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 In this study a computer-aided approach to 

de novo design of chemical entities with drug-like prop-

erties against the SARS-CoV-2 Spike protein bound to 

ACE2 is presented. A structure-based de novo drug de-

sign tool  LIGANN was used to produce complementary 

ligand shapes to the SARS-CoV-2 Spike protein (6M0J). 

The obtained ligand structures - potential drug candi-

dates – were optimized and virtually screened. Hit lig-

ands were considered all that showed initial binding en-

ergy scores ≤ -9.0 kcal.mol
-1

 for the protein. These com-

pounds were tested for drug-likeness (Lipinski’s rule 

and BOILED Permeation Predictive Model). All satisfy-

ing the criteria were re-optimized (geometry & frequen-

cies) at the HF-3c
33

 level of theory and virtually 

screened against 6M0J. Molecular dynamics (MD) sim-

ulations were used to assess the structural stability of 

selected 6M0J/novel compound complexes. Synthetic 

pathways for selected compounds from commercially 

available starting materials are proposed. 

Computer-assisted solutions are gaining momentum 

as a vital method for transforming the process of study-

ing disease mechanisms of action and revolutionizing 

the understanding of how drugs bind to target molecules 

while exhibiting high specificity. New potential drug 

candidates are identified by in silico screening of small 

molecule libraries targeting specific receptors. Deep-

learning algorithms
1
 such as convolutional networks are 

used for predictions of binding profiles of recep-

tors/target compounds. A different approach is the de 

novo design of new inhibitors that meet the structural 

requirements needed to attach specific targets with pre-

cision. In this case, only structural data about target 

macromolecule's binding pocket is required, avoiding 
the bias of small molecule screening. Deep learning so-

lutions are again at the center of this cutting-edge preci-

sion strategy. The benefit is that drugs can be designed 

easily, with preliminary hit-to-lead results delivered in 

months, preventing unintended offset interactions.
2
  Re-

cently, potent inhibitors of discoidin domain receptor 1 

(DDR1), a kinase target implicated in fibrosis and other 

diseases were discovered in 21 days. Four compounds 

were active in biochemical assays, and two were vali-

dated in cell-based assays.
3
  

In the past four months, several pharmaceutical com-

panies have confirmed hugely promising trials of their  

Covid-19 vaccines.
4
 This novel coronavirus is the source 

of a severe pneumonia like illness Covid-19
5-6

 and has 

led to a worldwide pandemic with more than 

123,000,000 cases and 2,700,000 deaths reported so 

far.
7-12

  Despite the fact that these vaccines are promis-

ing, there is no assurance that they can cure all those 

who are vaccinated, necessitating the use of other thera-

pies. Antiviral drug discovery is therefore a top priority, 

despite the fact that it typically takes several years for 

new drugs to be developed, clinically tested, and ap-

proved. Finding already approved drugs with some effi-

cacy against similar types of viruses
13

 and testing their 

potency against SARS-CoV-2 using computational 

chemistry methods and virtual molecular docking
14-22

  

would be a successful strategy. The most effective of 

these drugs can then undergo clinical trials and approved. 

Researchers are attempting to repurpose a wide range of 

existing drugs, including HIV, HCV, HIV, and influenza 

medications, for COVID-19. Recently, daclatasvir and 

sofosbuvir, two antiviral drugs used to treat hepatitis C, 

have been linked to quicker recovery, decreased hospi-

talization, and increased survival in people with moder-

ate or serious COVID-19.
23

  

A step forward from computer-aided screening of 

small molecule libraries described above is the de novo  

design of new compounds that match the structural re-

quirements needed to bind specific binding pockets in 

target receptors. In previous studies compounds from 
small molecule libraries including FDA approved antivi-

ral drugs and lopinavir analogues in clinical trials were 

tested for their inhibitory properties towards the SARS-

CoV-2 Spike protein ACE2 (6M0J) using a virtual 



 2 

screening approach and computational chemistry meth-

ods.
21,22

 Among them eight compounds showed excel-

lent results – binding interactions between -9.0 to -11.3 

kcal.mol
-1

 - for use against the newly emerged strain of 

coronavirus.  

    In this study, a computer-aided approach to de novo 

design of chemical entities with drug-like properties 

against the SARS-CoV-2 Spike protein bound to ACE2 

(6M0J)
24

 is presented (Fig. 1). The present work has the 

following objectives: i) To obtain novel lead compounds 

that fit with precision the structural criteria required to 

bind 6M0J (Tables 1–2) using LIGANN a structure-

based drug design tool based on generative neural-

networks
25,26,27,28 

 ii) to select all compounds of step (i) 

that show initial binding affinities ≤ -9 kcal.mol
-1 

with 

6M0J after a fast “clean-up” structure optimization iii) 

To evaluate drug-likeness using the SwissADME tool
29

 

and remove compounds of step (ii) that do not obey 

Lipinski’s rule
30,31

 and fail in the Brain Or Intestinal Es-

timated permeation method
32

  iv) To select as lead com-

pounds all fulfilling the criteria of step (iii) and show 

final binding affinity ≤ -8 kcal.mol
-1

 with 6M0J after re-

optimization at the HF-3c
33

 level of theory and virtual 

screening  v) To propose plausible synthetic pathways 

for selected compounds of step (iv) from commercially 

available starting materials. 

It is known that the virus enters the host cell by bind-

ing of the viral spike glycoprotein to the host receptor, 

angiotensin converting enzyme 2 (ACE2)
34

 therefore 

(6M0J) seems to be a biologically meaningful receptor. 

 

 Ab initio molecular orbital calculations were carried 

out using the ORCA 4.2.1 quantum chemistry program 

package.
35,36,37

 The most stable optimized geometries 

and frequency calculations of the compounds studied 

were obtained from the HF-3c
33

 method. 

 The recent resolved three-dimensional crystal struc-

ture of SARS-CoV-2 Spike protein bound to angiotensin 

converting enzyme 2 (ACE2) (PDB ID: 6M0J)
24

 was 

retrieved from the Protein Data Bank with a resolution 

of 2.45 Å. Novel compounds were generated by 

LIGANN
27

 that fit with precision the binding pocket of 

the protein. The most stable optimized geometries were 

obtained as described above and were subjected to mo-

lecular docking simulation against the SARS-CoV-2 

Spike protein (PDB ID: 6M0J) using the AutoDock 

4.2/Autodock Vina
38

 and AutoDockFR
39

 softwares. The 
novel compounds were considered as ligands while the 

protein as macromolecule. It is well known that in com-

puter aided drug studies, binding affinity and modes of 

ligand with target protein can be predicted by molecular 

docking simulation.
40,41  In this analysis, flexible-

ligand:rigid-receptor docking was performed and accu-

rate docking conditions were selected. All hetero atoms 

and water molecules were eliminated before docking. 

The grid box mapping parameters for AutoDock 

4.2/Autodock Vina were chosen as follows: Box dimen-

sion (Å) x = 61.2777  y = 71.2021  z = 114.7924 and 

Center (Å) x = - 26.8720  y = 18.4654  z = -14.0310 

along x, y and z directions respectively. 

 
  

    Figure 1. Workflow for identification of potential inhibitors (ligands) 
against SARS-CoV-2 Spike protein bound to ACE2 (6M0J) (receptor) via 
de novo design of new compounds that fit, with precision, the structural 
criteria of the receptor. 

 

Compounds obtained from the structure-based drug 

design tool LIGANN and their initial computed binding 

affinities against 6M0J are shown in Table S1 (Supple-

mentary Material). The binding affinity values 

(kcal.mol
-1

 ) computed by AutoDock 4.2/Autodock Vi-

na .
38

 Compounds 1 - 10 that exhibited initial binding 

https://www.rcsb.org/
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affinities ≤ -9 kcal.mol
-1 

with 6M0J (Table 1) were test-

ed for drug-likeness and medicinal chemistry friendli-

ness using the SwissADME tool.
29

 Physicochemical 

descriptors as well as ADME parameters (Absorption, 

Distribution, Metabolism and Excretion) and pharmaco-

kinetic properties of these small molecules were predict-

ed. To be effective as a drug, a potent molecule must 

reach its target in the body in sufficient concentration 

and at a specific bioactive form, and stay there long 

enough for the expected biologic events to occur. It has 

been demonstrated that early estimation of ADME pa-

rameters in the initial phase reduces drastically the frac-

tion of pharmacokinetics-related failure in the clinical 

phases.
42

 Two key ADME parameters - the passive gas-

trointestinal absorption (HIA) and brain access (BBB) – 

for compounds 1 – 10  were predicted by the Swis-

sADME tool
29

 (Fig. 2). The yellow region is the physi-

cochemical space for highly probable BBB permeation 

while the white the physicochemical space for highly 

probable gastrointestinal HIA absorption. Both the yel-

low and the white regions are not mutually exclusive 

and the outside grey region stands for molecules with 

predicted low absorption and limited brain penetration. 

Two compounds 2 and 9 (Fig. 2) were predicted as not 

absorbed and not brain penetrant and they were exclud-

ed from further study. Compounds 3, 4 5, 8 and 10 (Fig. 

2) were predicted as passively crossing the BBB, but 

pumped-out from the brain (PGP+, blue dot) while 1, 6  

 

Figure 2. Evaluation of passive gastrointestinal absorption (HIA) and 
brain penetration (BBB) in function of the position of compounds 1 – 10  
in the WLOGP-versus-TPSA referential. Molecules in the  white region 
(1, 6 and 7) have the highest probability of being absorbed by the gas-
trointestinal tract, while those in the yellow region (3, 4, 5, 8, 10) have 
the highest probability to permeate to the brain. Compounds in the 
grey region (2 and 9) are predicted as not absorbed and not brain pene-
trant. 

 

and 7 well-absorbed but not accessing the brain and 

PGP+ (blue dot). Four ligands 3, 4, 5 and 7 were found 

also to obey  Lipinski’s rule
30,31

 of five showing zero 

violations while the rest show a maximum of two viola-

tions (Table 1 and Table S2 in Supplementary Material). 

         Compounds of Table 1 - except 2 and  9 that failed in 

the above mentioned drug-likeness tests - were re-

optimized at the HF-3c
33

 level of theory and their HOMO 

and LUMO energies, HOMO-LUMO energy gap values 

and nucleophilicity indices
43

 Ν were calculated from these 

values as shown in previous papers.
21,22

 The binding af-

finities - averages of ten independent trials - of these com-

pounds against 6M0J were computed by AutoDock 

4.2/Autodock Vina and AutoDockFR (Table 2).  

The results obtained show that best binding energies 

(< -9.0 kcal.mol
-1

) are observed in most cases for drugs 

that exhibit low nucleophilicity indices N (more electro-

philic compounds) (Table 2, AD Vina). The nucleo-

philicity index N encompasses the tendency of a nucleo-

phile to donate an extra amount of electron density. A 

plot of binding affinities vs. compound nucleophilicity 

indeces N (excluding outliers, compounds 7 and 10) 

showed excellent correlation (R
2
 = 0.979) (Fig. 3).   

 

    Figure 3. Binding affinities of compounds in Table 2 (except 7 and 10) vs. 
their nucleophilicity indeces (R2 = 0.979). 

 

The highest virtual screening scores to 6M0J among 

the inhibitors 1-10 were observed for 1, 8, 6 and 10 (-9.7, 

-9.4, -9.0, -9.0 kcal.mol
-1

 respectively Fig. 3 and Table 

2). The higher binding affinity observed for these com-

pounds against the receptor can be attributed mainly to 

non-covalent interactions. The formed ligand (com-

pound in Table 2) – protein/receptor (6M0J) complexes 

reveal that Pi-alkyl, Pi-Pi T-shaped, Pi-Pi stacked, con-

ventional hydrogen bonding and halogen bonds are able 

to increase the binding affinity and explain the differ-

ences in binding energies (Table I, Appendix A). It is 

well known that particularly hydrogen bonds < 2.3 Å are 

able to increase the binding affinity considerably and 

that halogen bonds have almost similar importance as 

hydrogen bonds in biological and chemical systems.
44,45
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Considerable hydrogen bonding was observed between 

the above compounds and the protein including hydro-

gen bonds < 2.3 Å (Fig.4- Fig.7). Docking interactions 

of  1 (Tables A1, 1 and 2) with 6M0J are shown in Fig. 4. 

Seven Pi-Alkyl with PHE40, TRP349, HIS378, PHE390, 

HIS401 and three alkyl interactions with ALA348, 

ARG393, LEU391 were observed.  Four hydrogen bon- 

 

    Figure 4. Docking interactions of compound 1 (Tables 1 & 2) with 
6M0J (expanded version in Appendix A). 

formed with ASP382, ASP350, ARG393, GLU208 with 

the latter < 2.3 Å. Compound 8 formed three Pi-Pi T-  

 

    Figure 5. Docking interactions of compound 8 (Tables 1 & 2) with 
6M0J (expanded version in Appendix A). 

Shaped bonds with the residues PHE40 and TRP349, 

two Pi-Sigma with HIS401 and HIS378 and a Pi-Alkyl  

with ARG393 (Fig. 5). Seven hydrogen bonds were 

formed with the residues ARG393, ASP382 (< 2.3 Å), 

TYR385 (< 2.3 Å) , ALA348. Two halogen bonds inter-

actions were evident with PHE390 and ARG393 (Fig. 5). 

The docked assembly of 10 with 6M0J consisted of two 

Pi-Alkyl interactions with ILE291 and LEU37, one Pi-Pi 

T-shaped with PHE438 and three hydrogen bond inter-

actions with SER409 and ASN290 (Fig. 6). It should be 

 

    Figure 6. Docking interactions of compound 10 (Tables 1 & 2) with 
6M0J (expanded version in Appendix A). 

mentioned that the relatively high affinity of 10 for the 

protein compared to 7, 4, 5 and 3 can be partly attributed  

 

    Figure 7. Docking interactions of compound 6 (Tables 1 & 2) with 
6M0J (expanded version in Appendix A). 

to its electrophilicity (lowest nucleophilicity index in 

Table 2). Compound 6 formed 10 hydrogen bonds with    
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TABLE 1: List of compounds (ligands) 1-16 docked against the SARS-CoV-2  spike protein 6M0J. 
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TABLE 1 (continued): List of compounds 1-16 (ligands) docked against the SARS-CoV-2  spike protein 6M0J. 

. 
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TABLE 2: Global reactivity descriptor, physicochemical, pharmacokinetic  and  binding affinity (kcal.mol-1) data of the new drug candidates  1 to 10 (ex-
cept 2 and 9) of  Table 1 against 6M0J . 

  

# 

 

Compound # 

in Table 1 

 

HOMO - LUMO 

Energy Gap (a.u) 

 

 

Molecular 

Formula  

 

 

Molecular 

Weight (amu)  

 

 

LogP   

 

TPSA  

(Å
2
) 

 

Nucleophilicity 

(N) 

 

    Binding  

    Affinity 

     (AD Vina) 

 

        Binding  

         Affinity 

       (AutoDockFR ) 

 

 

1 

 

            1 

 

 

0.5644 

 

C32H57N5O2 

 

 

543.83 

 

 

5.24 

 

77.99                     

 

0.1391 

 

          -9.7 

 

           -10.1 

 

2             8 0.4690 C32H35FN6O 

           

538.66 

 

4.40 66.29 0.1438               -9.4            -9.0  

  3            10 0.4816 C27H28BrN5 

          

 502.45 

 

         4.35   37.19 0.1237  -9.0            -8.1  

4 

 

            6 0.4482 C29H40N10O 

 

 544.69          3.26  113.92 0.1563  -9.0                         -9.2 

       

 

5             7 0.3978 C29H34N6S 

 

 498.69 

 

4.53 

 

74.21 

 

0.1853  -8.8 

 

           -9.1      

 

 

  6             4             0.4068 C25H27ClN6 

 

 446.98 3.74 60.08 0.1695  -8.7            -8.7      

7 

  

  8 

            5           0.4114 C26H29N5 

 

 411.54          4.56 45.98             0.1728          -8.6            -9.1 

 

 

            3 0.4250 C24H26ClN5 419.95          4.06 66.29           0.1778          -8.3 

 

          -9.5 
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    TABLE 3: Binding affinity data of known bioactive inhibitors 11 to 16  against 6M0J , that show Tanimoto similarity > 0.8 with the corresponding new drug 
candidates of Table 2 

         

       -
11.2 

 

    #        

                                    

Compound ID      Compound # 

Inhibitors I             (Table 1)                   

   (Table 1) 

                                                 

 

HOMO - LUMO 

Energy Gap (a.u) 

 

 

       Molecular 

       Formula  

           

 

   Binding Affinity     

(AD Vina) 

 (BA)I 

(kcal.mol
-1

) 

 

Compound # of 

similar inhibitor 

Inhibitors II 

 (Table 1) 

 

 

      

 

Binding Affinity               

(AD Vina)    

(BA)II 

(kcal.mol
-1

) 

      

   Binding           

Affinity 

Difference 

(BA)II-(BA)I 

    (kcal.mol
-1

) 

 

       -
11.3 

 

 

 1 

 

CID 949757 

 

            11 

 

              0.4068  

 

   C21H21N5  

 

           -9.3  

 

            5          

  

  -8.6                                     

        

           0.7 

 

 2 

 

CID 11998979  

     

            12 

 

              0.4200 

 

 C20H18Cl2N4  

 

         -9.3  

 

            3  

  

  -8.3 

        

           1.0 

 

  3 

 

 CID 44444338  

 

            13  

 

             0.3884  

 

   C22H23N5  

 

         -9.0 

 

            6  

  

   -9.0                                                

 

             0 

 

4 

 

  CID 693921   

 

            14                            

 

      0.3856  

 

   C21H16N4   

 

 

         -8.6  

 

            7  

  

  -8.8 

 

          -0.2  

 5 CID 145959679  

 

            15                                  0.5124    C29H42F2N6O            -9.3             8     -9.4           -0.1 

6 CID 118169484             16                              0.4812   C17H14BrF2N5            -8.7            10     -9.0           -0.3 
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Scheme 1: Plausible reaction pathways to the target compounds 10, 6 and 4 



 10 

 

 

Scheme 1 (continued) : Plausible reaction pathways to the target compounds 10, 6 and 4 
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the residues ARG393 (< 2.3 Å), ASP382 (<2.3 Å), 

TYR385 (<2.3 Å), PHE390, PRO346, GLU375, 

ASP350 and ALA348. Two Pi-Pi stacked interactions 

were observed with TRP349, two Pi-Alkyl with HIS378 

and PHE390 and two Alkyl interactions with LEU391 

and ALA348 (Fig. 7).   

The generated small molecules 1-10 in Table 1 (ex-

cept 2 and  9) were further examined regarding their 

similarity to known antiviral drugs. Similarity was 

measured using the Tanimoto equation
46, 47

 and the Pub-

Chem dictionary-based binary fingerprint. This finger-

print consists of series of chemical substructure keys 

that denote the presence or absence of a particular sub-

structure in a molecule. This similarity search
48

 assumes 

that all compounds  that are similar have similar biologi-

cal activity. Although this hypothesis is not always val-

id,
49

 quite often such similar compound sets are consid-

erably enriched with bioactives.
50

 Six molecules (3, 5-8 

and 10) were found to have Tanimoto similarity > 0.8 

with antiviral drugs in clinical trials (11- 16, Table 3) 

while three of them – 7, 8 and 10 - show in addition 

higher virtual screening score from the latter (Table 3). 

Similar compounds with Tanimoto similarity > 0.8 could 

not be found for 1 and 4.       

However, the major challenge faced in de novo design 

is the synthetic feasibility of the generated inhibitors. In 

an attempt to address this problem plausible synthetic 

pathways are proposed for compounds 4, 6 and 10 that 

show good pharmakokinetic properties and higher virtu-

al screening scores than Tanimoto similar compounds. 

Compound 10 can be synthesized in a two-step process
51

 

from the commercially available starting materials 2-(4-

bromophenyl)-1-methylpiperazine 17 and phenyl(1H-

1,2,4-triazol-5-yl)methanol 18 (Scheme 1a). Compound 

6 can be prepared by a three-step reaction process
52,53

 

from the readily available (1-((1,2,4-oxadiazol-3-

yl)methyl)piperidin-3-yl)methanol 20, 2-methyl-2-

(phenethylamino)propan-1-ol 22 and N-((1H-tetrazol-5-

yl)methyl)-5-methylpyridin-2-amine 24 as shown in 

Scheme 1b. The two bromo N-arylation reactions de-

picted in Scheme 1c can be used for the preparation of 

inhibitor 4 from 2-bromo-7-chloroquinoline 25, (2-

bromophenyl)methanamine 26 and 1-ethyl-2-(1H-

imidazol-2-yl)piperazine  29.  

An additional but equally important challenge faced 

in the de novo design is the stability of the formed pro-

tein-novel compound complexes. The docking interac-

tions diagrams (Figs. 4-7) reveal that Pi-Alkyl, Pi-Pi 

stacked interactions and hydrogen and halogen bonds 
are able to increase the binding affinity and explain dif-

ferences in binding energies.  Molecular dynamics (MD) 

simulations were further used to assess structural stabil-

ity of the 6M0J and 6, 7 and 8 complexes respectively. 

These structures were subjected to fully solvated atomis-

tic MD simulations using VMD
54,55

 and NAMD.
56

 MD 

simulations were conducted at 310 K for 40 ns. Struc-

tural fluctuations of protein and the ligands are indicated 

by variation in the root mean square variation (RMSD). 

The RMSD of the free protein remained stable after 8 ns  

at 2 Å (Fig. 8). The RMSD of the 6M0J and 6 complex 

initially increased for about 8 ns and then fluctuated be-

tween 2.0 and 2.25 Å  while that of  7 initially increased 

for about 14 ns and then slightly fluctuated around 2.1 Å. 

As shown in Fig. 8 the RMSD of the 6M0J and  8 com-

plex was balanced after 16 ns and then fluctuated around 

2.0 Å.  MD analysis revealed that the studied complexes 

have shown structural stability during the runs.   

 

 

Figure 8.  MD simulation RMSD plots (40 ns, 310 K) of free 6M0J and of 
complexes of 6M0J with compounds 6-8 (Tables 1 & 2). 

As shown in Fig. 8 the RMSD of the 6M0J and  8 

complex was balanced after 16 ns and then fluctuated 

around 2.0 Å.  The MD analysis revealed that the stud-

ied complexes have shown structural stability during the 

runs.    

 

 Computer-aided approaches to de novo drug design 

play an increasingly important role in the development 

of novel drugs. This approach is considered a step for-

ward from in silico screening of small molecule libraries 

since the new candidate compounds fit with precision 

the structural criteria required to bind specific targets. 
The advantage is that novel drugs can be designed 

quickly saving the limited resources, avoiding unwanted 

offset interactions, with results delivered in months.  In 

this study a computer-aided approach to de novo design 

https://pubchem.ncbi.nlm.nih.gov/help.html#simtanimoto
https://pubchem.ncbi.nlm.nih.gov/help.html#fingerprints
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of chemical entities with drug-like properties against the 

SARS-CoV-2 Spike protein bound to ACE2 is presented. 

A structure-based de novo drug design tool LIGANN 

was used to produce complementary ligand shapes to the 

SARS-CoV-2 Spike protein (6M0J). The obtained ligand 

structures - potential drug candidates – were optimized 

and virtually screened. Hit ligands were considered all 

that showed initial binding energy scores ≤ -9.0 

kcal.mol
-1

 for the protein. These compounds 1-10 were 

in silico tested for drug-likeness and two of them ex-

cluded from further study because they were predicted 

as not absorbed and not brain penetrant. All satisfying 

the criteria were re-optimized (geometry & frequencies) 

at the HF-3c
33

  level of theory and virtually screened 

against 6M0J. The binding affinities - averages of ten 

independent trials - of these compounds against 6M0J 

were computed by AutoDock 4.2 / Autodock Vina  and 

AutoDockFR. The results obtained show that best bind-

ing energies (< -9.0 kcal.mol
-1

) are observed in most 

cases for drugs that exhibit among others low nucleo-

philicity indices N (more electrophilic compounds). The 

docking interactions diagrams (Figs. 4-7) revealed that 

Pi-Alkyl, Pi-Pi stacked interactions and hydrogen and 

halogen bonds were able to increase the binding affinity 

and explain differences in binding energies. Molecular 

dynamics (MD) simulations were further used to assess 

the structural stability of the 6M0J and 6, 7 and 8 com-

plexes respectively. The MD analysis revealed that the 

studied complexes have shown structural stability during 

the runs. Furthermore, the major challenge faced in de 

novo design the synthetic feasibility of the generated 

inhibitors was addressed by proposing plausible two or 

three-step synthetic pathways for compounds 4, 6 and 

10. The current results suggest that computer aided drug 

design approaches relying on receptor structure-based 

methodologies could be used with success to predict 

new more potent antiviral agents against the SARS-

CoV-2. 
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Figure 4 (expanded version): Docking interactions of compound 1 (Tables 1 & 2) with 6M0J  
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                                  Figure 5 (expanded version):  Docking interactions of compound 8 (Tables 1 & 2) with 6M0J. 
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                                  Figure 6 (expanded version): Docking interactions of compound 10 (Tables 1 & 2) with 6M0J. 
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Figure 7 (expanded version). Docking interactions of compound 6 (Tables 1 & 2) with 6M0J. 
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TABLE I: SARS-CoV-2 Spike protein (6M0J) – ligand (compound in Table 2) docking interactions and corresponding binding scores (kcal.mol-1). 

 

 
 

# 
 

Compound # 
Docking 

Score 
(kcal.mol-1) 

 
Distance (Å) 

 
Category 

 
Types 

 
From 

 
From Chemistry 

 
To 

 
To Chemistry 

1 1 -9.7 2.62926 
2.30533 
3.58984 
4.9379 

5.06948 
4.5719 

4.97574 
4.41719 
4.18809 
4.35845 
4.95142 
4.81831 
4.09234 

H-Bond 
H-Bond 
H-Bond 

Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Alkyl 
Alkyl 
Alkyl 

Pi-Alkyl 
Pi-Alkyl 
Pi-Alkyl 
Pi-Alkyl 
Pi-Alkyl 
Pi-Alkyl 
Pi-Alkyl 

:UNL1:H 
:UNL1:H 
:UNL1:C 
:UNL1:C 

A:ALA348 
A:ARG393 
A:PHE40 
A:TRP349 
A:TRP349 
A:HIS378 
A:PHE390 
A:PHE390 
A:HIS401 

H-Donor 
H-Donor 
H-Donor 

Alkyl 
Alkyl 
Alkyl 

Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

A:ASP382:OD1 
A:ASP350:OD2 

A:ARG393:O 
A:LEU391 

:UNL1 
:UNL1 
:UNL1 
:UNL1 
:UNL1 
:UNL1 
:UNL1 

:UNL1:C 
:UNL1 

H-Acceptor 
H-Acceptor 
H-Acceptor 

Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 

 
 

  2.01308 H-Bond Conventional H-Bond A:MOL0:H H-Donor A:GLU208:O H-Acceptor 

2 8 -9.4 2.7163 
2.23943 
2.14154 
2.91278 
3.44558 
3.26784 
3.53411 
3.39041 
3.14422 
4.30012 
3.84734 
3.55507 
5.93183 
5.15919 
5.26407 
4.97268 
4.63497 

H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
Halogen 
Halogen 

Electrostatic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

 

Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Carbon H-Bond 
Carbon H-Bond 

Halogen (Fluorine) 
Halogen (Fluorine) 

Pi-Anion 
Pi-Sigma 
Pi-Sigma 

Pi-Pi T-shaped 
Pi-Pi T-shaped 
Pi-Pi T-shaped 
Pi-Pi T-shaped 

Pi-Alkyl 

:UNL1:HN 
:UNL1:HN 
:UNL1:HN 

A:ALA348:N 
:UNL1:C 
:UNL1:C 
:UNL1:C 

A:PHE390:O 
A:ARG393:O 

A:ASP350:OD2 
:UNL1:C 
:UNL1:C 
:UNL1 
:UNL1 
:UNL1 

A:TRP349 
:UNL1 

H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 

Halogen Acceptor 
Halogen Acceptor 

Negative 
C-H 
C-H 

Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

A:ARG393:O 
A:ASP382:OD1 
A:TYR385:OH 

:UNL1:O 
A:ALA348:O 

A:ASP382:OD1 
A:ASP382:OD2 

:UNL1:F 
:UNL1:F 
:UNL1 

A:HIS401 
A:HIS378 

:UNL1 
A:PHE40 
A:TRP349 

:UNL1 
A:ARG393 

H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 

Halogen 
Halogen 

Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

Alkyl 

3 10 -9.0 3.55862 
3.53055 
3.64458 
3.97662 
4.71784 
5.41022 
5.20509 

 

H-Bond 
H-Bond 

Electrostatic 
H-Bond 

Hydrophobic 
Hydrophobic 
Hydrophobic 

 

Carbon H-Bond 
Carbon H-Bond 

Pi-Anion 
Pi-Donor H-Bond 

Pi-Pi T-shaped 
Pi-Alkyl 
Pi-Alkyl 

:UNL1:C 
:UNL1:C 

A:GLU406:OE1 
A:SER409:OG 

:UNL1 
:UNL1 
:UNL1 

 

H-Donor 
H-Donor 
Negative 
H-Donor 

Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

A:SER409:O 
A:ASN290:OD1 

:UNL1 
:UNL1 

A:PHE438 
A:ILE291 
A:LEU370 

H-Acceptor 
H-Acceptor 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

Alkyl 
Alkyl 
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# 

 
Compound # 

Docking 
Score 

(kcal.mol-1) 

 
Distance (Å) 

 
Category 

 
Types 

 
From 

 
From Chemistry 

 
To 

 
To Chemistry 

4 6 -9.0 2.48035 
2.19986 
2.00752 
2.28969 
2.80987 
2.4064 

2.63794 
2.3132 

3.66465 
3.22274 
3.36754 
3.82779 
3.9235 

4.10365 
5.00716 
4.89887 
5.40014 
5.19273 
5.26567 

H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 

Electrostatic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Carbon H-Bond 

Pi-Anion 
Pi-Sigma 
Pi-Sigma 

Pi-Pi Stacked 
Pi-Pi Stacked 

Alkyl 
Alkyl 

Pi-Alkyl 
Pi-Alkyl 

:UNL1:HN 
:UNL1:HN 
:UNL1:HN 
:UNL1:H 

:UNL1:HN 
:UNL1:HN 
:UNL1:HN 
:UNL1:HN 
:UNL1:C 
:UNL1:C 

A:ASP350:OD2 
:UNL1:C 
:UNL1:C 
:UNL1 

A:TRP349 
:UNL1:C 

A:ALA348 
A:HIS378 
A:PHE390 

H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 
Negative 

C-H 
C-H 

Pi-Orbitals 
Pi-Orbitals 

Alkyl 
Alkyl 

Pi-Orbitals 
Pi-Orbitals 

A:ARG393:O 
A:ASP382:OD1 
A:TYR385:OH 
A:ARG393:O 
A:PHE390:O 
A:ARG393:O 
A:PRO346:O 

A:GLU375:OE1 
A:ASP350:O 
A:ALA348:O 

:UNL1 
:UNL1 

A:HIS401 
A:TRP349 

:UNL1 
A:LEU391 

:UNL1 
:UNL1 

:UNL1:C 

H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

Alkyl 
Alkyl 
Alkyl 
Alkyl 

          

5             7 -8.8 3.72677 
3.60879 
3.39852 
3.39517 
4.11334 
4.85585 

H-Bond 
H-Bond 
H-Bond 
H-Bond 

Hydrophobic 
Hydrophobic 

Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Carbon H-Bond 

Pi-Pi Stacked 
Pi-Pi T-shaped 

:UNL1:S 
:UNL1:S 
:UNL1:C 
:UNL1:C 
:UNL1 
:UNL1 

H-Donor 
H-Donor 
H-Donor 
H-Donor 

Pi-Orbitals 
Pi-Orbitals 

A:TYR385:OH 
A:ASN394:OD1 
A:ASP382:OD1 
A:ASP382:OD2 

A:PHE40 
A:PHE40 

H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
Pi-Orbitals 
Pi-Orbitals 

          

6 4 -8.7 2.51326 
2.75715 
3.14176 
3.89575 
3.66257 
4.1355 

5.59457 
4.18999 
5.03736 
4.11736 
4.58504 
3.89614 
5.11088 
5.46948 
5.48879 

H-Bond 
H-Bond 
H-Bond 

Electrostatic 
H-Bond 
H-Bond 

Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Pi-Anion 

Pi-Donor H-Bond 
Pi-Donor H-Bond 

Pi-Pi T-shaped 
Amide-Pi Stacked 

Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 

Pi-Alkyl 
Pi-Alkyl 

:UNL1:HN 
:UNL1:H 
:UNL1:C 

A:GLU208:OE1 
A:GLN98:NE2 

A:GLN102:NE2 
:UNL1 

A:GLY205:C,O;ASP206:N 
:UNL1:C 
:UNL1:C 
:UNL1:CL 
:UNL1:CL 
A:LYS562 

:UNL1 
:UNL1 

H-Donor 
H-Donor 
H-Donor 
Negative 
H-Donor 
H-Donor 

Pi-Orbitals 
Amide 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 

Pi-Orbitals 
Pi-Orbitals 

A:GLU208:O 
A:GLY205:O 
A:GLY205:O 

:UNL1 
:UNL1 
:UNL1 

A:TYR202 
:UNL1 

A:LEU95 
A:ALA99 
A:LEU95 

A:VAL209 
:UNL1 

A:LEU95 
A:LYS562 

H-Acceptor 
H-Acceptor 
H-Acceptor 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
Alkyl 
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# 

 
Compound # 

Docking 
Score 

(kcal.mol-1) 

 
Distance (Å) 

 
Category 

 
Types 

 
From 

 
From Chemistry 

 
To 

 
To Chemistry 

 7 5 -8.6 2.42488 
2.45729 
3.5969 

3.64841 
3.45573 
3.79732 
3.74991 
4.20209 
4.72549 

H-Bond 
H-Bond 
H-Bond 
H-Bond 
H-Bond 

Hydrophobic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Carbon H-Bond 
Carbon H-Bond 

Pi-Sigma 
Pi-Pi Stacked 

Amide-Pi Stacked 
Amide-Pi Stacked 

:UNL1:HN 
:UNL1:HN 
:UNL1:C 
:UNL1:C 
:UNL1:C 

A:ALA99:CB 
:UNL1 

A:GLN98:C,O;ALA99:N 
A:GLN101:C,O;GLN102:N 

H-Donor 
H-Donor 
H-Donor 
H-Donor 
H-Donor 

C-H 
Pi-Orbitals 

Amide 
Amide 

A:GLN98:O 
A:TYR196:OH 
A:LYS562:O 
A:GLU564:O 
A:ALA396:O 

:UNL1 
:UNL1 
:UNL1 
:UNL1 

H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 
Pi-Orbitals 

          

8 3 -8.3 2.62991 
2.96802 
3.2265 

3.67828 
4.41485 
3.78984 
4.98016 
5.10147 

H-Bond 
H-Bond 
H-Bond 
H-Bond 

Electrostatic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

Conventional H-Bond 
Conventional H-Bond 

Carbon H-Bond 
Carbon H-Bond 

Pi-Cation 
Pi-Pi Stacked 

Alkyl 
Pi-Alkyl 

:UNL1:HN 
:UNL1:HN 
:UNL1:C 
:UNL1:C 

A:LYS562:NZ 
:UNL1 

:UNL1:CL 
:UNL1 

H-Donor 
H-Donor 
H-Donor 
H-Donor 
Positive 

Pi-Orbitals 
Alkyl 

Pi-Orbitals 

A:TYR202:O 
A:ASP206:OD1 
A:ASP206:OD1 

A:TRP203:O 
:UNL1 
:UNL1 

A:LEU95 
A:ALA99 

H-Acceptor 
H-Acceptor 
H-Acceptor 
H-Acceptor 
Pi-Orbitals 
Pi-Orbitals 

Alkyl 
Alkyl 

          

          

          

          

          

          

          

          

          

          

          

          

          

 


