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Abstract 

It is very urgent to understand the rheological behavior of polymer 

nanocomposites (PNCs) on the molecular level, which is very important for their 

processing and application. Thus, here the reverse nonequilibrium molecular dynamics 

simulation is employed to explore it by tuning the nanoparticle (NP) concentration, the 

polymer-NP interaction and the NP size. The shear viscosity (η~γ̇-m) exhibits a power 

law with the shear rate where m varies from 0.42 to 0.53 at high shear rates. By adopting 

the Carreau-Yasuda model, the obtained zero-shear viscosity gradually rises with 

increasing the NP concentration, polymer-NP interaction or reducing the NP size. This 

is attributed to the strong adsorption of chains by NPs and the formed network, which 

leads to the retarded dynamics. In addition, both the first and second normal stress 

differences also show power laws on the shear rates. The chains are gradually extended 

as the increase of shear rates, which is characterized by the mean-square end-to-end 
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distance and the mean square radius of gyration. Especially, the evolution process of 

the NP network and the polymer-NP network is analyzed to deeply understand the shear 

thinning behavior. The number of the direct contact structure of NPs increases while 

the number of polymer-NP bridged structure is reduced. This is further proved by the 

increase of the formation probability of the NP network and the decrease of the 

polymer-NP interaction energy. Finally, the chain dynamics is found to be enhanced 

due to the shear flow. In summary, this work provides a further understanding on the 

mechanism of the shear thinning of PNCs on the molecular level. 

 

  



1. Introduction 

The incorporation of nanoparticles (NPs) into polymer matrixes can significantly 

improve their thermal conductivity, electrical conductivity and rheological property.1-3 

Especially, understanding the rheological property of polymer nanocomposites (PNCs)  

is very useful for their processing and application. In general, the shear viscosity 

exhibits a nonlinear relationship with the shear rate, which can describe the rheological 

behavior of PNCs. It is important to characterize the microstructural change under the 

shear flow, which can uncover the microscopic mechanism. However, a fundamental 

understanding is still lacked that deserves our further effect. 

To date, lots of works have been contributed to understand the rheological 

behavior, which is in the service of both polymer processing and advancing our related 

knowledge. For examples, the graphene oxide (GO) gradually disperses better with 

increasing the polydimethylsiloxane length, which induces the high critical 

concentration to form the network.4 Meanwhile, the normal stress differences is 

negative due to the vorticity alignment. In addition, the higher oxygen contents can help 

the graphene to disperse into the matrix, which exhibits a lower rheological percolation 

threshold.5 After exploring the relationship between the exfoliation degree of clay and 

the characteristic rheological response, the number of clays particles per unit volume is 

found to be a key factor for it.6 Furthermore, by adopting the Carreau model, both the 

shear viscosity and power-law behavior rise with increasing the organoclay 

concentration.7 The polymer-silica interaction will affect their packing way and the 

surrounding chains, which influences the shear viscosity.8 In addition, the effect of 



dispersion degree of clay on the rheological properties of PNCs is investigated, which 

match the nonlinear rheological property well.9, 10 It is supposed that the rheological 

behavior of PNCs depends on the network formation and the chain dynamics, which 

should further understand their molecular origins. As a supplement to experiments, 

Molecular dynamics (MD) simulation is very powerful in offering the information on 

the microscopic structure, which help to understand the rheological behavior. By 

adopting the nonequilibrium MD, the NP-tethering polymers with high interfacial 

interactions improve both the storage and loss moduli than the homopolymers.11 In 

addition, adding NPs into polystyrene can lead to a non-Einstein-like decrease in 

viscosity due to to the friction reduction by segment blobs.12 The shear viscosity will 

decrease by orders of magnitude with increasing the shear rate, which is expressed by 

η~γ̇m. The m varies about from 0.4 to 0.9 in experiments13 while it is from 0.37 to 0.89 

in simulations14-17. The scaling behavior of viscosity has not reached a consistent 

conclusion in the shear thinning. Meanwhile, the clear microscopic explanation is 

lacked for the shear thinning.18, 19 The flow-induced structure change of chains is 

considered to be one explanation.14, 17, 20 Furthermore, the dynamics of structural 

rearrangements in supercooled liquids is analyzed which is closely linked to the 

rheological behavior.21 The results reflect the isotropic rearrangement dynamics in the 

Newtonian regime. However, it is anisotropic in the non-Newtonian regime. 

Furthermore, the  -relaxation process is progressively suppressed by the shear flow.22 

Meanwhile, the scaling laws are established for the motion of polymer molecules. 

Moreover, the frequency of characteristic periodic motion is scaled sublinear with the 



shear rate.23 

Based on the current progress, a fundamental understanding of the rheological 

property is still unclear for PNCs. To further understand it, it is very crucial to analyze 

the change process of both the NP network and the polymer-NP network, which has not 

been investigated to our knowledge. Here, we employed the reverse nonequilibrium 

molecular dynamics (RNEMD) simulation to investigate the rheological properties of 

PNCs subjected to the steady shear flow. Effects of the NP concentration, the polymer-

NP interaction and the NP size on the shear viscosity, the microscopic structures and 

the dynamical property are analyzed in details. Their relationship has been established, 

which can understand the mechanism from the molecular level. 

2. Methods and Models 

In this simulation, a nonequilibrium molecular dynamics simulation is used to 

explore the rheological behavior of NPs filled PNCs in melted states. The simulated 

systems consist of linear polymer chains and spherical NPs. Each polymer chain 

contains 30 beads where each one stands for several monomers.24, 25 It is noted that the 

chain length is below the entanglement length aiming to analyze how NPs affect the 

rheological properties independently.26 The mass and diameter are set to be m and   

respectively for polymer beads while they are 64m and 4  for NP beads. Each system 

contains 1000 chains. The number of NPs varies from 0 to 480 which is corresponding 

to their concentration   from 0% to 29%. In this model, the nonbonded interactions 

between all beads is described by the expanded Lennard-Jones (LJ) potential, given by 
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where r means the distance between two beads. The 
cutoffr  means the cutoff distance 

which is 2.5   for polymer-polymer interactions and polymer-NP interactions and 

1.12   for NP-NP interactions. The polymer-polymer interaction 
pp  and NP-NP 

nn   are fixed as 1.0  . The polymer-NP 
np  is varied to simulate the different 

strength. It is noted that the chosen parameters can avoid the aggregation of NPs. 

The bonded interaction between the polymer beads is represented by the stiff finite 

extensible nonlinear elastic (FENE) potential, which is given by 
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where k and 
0R  denote the elastic coefficient and the maximum extensible bond 

length respectively. They are set as 30
2/   and 1.5  to avoid unphysical bond 

crossing.27, 28 It is noted that the reduced units are used which simulate a common 

polymer in our work. The symbols m,   and   mean the units of mass, length, and 

energy respectively. The time unit   is defined as 2 1/ 2=( / )m   . The reduced units 

can be corresponding to real units by matching the simulated lateral diffusion 

coefficient to the experimentally measured value.29, 30 

The shear viscosity   is the proportionality constant between a shear rate and a 

flux of transverse linear momentum, which is defined according to the following 

constitutive equation 

Yj ( ) /X XP v Z                         (3) 



It is noted that the shear rate is denoted by the gradient /Xv Y  . The momentum flux 

jY denotes the X component of the momentum PX, which is transported along the Y 

direction in a given time. Currently, the RNEMD technique has been developed by 

Müller-Plathe.31, 32 The flux is imposed and the corresponding force is measured during 

the simulation process. The “reverse” means that the cause and effect are reversed 

compared to the conventional nonequilibrium simulation methods. This method is 

proved to be powerful in simulating molecular fluids32, complex fluids33, polymers34, 

and ionic liquids35. In this RNEMD method, the periodic box is subdivided into N slabs 

in the Y direction. In the 1st slab moving in the +X direction, the atom with the largest 

momentum component in the -X direction (namely the atom with the smallest PX) is 

found. Likewise, in the N/2+1 slab moving in the -X direction, the atom with the largest 

momentum component in the +X direction (namely the atom with the largest PX) is 

found. Then, the PX are exchanged between these two atoms with the same mass. Thus, 

the total transferred amount of momentum PX can be precisely known. In the steady 

state, the momentum flux 
Yj ( )XP  is obtained: 

Yj ( ) / 2X Xp P tA                      (4) 

where PX is the total momentum transferred in a simulation time t and A is surface area. 

In this simulation, the simulation box is divided into 20 bins along the Y direction. 

Different exchange frequencies are chosen to get the stable linear velocity profiles.  

Due to the linear perturbation to the system, a linear velocity profile is obtained and the 

/Xv Y   is calculated by a linear regression. The details can be referred to the papers.31, 

32 



Then, a NPs filled PNCs system is constructed with a lower density to generate 

the initial configuration. The size of the initial simulation box is 120*120*120 3  to 

avoid the overlapping. Then, the isothermal-isobaric ensemble is adopted to equilibrate 

the simulation box by adopting the Nose-Hoover temperature thermostat and pressure 

barostat. Temperature and pressure are chosen to be *T =1.0 and *P =0.0 respectively. 

Velocity-Verlet algorithm is adopted for 5*107 timesteps to realize an equilibrium state 

with a timestep of 0.001t   for all systems. Periodic boundary conditions are 

applied during the simulation process. It is noted that the final number density of 

polymer beads is about 0.85. To explore the rheological behavior, RNEMD simulations 

are implemented to calculate the shear viscosity for 30000 . All of the simulations are 

carried out by using the large atomic/molecular massively parallel simulator 

(LAMMPS).36, 37 

3. Results and discussion 

In this section, we mainly explored the rheological properties and structural 

changes of NPs filled PNCs by focusing on effects of the NP concentration, the effect 

of polymer-NPs interactions and the size of NPs. 

3.1 Volume fraction of nanoparticles 

In the application of PNCs, it is necessary to add a large number of NPs into the 

polymer matrix to reinforce the PNCs, which affects their rheological properties. Thus, 

in this section, we first focused on the effect of the volume fraction   of NPs on the 

rheological behavior. First, different exchange frequencies ( ) are chosen to obtain 

proper linear velocity profiles in Fig. S1(a), which obtains the velocity gradient. The 



corresponding visualization of velocity distribution (VX) is shown in Fig. S1(b) for 

-1=0.1   as an example. The dependence of the shear viscosity   on the shear rate 

𝛾̇ shows a crossover at the critical shear rate 𝛾̇c. It is noted that the shear thinning is 

observed above 𝛾̇c while a Newtonian plateau appears below it. As shown in Fig. 1, 
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Fig. 1 The shear viscosity η with the shear rate 𝛾̇ for various volume fractions of nanoparticles 

 . The solid lines are the fitting curves by using the Carreau-Yasuda model. 

our simulation result reveals that PNCs present a typical shear thinning behavior. The 

shear viscosity   of PNCs gradually decreases with the increase of 𝛾̇ (γ̇>γ̇c) which 

is expressed by a universal power law η~γ̇-m. The m varies from 0.42 to 0.46 with the 

increase of   whose difference is relatively small. It is reported that the relationship 

between the shear viscosity and the shear rate is η~γ̇-0.44 in the simulation work by Baig 

et al14, which is similar to ours. To obtain the zero-shear viscosity η0, the individual 

shear viscosities are fitted by the Carreau-Yasuda model38, 39 and then obtain η0 at 

𝛾̇=0.0, which is shown below: 
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where η0 is the zero-shear viscosity, λ is a characteristic time constant which is related 

to the relaxation time of chains, and n is a power law exponent. We have calculated the 

η0, λ, n and 𝛾̇c, for different   which are listed in Table I. It is found 

Table I Carreau-Yasuda model parameters and the critical shear rate for 

different systems in this work 

System   np  D n λ η0 γ̇c(10-4) 

1 0.0% 3 4 0.215 621 34.4 7.6 

2 10.3% 3 4 0.212 820 48.2 5.2 

3 18.2% 3 4 0.215 1098 69.8 3.3 

4 29.2% 3 4 0.232 1328 128.7 2.1 

5 18.2% 2 4 0.215 628 39.8 10.1 

6 18.2% 5 4 0.261 1501 175.6 2.5 

7 18.2% 7 4 0.265 3964 452.3 0.91 

8 18.2% 3 1 0.263 6852 656.5 0.48 

9 18.2% 3 2 0.243 3518 222.8 1.2 

that the power law exponent n shows a limited change with increasing the   from 

0.215 to 0.232. The zero-shear rate viscosity η0 of PNCs exhibits a continuous increase 

from 34.4 to 128.7. Meanwhile, the characteristic time constant λ gradually rises from 

621 to 1328 while the corresponding 𝛾̇c is reduced from 7.6*10-4 to 2.1*10-4. Moreover, 

the   of PNCs increases with increasing the   at any shear rate 𝛾̇ which is larger 

than that of pure polymers ( =0.0%). This is due to the attractive interaction between 

polymer and NPs, which is consistent with the experimental result.40 The shear thinning 

behavior in PNCs is suggested to be caused mainly by the extension of molecular chains 

and the destruction of the network structure under the shear flow. It is noted that a lower 



exchange frequency   will lead to the instability of the shear stress. Thus, the 

Newtonian plateau is not confirmed in the simulation. 

Then, we further calculated the first and second normal stress differences which 

are also important quantities in characterizing the polymers. They are defined as 

                             1 xx yyN ( )                             (6) 

and 

                             2 yy zzN ( )                             (7) 

Figure 2 presents the first normal stress difference N1 and the second normal stress 

differences N2 as a function of the 𝛾̇ for different  . Both N1 and N2 exhibit a 
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Fig. 2(a) The first normal stress difference N1 and (b) the negative second normal stress difference 

N2 as a function of the shear rate 𝛾̇ for various volume fractions of nanoparticles (φ). 

continuous increase with increasing the 𝛾̇ and  . It is found that the N1 gradually 

rises with increasing the   at the low 𝛾̇ while they are approaching the value of the 

pure polymer at high 𝛾̇. This can be explained by the change of the chain morphology, 

the filler network and so on,41 which will be also analyzed below. In addition, our 

simulation reveals that the N1 shows a power law dependence on the 𝛾̇ (N1~γ̇0.68 at the 

high 𝛾̇).42 From Fig. 2(b), the N2 is much smaller than the N1 for all the systems which 



is difficult to be measured in experiments. Furthermore, the N2 exhibits a power law 

dependence on -N2~γ̇0.83 which meanwhile rises with increasing the   at a given shear 

rate. These exponents’ values are consistent with the reported ones.16, 42 

To understand the mechanisms of the shear thinning behavior, the structural 

change of chains is examined with the 𝛾̇. The chains’ conformation is conveniently 

measured by calculating the mean-square end-to-end distance 
2

eteR  and the mean 

square radius of gyration 
2

gR .16, 43 Figure 3(a) presents the normalized root-mean-

square end-to-end distance /eteR L  with the 𝛾̇ for different  . Here, L is the fully 

stretched chain length. It is found that the /eteR L  exhibits a continuous increase with 

increasing the 𝛾̇. This reflects that the polymer chains are extended along the shear 

direction. It is reported that the /eteR L  of pure polymer is 0.5 at the 𝛾̇   from the 

theories and experiments19, 23, 44-46, which is higher than our simulated value. 

Meanwhile, the /eteR L  is enlarged at a higher  . This is because the chains can slide 

and orient more along the shear direction where NPs act as the temporary crosslinking 

point.47 Furthermore, the probability distribution functions (PDFs) of Rete/L, namely 

P(Rete/L), is characterized with the 𝛾̇ for  =18.2% as an example. As shown in Fig. 

S2, it is found that the distribution of P(Rete/L) is almost the normal distribution for a 

low 𝛾̇. As the increase of the 𝛾̇, the PDF exbibits a decaying peak at small Rete/L. 

Meanwhile, their width becomes larger. This again reflects that polymer chains are 

stretched with increasing the 𝛾̇. The 2

gR  and their three components 2

gxR , 2

gyR  and 

2

gzR  are shown respectively in Fig. 3(b) and Fig. S3 which are normalized by their initial 

value. It is noted that the value of is nearly equal to 6.0 at equilibrium which is expected 
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Fig. 3(a) The normalized root-mean-square end-to-end distance /eteR L  and (b) normalized 

mean square radius of gyration 2 2

g g/ (0)R R  with the shear rate 𝜸̇ for different volume fraction of 

nanoparticles . 

for Gaussian chains. Meanwhile, the spatial conformation of chains is spherical at 

𝛾̇=0.0 which leads to 
2

gx (0)R =
2

gy (0)R =
2

gz (0)R =
2

g (0)R /3. As the increase of 𝛾̇, the 

chains are stretched along the shear direction and contracted perpendicular to it. Thus, 

both 
2

gR  and 
2

gxR  rises while the 
2

gyR  and 
2

gzR  decreases quickly. It is noted that 

their change rate gradually slows down at the high 𝛾̇ because the number of polymer 

beads is finite. On the contrary, the dependence of both 2

gR  and 2

gxR  on the 𝛾̇ is 

described by a power law relationship (namely 2

gR ~γ̇0.078， 2

gxR ~γ̇0.14 at the high 𝛾̇). A 

similar scaling behavior was also observed for linear polymers.48 In addition, both eteR  

and 
2

gR  gradually increases with increasing the  , which is induced by the attractive 

interaction between polymer and NPs. Snapshots of some polymer chains are shown in 

Fig. S4 for different 𝛾̇, which can prove the results above. Then, the evolution process 

of the NP network is characterized with the 𝛾̇ for different  . The radial distribution 

functions (RDFs) of NPs is first calculated to understand how it changes with the γ̇ in 

Fig. S5. From RDFs of NPs, it can be found that more NPs aggregate directly to form 



clusters with increasing the γ̇. To further understand it, the structural characteristic of 

the NP network is quantified by the maximum cluster size and the cluster number of 

NPs. Here, if the surface-surface distance of any two NPs is less than 1 , they are 

connected and belong to the same cluster. Meanwhile, P  is adopted to reflect the 

formation probability of the network within the system. Figure 4 presents the change in 

the maximum cluster size (S(γ̇)-S(0)) and the cluster number (N(γ̇)-N(0)) as a function 

of the γ̇ by their initial values at γ̇=0.0. It is observed that the (S(γ̇)-S(0)) exhibits a 

continuous increase with increasing the while the (N(γ̇)-N(0)) gradually decreases. This 

indicates that some small clusters are merged into large ones which is consistent with 
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Fig. 4 Change in (a) the maximum cluster size (S(𝛄̇)-S(0)), (b) the cluster number (N(𝛄̇)-N(0)) and 

(c) the formation probability of the network P  with the shear rate 𝛄̇ for various volume fraction 



of nanoparticles  . 

previous results that NPs form the direct contact aggregation. As a result, it leads to the 

increase of the formation probability of the NP network P(γ̇) throughout the system. It 

is noted that another main contribution to the high viscosity is from the polymer-NP 

network due to the strong interaction. Here, two kinds of structures are used to reflect 

the change of the polymer-NP network with the γ̇ in Fig. S5: (i) the direct contact 

structure of NPs; (ii) the polymer-NP bridged structure via one or two polymer beads. 

The evolution process of the number of structures (i) and structures (ii) is calculated 

with the γ̇. Any pair of NPs belongs to the structure (i) if their distance is between 3.5

 and 5 . However, it is the structure (ii) if their distance is between 5 and 6.5 . 

The number of pairs of NPs is used as number of structures. The change in the number 

of structures (i) (Ni(γ̇)-Ni(0)) and structures (ii) (Nii(γ̇)-Nii(0)) is presented in Fig. 5. It 

is found that the (Ni(γ̇)-Ni(0)) gradually rises 
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Fig. 5 Change in the number of (a) structures (i) (Ni(𝛄̇)-Ni(0)) and(b) structures (ii) (Nii(𝛄̇)-Nii(0)) 

with the shear rate 𝛄̇ for various volume fraction of nanoparticles  . 

while the (Nii(γ̇)-Nii(0)) decreases with increasing the γ̇. It indicates that the polymer-

NP bridged structure via one or two polymer beads is broken down under the flow field. 

Corresponding to it, the direct contact structure of NPs is formed. Moreover, the change 



in the polymer-NP interaction energy (E(γ̇)-E(0)) is characterized to further understand 

the polymer-NP network in Fig. 6. It is noted that the E(0) rises with increasing the 
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Fig. 6 Change in the polymer-nanoparticles (NP) interaction energy (E(𝛄̇)-E(0)) with the shear rate 

𝛄̇ for various volume fraction of NPs  . 

 , which means the strong polymer-NP network. In addition, the (E(γ̇)-E(0)) gradually 

decreases as the increase of the γ̇. Meanwhile, the slope is larger at the higher  , 

which reflects a more serious change of networks. Finally, the dynamics of polymer 

chains is analyzed by calculating the self-part of the intermediate scattering function: 

   
N

self j 0
j 1

1
F q,t exp [r (t) r (0)]

N
q



    i .22 Here, q is the momentum transfer describing the 

spatial scale; N is the number of polymer beads; [rj(t) – rj(0)] is the displacement of 

atom j within the time t. The q is chosen to be q0=6.9 which reflects the segmental 

relaxation approximately corresponding to the maximum peak of the static structure 

factor. Figure S6 presents the intermediate scattering functions self 0F (q , t)  with the 

simulation time for different γ̇  at  =18.2%. It is observed that the decay of 

 self 0F q , t  becomes faster with increasing the γ̇. To quantify it, the relaxation time is 

obtained by adopting a two-step relaxation function:



f

self 0 fF (q , t) (1 A)exp[ (t / ) ] Aexp[ (t / ) ] 

       .22 A and τf are the additional 

fitting parameters represent a fast  -relaxation; the βf and β are the stretching 

exponent;   is the  -relaxation time. The  -relaxation process is nearly 

unaffected by the γ̇. The dependence of the   on the γ̇ for different   is given in 

Fig. 7. It is observed that the   gradually decreases with increasing the γ̇ which 

means that the high γ̇ gradually suppresses  -relaxation process. Their relationship 

can be described by a power law relationship  ~γ̇-0.72 at the high γ̇. Meanwhile, the 

  rises as the increase of   due to the retarded dynamics of interfacial chains. In 

total, the chain extension, the networks breakage and the enhanced dynamics of chains 

are responsible for the variation of the shear viscosity. In addition, the retarded 

dynamics of chains by NPs enhances the zero-shear viscosity at low  . However, the 

formed networks further strength the zero-shear viscosity at high  . 
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Fig. 7 The relaxation time  as a function of the shear rate 𝛄̇ for different volume fraction of 

nanoparticles  . 

3.2 Effect of the polymer-nanoparticles interaction 



In experiments, the NPs are chemically modified to improve the compatibility with 

polymer matrix which is related to the rheological properties of PNCs. Thus, we then 

turned to understand how the polymer-NP interaction np affects it by fixing the 

volume fraction of NPs  =18.2%. First, the change of the shear viscosity   is 

analyzed with the shear rate 𝛾̇ which is put in Fig. 8. Similarly, the   exhibits a 

universal power law where the exponent m varies from 0.42 to 0.53 with increasing the 

np . Meanwhile, the   increases with increasing the np  due to the strong polymer-

NP network. By adopting the Carreau-Yasuda model, η0, λ, n and 𝛾̇c are presented in 

Table I for different np . It is found that the n shows a limited increase with increasing 

the np  from 0.215 to 0.265. The η0 exhibits a continuous increase from 39.8 to 452.3. 

Meanwhile, the λ gradually rises from 628 to 3964 while the corresponding 𝛾̇c is 
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Fig. 8 The shear viscosity η with the shear rate 𝛾̇  for various polymer-nanoparticles (NP) 

interaction np . The solid lines are the fitting curves by using the Carreau-Yasuda model. 

reduced from 10.1*10-4 to 0.91*10-4. Then, both the 
2

eteR  and 
2

gR  are calculated 

which presents a continuous increase with increasing the np  (not shown here). The 

attractive NPs induces the chain extension along the flow direction which acts as the 



temporary crosslinking points. Importantly, we next characterized the NP network and 

polymer-NP network to better understand the results. As shown in Fig. S7, it is observed 

that the change in the maximum cluster size (S(γ̇)-S(0)) gradually rises with increasing 

the γ̇ while the (N(γ̇)-N(0)) decreases. Meanwhile, the formation probability of the 

NP network P(γ̇) improves. The NPs tend to form the bridged aggregation via polymer 

chains at the high np , which leads to the increase of (S(γ̇)-S(0)) and P(γ̇).49 These 

results also reflect the change of the NP network. Furthermore, the change in the 

number of structures (i) (Ni(γ̇)-Ni(0)) and structures (ii) (Nii(γ̇)-Nii(0)) with the γ̇ is 

calculated for different np , which is presented in Fig. 9. The (Ni(γ̇)-Ni(0)) rises with 

increasing the γ̇ while the (Nii(γ̇)-Nii(0)) decreases which reflects the breakage of the 

1E-4 1E-3 0.01 0.1
0

20

40

60

80

100

N
i(g

)-
N

i(0
)

(a)

g

 
np

2.0

 
np

3.0

 
np

5.0

 
np

7.0

 

 

 

 

1E-4 1E-3 0.01 0.1
-120

-100

-80

-60

-40

-20

0

 
np

2.0

 
np

3.0

 
np

5.0

 
np

7.0

(b)

N
ii
(g

)-
N

ii
(0

)

 

  

g  

Fig. 9 Change in the number of (a) structures (i) (Ni(𝛄̇)-Ni(0)) and(b) structures (ii) (Nii(𝛄̇)-Nii(0)) 

with the shear rate 𝛄̇ for various polymer-nanoparticles (NP) interaction np . 

polymer-NP network. Meanwhile, the (Ni(γ̇)-Ni(0)) decreases with increasing the np , 

while the (Nii(γ̇)-Nii(0)) rises. It is noted that the Ni(0) is zero at γ̇=0.0 for 
np 5.0  , 

which means the inexistence of the structures (i). Similarly, the change in the polymer-

NP interaction energy (E(γ̇)-E(0)) is analyzed. As shown in Fig. S8, the decrease of the 

(E(γ̇)-E(0)) is consistent with the previous results, namely the breakage of the polymer-



NP network. Meanwhile, the high np  improves the polymer-NP interaction energy, 

which builds the strong polymer-NP network. Finally, from Fig. S9, the relaxation time 

  of chains exhibits a decrease with increasing the np due to their strong adsorption 

effect by NPs. Generally, the polymer-NP network becomes stronger with higher np , 

which enhances the zero-shear viscosity. This can be compared to the experimental 

conclusion that the high interfacial interaction can enhance the shear viscosity due to 

the adsorbed chains.8, 50 

3.3 Effect of the nanoparticle size 

Finally, we explored the effect of the NPs size (Dnp) on the rheological properties, 

which is a common phenomenon in experiments. The polymer-NP interaction and the 

volume fraction of NPs are set to be 3.0 and 18.2% respectively. First, the dependence 

of the shear viscosity   on the shear rate 𝛾̇ is analyzed for different Dnp. As shown 

in Fig. 10, the exponent m for the universal power law exhibits a decrease from 0.52 to 
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Fig. 10 The shear viscosity η with the shear rate 𝛾̇ for various nanoparticles size (Dnp). The solid 

lines are the fitting curves by using the Carreau-Yasuda model. 

0.43 with increasing the Dnp. Meanwhile, the small NPs own a high surface area which 



form a strong polymer-NP network. This leads to the high   at the same  . 

According to the Carreau-Yasuda model, the fitted parameters are summarized in Table 

I for different Dnp. As the increase of Dnp, the n declines from 0.263 to 0.215 while the 

η0 shows a quick decrease from 656.5 to 69.8. In addition, it is noted that the λ gradually 

varies from 6852 to 1098 while the corresponding 𝛾̇c changes from 0.48*10-4 to 3.3*10-

4. The 
2

eteR  and 
2

gR  are first analyzed for different Dnp to better understand it. On one 

hand, the small NPs own the high surface area. On the other hand, it has more NPs at 

the same   which provide more temporary crosslinking points. As a result, they 

gradually decrease with improving the Dnp (not shown here). Next, we turned to 

characterize how the NP network and polymer-NP network change with the Dnp under 

the flow field. From Fig. S10, the (S(γ̇)-S(0)) shows a gradual increase with increasing 

the γ̇ while the (N(γ̇)-N(0)) decreases. Meanwhile, the formation probability of the 

NP network P(γ̇) rises. It is noted that the number of NPs becomes small with increasing 

the Dnp. Thus, their change absolute values of both (S(γ̇)-S(0)) and (N(γ̇)-N(0)) are 

reduced when the Dnp varies from 2.0  to 4.0 . However, too many NPs induce their 

connection with each other which leads to the stability of both (S(γ̇)-S(0)) and (N(γ̇)-

N(0)). Similarly, we then analyzed the change in the number of structures (i) (Ni(γ̇)-

Ni(0)) and structures (ii) (Nii(γ̇)-Nii(0)) with the γ̇ for different Dnp. As shown in Fig. 

11, the (Ni(γ̇)-Ni(0)) is improved with increasing the γ̇ while the (Nii(γ̇)-Nii(0)) is 

reduced. Meanwhile, the change absolute values of both (Ni(γ̇)-Ni(0)) and (Nii(γ̇)-Nii(0)) 
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Fig. 11 Change in the number of (a) structures (i) (Ni(𝛄̇)-Ni(0)) and(b) structures (ii) (Nii(𝛄̇)-Nii(0)) 

with the shear rate 𝛄̇ for various nanoparticles size (Dnp). 

are reduced with increasing the Dnp. This is due to more NPs for small Dnp, which 

induces more significant change of the polymer-NP network. Similarly, the change in 

the polymer-NP interaction energy (E(γ̇)-E(0)) is presented in Fig. S11 which further 

prove the above results. It is observed that the (E(γ̇)-E(0)) is reduced with increasing 

the γ̇. Meanwhile, the change absolute values of (E(γ̇)-E(0)) is reduced as the increase 

of the Dnp, which reflects the serious breakage of the polymer-NP network. Finally, the 

relaxation time   of chains gradually declines with increasing the Dnp in Fig. S12. 

These results are consistent with the variation of the shear viscosity. 

Currently, the rheological behavior of polymer materials has been explored which 

is affected by lots of factors, such as the chain structures (the chain length51, chain 

shape52 and stiffness of chains53), the polymer-NP interaction5, 8, the dispersion degree 

and concentration of NPs9, 10, and so on. The shear viscosity exhibits a power law on 

the shear rate where the exponent varies from 0.37 to 0.9 at high shear rates.13-17 The 

complex rheological behavior is reported to be related the structure change of polymer 

chains14, 17, 20, 48 and the heterogeneous dynamics under the shear flow.21-23 In this work, 



we focused on the rheological property of PNCs by mainly analyzing the evolution 

process of both the NP network and the polymer-NP network in details, which is the 

main difference with these works. At last, the relaxation time   of chains is 

calculated 

 

Fig. 12 The relaxation time a with the volume fraction of nanoparticles (NP)  , the polymer-NP 

interaction np , and the NP size (Dnp). 

at γ̇=0.0 for different systems in Fig. 12. It is found that the   gradually decreases 

with increasing the NP concentration, polymer-NP interaction and reducing the NP size, 

which is consistent with the zero-shear viscosity. This is attributed to the strong 

adsorption of chains and the formed network, which leads to the retarded dynamics. 

Especially, the maximum   appears at Dnp=1.0 , which emphasizes the importance 

of nanosize. 

4. Conclusions 

In this work, the shear viscosity, the structural and dynamical properties of 

polymer nanocomposites (PNCs) are investigated under the shear flow by RNEMD 

simulations. The shear viscosity presents an exponential decrease at high shear rates 



where exponent m varies from 0.42 to 0.53. The zero-shear viscosity is obtained by the 

Carreau-Yasuda model, which increases with increasing the NP concentration, 

polymer-NP interaction and reducing the NP size. Due to the attractive adsorption of 

chains and the formed network, the dynamics of chains is strong retarded. Furthermore, 

the dependence of both the first and second normal stress differences on the shear rate 

can be also described by power laws. The mean-square end-to-end distance and the 

mean square radius of gyration are used to characterize the structural change of chains, 

which proves the extended conformation. Importantly, both the NP network and the 

polymer-NP network are characterized to deeply understand the shear thinning. Our 

results present that the number of the direct contact structure of NPs gradually rises. 

However, the number of polymer-NP bridged structure is declined. This is further 

proved by the increase of the formation probability of the NP network and the decrease 

of the polymer-NP interaction energy. Finally, the relaxation time of the chain dynamics 

gradually decreases with the shear rate which is consistent with the shear viscosity. In 

summary, this work could provide a fundamental understanding on the shear thinning 

of PNCs on the molecular level. 
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