Table	S1	and	Table	S2	collect	the	complete	list	of	chemical	reactions,	with	
their	associated	Gibbs	reaction	energies	and	reaction	types.		
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Figure	1.	(A)	Gibbs	energy	distribution	plot	(in	kcal·mol-1)	for	the	main	types	of	reactions	present	in	the	speciation	models:	acid-
base,	condensation,	addition,	and	dimerization.	(B)	Box	plots	of	the	DFT	formation	constants	for	the	monomer	and	heptamer.	
Samples	for	molybdenum	and	tungsten	constants	are	of	the	order	of	8·104	and	1·103	respectively.	 Inset	plot	of	the	[M7O24]

6-	
tridimensional	structure.	Constants	are	referred	to	the	formation	reaction:	 	p[MO4]

2-	+	qH+	⇌	 [HzMpOm]
n-	+	(q/2+	p	-	z/2)	H2O	

Polyoxomolybdates	are	marked	in	green	and	–tungstanates	in	orange.	

Despite	the	chemical	likeness	of	molybdenum	and	tungsten,	they	have	few	structures	in	common.	The	six	
alike	compounds	are	the	monomers:	[MO4]2-,	[HMO4]-,	H2MO4	and	the	heptamers:	[M7O24]6-,	[HM7O24]5-,	
and	 [H2M7O24]4-.	 Figure	 1B	 shows	 the	 DFT	 formation	 constants	 of	 these	 structures	 (in	 box	 plots).	
Analogously	 to	 Figure	 1A,	 green	 and	 orange	 correspond	 to	 the	 molybdenum	 and	 tungsten	 systems,	
respectively.	Additionally,	there	is	an	inset	plot	which	shows	the	tridimensional	geometry	of	the	heptamer	
[M7O24]6-.	 The	 complete	 set	 of	 122	 formation	 constants	 computed	with	our	 software	 can	be	 found	 in	
Figure	 S2.	 It	 is	 worth	 noting	 that	 molybdates	 formation	 constants	 show	 a	 larger	 variance	 than	
tungstanates	due	to	the	relative	size	of	the	molecular	sets.	A	total	of	116,644	speciation	models	were	
solved	 for	molybdenum	oxides,	whereas	1,536	models	were	 solved	 for	 tungsten	oxides.	 Furthermore,	
POMSimulator	 computes	 an	 average	 of	 8·104	 constants	 for	 each	molybdenum	 cluster	 (see	 Table	 S3),	
whereas	it	computes	an	order	of	magnitude	less	for	tungsten	compounds	(see	Table	S4).	Interestingly,	the	
median	values	in	Figure	1B	vary	if	we	compare	tungsten	and	molybdenum	oxides.	POMSimulator	predicts	
that	 the	median	 values	 for	 [HnW7O24]n-6	 are	 greater	 than	 for	 [HnMo7O24]n-6.	 The	 larger	 the	 formation	
constants,	the	more	stable	metal-oxo	compounds	are.	At	this	stage,	our	method	successfully	describes	
the	fact	that	formation	of	tungsten	oxides	is	more	favorable	than	molybdenum	oxides.	This	evidence	is	in	
very	good	agreement	with	experiments.51	The	chemical	explanation	of	this	phenomenon	is	attributed	to	
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the	 larger	 strength	 of	 the	W-O	bond	 compared	 to	 the	Mo-O	bond.52	 Even	 if	 this	 energy	 difference	 is	
relatively	small,	the	accumulative	effect	in	medium	and	large	clusters	gains	importance.	

There	is	big	weakness	in	quantum	mechanical	assessment	of	the	Gibbs	energies	of	small	solvated	ions:	
the	proton	specie.53	Although	this	error	could	be	relatively	small,	the	fact	that	the	pH	units	are	logarithmic	
amplifies	the	disturbing	effect.	The	most	common	approaches	to	mitigate	this	error	rely	on	setting	up	
thermodynamic	cycles	and	performing	some	sort	of	calibrations.	For	example,	Grimme	et	al.	studied	26	
multi-proton	 organic	 compounds	 to	 estimate	 the	 pKa	 employing	 a	 linear	 free-energy	 relationship.54	
Besides,	Machuqueiro	et	al.	recently	developed	a	method	to	predict	pKa	values	of	titratable	residues	in	
biomolecules.55	These	great	achievements	contrast	with	the	more	restricted	developments	in	the	area	of	
inorganic	chemistry.56	We	attribute	this	difference	to	the	difficulties	involved	in	treating	distinctly	highly	
anionic-charged	compounds	in	solution	in	an	equal	manner.	Within	this	context,	our	group	has	recently	
discovered	 that	 POMSimulator	 offers	 an	 exceptionally	 accurate	 calibration	 for	 small	 molybdenum	
oxides.48	We	found	that	our	method	computed	formation	constants	which	relate	 just	 linearly	 to	some	
experimental	ones.	Thereby,	we	could	correct	the	intrinsic	DFT	error	with	a	simple	linear	scaling	whilst	
retaining	high	accuracy	(R2=0.9997	and	RMSE=0.43).	Thanks	to	this	successful	calibration,	POMSimulator	
computed	speciation	diagrams	which	were	in	excellent	agreement	with	the	experimental	ones.	In	light	of	
those	 promising	 results,	 we	 have	 now	 applied	 our	method	 to	 a	 larger	molybdenum	 oxide	 set	 and	 a	
tungsten	oxide	set.	So	far,	we	have	observed	that	POMSimulator	correctly	predicts	the	relative	stabilities	
of	molybdenum	and	tungsten	oxides	(see	Figure	2).	Even	so,	the	most	determining	aspect	for	assessing	
the	overall	performance	is	the	accuracy	of	the	calibration	step.	

	

Figure	2.	Linear	regressions	between	 logKf
Exp	and	 logKf

DFT,	with	the	 lowest	RMSE	(Root	Mean	Squared	Error)	and	MAE	(mean	
average)	(mean	average)	values	at	298.15K	and	1	atm	for	A	polyoxomolybdates	(circles)	and	B	–polyoxotungstanates	(squares)	
at	1.0M	and	0.25M	NaCl	ionic	strengths,	respectively.		

	

Figure	 2	 shows	 that	 POMSimulator	 predicts	 the	 equilibrium	 constants	 of	 two	 different	 metal	 oxide	
systems	with	extraordinary	accuracy.	Figure	2A	presents	the	linear	correlation	for	molybdenum	formation	
constants.	 The	 x	 axis	 corresponds	 to	 the	 constants	 computed	 with	 our	 method	 while	 the	 y	 axis	
corresponds	to	the	experimental	constants	reported	by	Cruywagen.57	The	molybdenum	compounds	used	
for	the	calibration	are	the	following:	[HMoO4]-,	H2MoO4,	[Mo7O24]6-,	[HMo7O24]5-,	[H2Mo7O24]4-,	[Mo8O26]4-
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,	[HMo8O26]3-	and	[H32Mo36O128]8-.	The	eight	molybdenum	clusters	are	represented	as	circles	in	the	plot.	
Notice	that	the	linear	regression	in	Figure	2A	is	the	most	accurate	case	out	of	the	other	239	promising	
regressions	depicted	in	Figure	S3A.	The	selected	regression	presents	the	highest	correlation	coefficient,	
R2=0.99996,	and	the	lowest	root	mean	squared,	RMSE=0.47,	and	mean	average,	MAE=0.39,	errors.	These	
excellent	 parameters	 prove	 that	 POMSimulator	 can	 predict	 equilibrium	 constants	 of	 medium-size	
molybdenum	 clusters.	 	 Figure	 2B	 shows	 the	 linear	 correlation	 for	 tungsten	 formation	 constants.	 The	
experimental	values	are	extracted	from	the	work	of	Rozantsev	and	coworkers.58	The	set	of	tungsten	oxides	
used	 for	 the	 calibration	 are	 the	 following:	 [H2W6O22]6-,	 [HW7O24]5-,	 [H2W12O42]8-,	 α-[H2W12O40]6-	 and	
[W10O32]4-.	Figure	2B	presents	the	best	linear	regression	for	the	tungsten	oxide	system,	even	though	there	
are	ten	additional	regressions	with	an	RMSE	lower	than	1.0	(Figure	S3B).	Tungsten	oxides	calibration	offers	
outstanding	accuracy	with	a	correlation	of	R2=0.9997	and	prediction	errors	of	RMSE=0.44	and	MAE=0.43.	
Therefore,	this	calibration	method	not	only	applies	to	molybdenum	oxides	but	also	to	tungsten	oxides.	In	
addition	to	this	generalization,	the	prediction	capabilities	are	remarkably	high	in	both	cases.	Note	that	the	
values	of	the	two	slopes,	which	were	obtained	independently,	are	very	similar	(0.3	vs	0.32),	but	the	value	
in	the	origin	is	not,	indicating	that	this	calibration	method	is	metal	dependent.	

POMSimulator	 aims	 at	 providing	 an	 exhaustive	 picture	 speciation	 in	 solution.	 We	 have	 already	
demonstrated	 that	 the	 calibration	 step	 is	 close	 to	 optimal,	 thus	 we	 can	 obtain	 accurate	 equilibrium	
constants.	Therefore,	the	next	step	is	the	resolution	of	the	multi-species	chemical	equilibria	employing	
the	corrected	thermodynamic	constants.	In	our	previous	work,	we	presented	speciation	diagrams,	which	
consist	in	concentration	distribution	curves	which	vary	according	to	the	pH.	Nonetheless,	we	have	noticed	
that	this	approach	only	shows	a	narrow	window	of	the	metal	oxides	speciation.	As	a	matter	of	fact,	the	
total	metal	concentration	is	a	determining	variable	as	well.	For	instance,	there	is	no	aggregation	at	very	
diluted	 concentrations,	whereas	 there	 are	 clusters	which	only	 form	at	high	 concentrations.	 Thus,	 it	 is	
necessary	to	scan	both	the	pH	and	the	total	concentration	to	build	speciation	phase	diagrams.	For	the	
very	 first	 time,	we	are	presenting	phase	diagrams	 for	 polyoxometalates	 aqueous	 speciation	based	on	
quantum	 mechanical	 calculations.	 Figure	 3	 shows	 the	 speciation	 phase	 diagrams	 computed	 by	
POMSimulator	employing	a	rather	fine	grid.	The	number	of	systems	of	equations	solved	in	Figure	3A	and	
Figure	 3B	 are	 5·109	 and	1·108,	 respectively.	Note	 that	 not	 only	 the	proton	 concentration	 (x	 axis)	 is	 in	
logarithmic	scale	but	also	the	metal	oxide	concentration	(y	axis).	We	have	done	so	to	better	represent	
details	of	the	diagram	at	very	low	concentrations.	Chemical	species	in	Figure	3	are	annotated	with	their	
stoichiometric	 formula,	 [HzMpOm]n-,	 and	with	 the	 common	 notation	 in	 speciation	 studies,	 (p,q),	which	
refers	to	stoichiometric	coefficients	of	the	formation	reactions.		
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Figure	3.	Speciation	phase	diagrams	employing	scaled	∆GDFT	values,	at	298.15K	and	1	atm.	Left:	polyoxomolybdates	at	I=1	M	NaCl,	
with	a	grid	of	5·109	solved	models.	Right:	polyoxotungstanates	at	I=0.35M	NaCl,	with	a	grid	of	1·108	solved	models.	Indices	(p,	q)	
refer	 to	 p[MO4]

2-	 +	 qH+	 ⇌	 [HzMpOm]
n-	 +	 (q/2+	 p	 -	 z/2)	 H2O.	 Total	 metal	 molar	 concentration	 is	 fixed	 between	 100-104M.	

Concentration	axes	are	in	logarithmic	scale.		

Figure	3	shows	the	speciation	phase	diagrams	for	molybdenum	and	tungsten	oxides	using	the	rescaled	
formation	 constants.	At	 a	pH	higher	 than	7,	 the	 speciation	 is	 completely	dominated	by	 the	monomer	
[MoO4]2-,	regardless	of	the	total	concentration.	At	more	acidic	conditions,	molybdenum	monoxide	either	
undergoes	polymerization	or	protonation	reactions.	This	variability	depends	on	the	total	concentration:	
at	 lower	values	 (<	103	M),	 it	 is	 less	probable	 that	 two	molecules	will	 react	due	 to	 the	diffusion	 factor.	
Therefore,	 the	 only	 reactions	 that	 take	 place	 are	 the	 acid-base	 equilibria	 of	 the	 monomer	 to	
hydrogenmolybdate	acid,	[HMoO4]-,	and	molybdic	acid,	H2MoO4.	However,	at	higher	concentrations,	the	
aggregation	is	favored	and	promotes	the	growth	of	larger	clusters.	In	fact,	the	largest	polyoxomolybdate,	
{Mo36},	 	 is	 only	 formed	 at	 concentrations	 larger	 than	 5·102	M.	 Furthermore,	 the	 condensation	 zone	
(yellow-green	area)	includes	other	relevant	oxides	such	as	the	octamolybdates	[Mo8O26]4-	and	[HMo8O26]-
3,	 at	 a	 pH	 range	 between	 1-3.5.	 At	 more	 neutral	 conditions,	 between	 4	 to	 6,	 the	 heptamer	 oxides	
[H2Mo7O24]4-,	 [HMo7O24]5-	 and	 [Mo7O24]6-	 predominate.	 It	 can	 be	 observed	 that	 POMos	 speciation	 is	
extraordinarily	rich	both	in	number	of	species	and	topologies.	Likewise,	the	speciation	phase	diagram	for	
polyoxotungstanates,	using	the	rescaled	formation	constants,	is	shown	in	Figure	3B.	Tungsten	monoxide	
is	 the	 most	 abundant	 compound	 at	 relative	 alkaline	 conditions	 (pH	 >	 9).	 In	 contrast	 to	 POMos,	 the	
concentration	for	POTs	does	not	have	a	sharp	disturbing	effect	on	the	relative	abundances.	Despite	that,	
in	very	diluted	solutions,	the	polymerization	process	does	not	take	place	either.	Decatungstate,	[W10O32]4-

,	is	the	predominant	oxide	for	pH	lower	than	5.	Between	the	5	and	6.5	pH	interval,	the	most	abundant	
species	are	dodetungstanates	[H2W12O42]8-	and	to	a	lesser	extend	[H2W12O40]6-,	which	only	exists	at	high	
concentrations	 (>	 101M).	 Before	 dissembling	 to	 the	 monomer,	 the	 hexatungstanate	 [H2W6O22]6-	
predominates	at	neutral	pH.		
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Experimental	techniques	have	made	an	immense	effort	to	characterize	metal	oxides	formation	constants.	
Even	so,	there	are	many	metal-oxo	compounds	that	have	proved	to	be	difficult	to	isolate	and	characterize	
with	current	state-of-the-art	techniques.	For	example,	pentagonal	molybdenum	oxides,	{MoxMo6},	are	a	
recurrent	motif	 in	medium	and	 large	 clusters.	 These	pentagonal	 structures	 are	 assigned	as	 important	
building	blocks	for	adding	curvature	and	sphericity	to	keplerate	architectures.5	Despite	that	and	as	far	as	
we	know,	no	formation	constants	have	been	determined	yet.	Moreover,	the	formation	of	the	[W12O42]8-,	
through	 the	 lacunary	 form	 [W11O40]12-,	 is	 still	 under	 discussion.24	 In	 view	 of	 this	 knowledge	 gaps,	 our	
method	offers	a	straightforward	approach	to	estimate	equilibrium	constants	of	transient	intermediates.	
Table	1	collects	 the	predicted	values	 for	 the	 formation	constants	 for	some	molybdenum	and	tungsten	
IPAs.	Notice	that	Table	1	shows	a	single	state	of	protonation	for	each	cluster	to	ease	the	interpretation.	
Nevertheless,	the	complete	set	of	122	constants	can	be	found	in	Table	S7	and	Table	S8.	To	estimate	these	
constants,	the	linear	regressions,	depicted	in	Figure	2,	are	used	to	calibrate	the	raw	formation	constants.	
Thanks	to	the	excellent	fitting,	we	can	obtain	accurate	constants	of	unreported	metal-oxo	compounds.	
POMSimulator	has	determined	64	molybdenum	equilibrium	constants,	but	Table	1	only	collects	the	16	
most	 relevant	 examples.	 This	 sample	 includes	 from	 small	 clusters	 (e.g.,	 [Mo2O7]2-,	 [Mo4O13]2-)	 up	 to	
pentagonal	alike	structures	(e.g.,	[H6Mo5O22]8-,	[H14Mo9O38]8-).	Furthermore,	our	method	has	computed	
47	tungsten	formation	constants,	but	Table	1	only	shows	the	10	most	representative	samples.	This	set	is	
formed	by	small	clusters	(e.g.,	[W3O10]2-,	[W5O16]2-)	and	larger	and	more	anionic	species	(e.g.,	[W5O19]8-,	
[W11O40]14-).	 It	 is	worth	 noticing	 that,	 even	with	 this	 new	 calculated	 data,	 all	 tungsten	 oxide	 formatin	
constants	are	larger	than	the	molybdenum	oxides	analogues,	thus	indicating	higher	stability	in	accordance	
with	experimental	facts.		

	

Table	1.	DFT	computed	Formation	Constants	for	polyoxomolybdates	at	298.15K,	1	atm	and	1M	NaCl	and	polyoxotungstanates	at	
298.15K,	1	atm	and	0.25M	NaCl.	

Molybdenum	Oxides	 Formation	Constant	a,b		 Tungsten	Oxides	 Formation	Constant	a,c		
[Mo2O7]

2-	 11.68	 [W2O7]
2-	 23.42	

[H6Mo2O10]
2-	 2.66	 [W3O10]

2-	 38.85	
[Mo3O10]

2-	 22.14	 [W3O11]
4-	 26.27	

[H6Mo3O14]
4-	 		3.27	 [W4O13]

2-	 54.48	
[Mo4O13]

2-	 33.59	 [W4O15]
6-	 19.53	

[H6Mo4O18]
6-	 12.86	 [W5O16]

2-	 58.09	
[Mo5O16]

2-	 38.02	 [W5O17]
4-	 51.06	

[Mo5O17]
4-	 35.19	 [W5O19]

8-	 22.01	
[H6Mo5O22]

8-	 18.82	 [W6O20]
4-	 68.21	

[Mo6O20]
4-	 41.84	 [W11O40]

14-	 64.00	
[H11Mo6O27]

7-	 32.37	 	 	
[Mo7O23]

4-	 55.36	 	 	
[H12Mo7O31]

8-	 44.37	 	 	
[H13Mo8O35]

9-	 51.47	 	 	
[H14Mo9O37]

6-	 68.61	 	 	
[H14Mo9O38]

8-	 62.51	 	 	
a	Constants	refer	to	the	formation	reaction:	 	p[MO4]

2-	+	qH+	⇌	[HzMpOm]
n-	+	(q/2+	p	-	z/2)	H2O.	b	Linear	regression	employed:	

y=0.32x-2.77	 (RMSE=0.47,	MAE=0.39)	 using	 Cruywagen	 et	 al.	 constants57	 for	 the	 calibration.	 c	 Linear	 regression	 employed:	
y=0.30x+8.51	(RMSE=0.44,	MAE=0.43)	using	Rozantsev	et	al.	constants58	for	the	calibration.	
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Hitherto,	we	have	observed	 that	computing	equilibrium	constants	with	quantum	mechanical	methods	
involves	a	small	but	cumbersome	systematic	error.	In	our	initial	studies,48	we	could	overcome	this	obstacle	
by	applying	a	 simple	 linear	 relationship	 (y=0.3x-3.1).	However,	we	 then	had	no	evidence	whether	 this	
former	 linearity	 was	 circumstantial	 or	 could	 be	 generalized	 to	 larger	 and	more	 different	 systems.	 By	
comparing	the	slope	(m)	and	intercept	(b)	parameters	of	the	former	and	present	(Figure	2A)	works,	and	if	
we	round	the	decimal	places	to	the	tenths,	we	can	observe	that	both	equations	are	identical.	Therefore,	
we	now	have	the	proof	that	our	previous	regression	was	already	a	very	good	guess.	This	match	shows	
that	the	method	presented	here	can	predict	the	simultaneous	multi-equilibria	of	the	whole	family	of	IPA	
molybdates.	By	 turning	our	attention	 to	 tungsten	oxides,	we	have	demonstrated	 that	POTs	 formation	
constants	can	be	accurately	rescaled	as	well	(Figure	2B).	Remarkably,	we	have	observed	that	the	slope	
parameter	(m=0.3)	is	the	same	in	tungsten	and	molybdenum	regressions.	Besides,	the	intercept	is	positive	
for	tungsten	oxides	(b=8.5)	whereas	it	 is	negative	for	molybdenum	oxides	(b=-0.3).	Thus,	molybdenum	
and	 tungsten	 calibration	 equations	 share	 the	 same	 slope	 but	 differ	 in	 the	 intercept.	 This	 discovery	 is	
exceptionally	interesting	since	it	suggests	that	an	heuristic	could	be	found	to	further	generalize	that	linear	
relationship	to	other	metals.				

	

	 	



	 	 	
	

	 	 12	
	

Conclusions	

	

The	 present	 work	 presents	 a	 robust	 methodology	 for	 dealing	 with	 complex	 multi-species	 chemical	
equilibria	 in	solution	 in	an	automated	manner,	which	allows	predicting	speciation	phase	diagrams	and	
formation	 constants	 of	 transient	 species	 that	 are	 out	 of	 reach	 experimentally.	 This	 first	 complete	
application	of	the	new	method	to	the	full	set	of	molybdenum	and	tungsten	IPAs	demonstrates	its	potential	
for	understanding	and	predicting	metal	oxides	speciation	in	aqueous	solution.	Concentrations,	pH	and	the	
ionic	force	play	a	key	role	in	the	nucleation	and	growth	processes	of	 larger	clusters,	 	and		our	method	
enables	to	take	all	of	them	into	account.			

Starting	 with	 a	 diverse	 set	 of	 molecular	 species	 at	 different	 protonation	 states,	 our	 method	 creates	
molecular	graphs	firstly	using	just	quantum	mechanical	derived	raw	data	(basically	the	electronic	charge	
density	and	Gibbs	free	energies).	From	there,	reaction	networks	are	deduced	and	subsequently	employed	
for	setting	up	the	speciation	models,	thus	hundreds	of	thousands	of	non-linear	equations	that	are	solved	
relatively	 fast.	 The	 values	 of	 the	 equilibrium	 constants	 computed	 with	 our	 method	 show	 that	
polyoxotungstanates	 are	more	 stable	 than	polyoxomolybdates,	which	 is	 in	 very	 good	agreement	with	
experimental	 facts.	 We	 predict	 the	 formation	 constants	 of,	 so	 far,	 107	 unreported	 compounds.	 For	
example,	 we	 have	 determined	 formation	 constants	 of	 the	 pentagonal	 structures:	 {Mo6},	 {MoMo6},	
{Mo2Mo6}	and	{Mo3Mo6}	and	reactive	tungsten	intermediates	such	as	{W5}	and	{W11}.		

The	 unique	 capability	 to	 build	 speciation	 phase	 diagrams,	 a	 feature	 with	 which	 our	 code	 has	 been	
equipped,	provides	a	powerful	tool	for	guiding	experiments.	We	expect	that	this	kind	of	plots	will	help	to	
optimize	 the	 experimental	 conditions	 towards	 the	 synthesis	 of	 a	 desired	 cluster.	 Molybdenum	 and	
tungsten	 IPAs,	 as	 those	 considered	 here,	 are	 well	 known	 species	 and	 thus	 not	 the	 holy	 grail	 in	
polyoxometalates	chemistry.	Other	cations	and	anions	play	a	fundamental	role	 in	the	growth	of	 larger	
structures	for	which	trial	and	error	approaches	still	prevail.		Although	the	present	work	proves		that	the	
multi-equilibrium	 concept	 can	 be	 extended	 further,	 including	 kinetics	 equations	 in	 our	 simulation	
protocols	is	the	next	challenge.	

Furthermore,	and	 following	common	practice	 to	 rescale	 the	DFT	Gibbs	 free	energies	when	computing	
acid/base	 equilibrium	 constants,	 we	 observed	 a	 strong	 linear	 dependence	 between	 computed	 and	
experimental	formation	constants,	which	allows	us	to	calibrate	the	thermodynamic	constants.	The	linear	
relationships	exhibit	exceptionally	high	correlations	(R2=0.9999)	and	low	errors	(RMSE=0.45),	both	beyond	
the	 current	 benchmark.	 These	 results	 provide	 a	 solid	 ground	 to	describe	 the	 systems	 included	 in	 this	
study.	

Last	but	not	 least,	we	have	noticed	some	 insightful	aspects	about	the	calibration	method.	On	the	one	
hand,	the	actual	linear	regression	of	POMos	is	remarkably	close	so	it	extends	what	we	reported	previously.	
This	fact	 is	highly	relevant	since	 it	adds	robustness	to	the	calibration	scale.	Moreover,	tungsten	oxides	
present	a	regression	with	the	very	same	slope	(m=0.3)	and	different	intercept.	This	trend	suggests	that	a	
universal	calibration	might	exist	that		could	correct	the	∆GDFT	error	for	various	systems.	More	experiments	
are	 currently	 underway	 to	 investigate	 this	 hypothesis	 further	 and	 expand	 the	 applicability	 of	
POMSimulator	throughout	the	periodic	table.	Since	molecular	metal	oxides	are	often	viewed	as	inorganic	
polymers,	we	envisage	that	this	kind	of	treatment	could	be	applied	to	other	condensation	and	addition	
reactions,	as	those	in	organic	polymerization	reactions.	
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