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Abstract

Metal-organic frameworks (MOFs) are diverse in colour owing to a large variety

of molecular structures. Here we report electrochromism of M-MOF-74 (M=Mg, Mn,

Co or Zn), a honeycomb nano-framework in which hexagonally packed one-dimensional

arrays of metal cations are coordinated with 2,5-Dihydroxyterephthalic acid linker. Ra-

man spectroscopy upon electrochemical doping combined with density functional theory

calculations reveals redox reactions of the linker while the metal cations stay divalent as

probed by X-ray photoemission spectroscopy. Excellent adhesion of the MOFs to glass

allows synthesis of quality thin films to be implemented into electrochromic devices

that exhibit promising colour contrast and durability.

Introduction

The electrochromic effect, that is material’s colour change upon faradaic charge transfer,

is known to occur in various inorganic (transition metal-oxides ), organic (molecules [1] and

conducting polymers [2, 3, 4]), and organic-inorganic hybrid materials (coordination polymers

[5] and metal complexes[6][7]). Metal oxides are the most studied and they exhibit relatively

high durability, but their synthesis requires expensive vacuum deposition systems. Organic or

hybrid materials have the advantage of inexpensive production, but suffer from low stability

and durability. In metal-oxides and metal complexes, reversible electrical switching of the

metal’s oxidation state accompanies colour modulations.

1



Coordination polymers, known as metal-organic frameworks (MOFs)[8][9], are naturally

colourful owing to a variety of metal-ligand combinations available. Their open nanometric

pores ensure effective doping as every active site can be accessed by electrolyte molecules with

minimal structural deformation. To date, several electrochromic MOFs were tailored based

on known electrochromic molecules such as naphthalene diimide [10][11][12][13][14][15][16] as

linkers that function as chromophores in the framework [17].

Generally, the fact that many MOFs change their colour reversibly upon solvent ex-

change or sorption of various molecules suggests their potential as electrochromic materials

[18][19][20][21][22][23][24], specifically those having open-metal sites that can capture ions

[25][26][27] or molecules [28][29][30].

Electrochromic effects reported on MOFs with non-electrochromic linkers support the im-

portance of the role of metal ions [31]. Two-dimensional coordination nanosheets (CONASH)

with iron or cobalt were synthesised to exhibit electrochromic effects that were attributed

to the redox reaction of iron or cobalt as in bis(terpyridine)iron or bis(terpyridine)cobalt

complex wires [32].

MOF-74, also known as CPO-27, M2(dhtp), or M2(dobdc) where M is divalent Mg, Mn,

Fe, Co, Ni, or Zn, and dhtp (or dobdc) is tetravalent 2,5-dihydroxyterephthalic acid (2,5-

dioxido-1,4-benzenedicarboxylate), is a family of MOFs that was extensively studied for gas

sorption as the densely packed open metal sites are expected to interact effectively with

gaseous molecules [33][34][29][26][35]. Among them, Zn-MOF-74 was reported to be elec-

trochromic, but no mechanism for this effect was suggested [31]. Co-MOF-74 is reportedly

redox-active as an anode material for lithium-ion batteries [36]. Stoichiometric oxidation

of Mn-2(2,5-dioxidoterephthalate) (Mn-MOF-74) was demonstrated by chlorination of man-

ganese cations with a mild oxidation agent, iodobenzene dichloride (PhICl2) [26], as well as

by fluorination and doping with TCNQ[37][38].

In the present work, we synthesize high quality thin films of M-MOF-74 (M = Mg, Mn,

Co, or Zn) directly on fluorine-doped tin oxide (FTO)-coated glass plates. We demonstrate

that the colour of all these films changes from ochre to brown upon cathodic electrochemical

doping. The electrochromism observed universally for this family of MOFs with the least

to the most redox-active transition metals suggests that the linker is redox active. Among
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them, Mn-MOF-74 with the redox-active Mn2+ is the best suited material for a deeper study

in which the origin of the redox reaction can be identified. In-situ Raman spectroelectro-

chemistry on Mn-MOF-74 reveals a redox reaction of the dhtp linker as the cause of the

electrochromism, that is in line with the divalent Mn state unchanged upon solid-state dop-

ing using an ionic liquid as probed by X-ray photoemission spectroscopy. The strong C=O

stretching mode of the dhtp emerging upon doping is reproduced by density functional theory

calculations on a model electron-doped dhtp system. Finally, the scalable synthesis method

utilizing excellent adhesion of the MOFs on FTO-coated glass plates allows fabrication of

cathodic electrochromic devices with high durability and colour contrast as demonstrated

with Mn-MOF-74.

Results and discussion

Cyclic voltammetry of the M-MOF-74 (M = Mg, Mn, Co or Zn) thin film prepared on FTO-

coated glass is performed in 0.2M LiClO4 acetonitrile electrolyte solution in the homemade

electrochemical cell, as shown in Fig. 1. It is shown that the colour of M-MOF-74 thin films

on the FTO-coated glass turns dark upon electrochemical doping with positive biasing as

excess ClO−
4 anions neutralise the charge of the M-MOF-74 working electrode. The same

colour change has also been observed with other electrolyte solutions such as KCl in water

and 1M of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) in acetonitrile (see

SI). The corresponding cyclic voltammogram at a scan rate of 0.1 Vs−1 in the bias range

between -0.2 and 1.0 eV exhibits reproducibly broad redox peaks coinciding with the colour

change.

Fig. 2 shows that the peak current versus square root of the scan rate follows a linear

function, demonstrating that the redox process is purely diffusion-controlled. From the fit to

Randles–Sevcik equation we get a diffusion coefficient of ∼ 4.3 × 10−10 cm2s−1. The specific

capacity estimated from the 0.01 Vs−1 data reaches 29 Cg−1 or 8.0 mAhg−1 corresponding

to 0.095e per M2(dhtp) (see SI).

Spectroelectrochemistry is a powerful tool for elucidating the nature of the electrochromism

[39]. The optical absorption spectra of the Mn-MOF-74 film upon electrochemical doping
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are plotted in Fig. 2c. The colour change can be associated with an optical absorption peak

at 490 nm emerging upon positive biasing. Further information on the charge state of the

framework is gained from Raman spectroelectrochemistry. Fig. 3a shows the Raman spectra

of the Mn-MOF-74 film measured at a laser wavelength of 514.5 nm upon positive biasing

in 0.2M LiClO4 acetonitrile electrolyte solution. The spectra at voltages up to 0.4 V ex-

hibit multiple spectral features including three prominent peaks at Raman frequencies of

560, 1284, 1403 cm−1, indicated by the dashed black lines, associated with the C-H bending

of the benzene ring, C=O stretching and O-C-O symmetric stretching modes of the dhtpδ0−

ligand, respectively, where δ0(tentatively 4) denotes the valency of the dhtp in non-doped

Mn-MOF-74. Upon biasing at higher voltages, all three peaks diminish and multiple new

peaks emerge at frequencies highlighted by the dashed red lines. The most prominent peak

located at 1625 cm−1 was previously observed upon oxidation of the Mn-MOF-74 by fluori-

nation as well as by doping with TCNQ, and can be associated with the ring C=O stretching

mode of the divalent dhtp2− ligand, meaning that the framework’s linker is stoichiometrically

doped [38]. This is also in agreement with the previously reported IR stretching mode of

carbonyle group observed in chlorinated Mn-MOF-74 [26].

Here, further insight into the charge state of the doped dhtp can be given by density

functional theory calculations. Figure 3c compares the Fourier transform Raman spectrum

of neutral dhtp0 with our density functional theory result. Despite the use of the local

density approximation, agreement between experiment and theory is satisfactory for judging

the stoichimetric valency. As calculatons of phonon modes of M-MOF-74 whose unit cell

contains 164 atoms are not feasible, we model a compact system with a dhtp sandwitched

by two tetrafluoroborate (BF−
4 ) anions (see the optimized structure in SI). The charge state

of the dhtp estimated by the Bader analysis is -1.46. Fig.3b shows the Raman lines of

this [dhtp]1.46−[2BF4]
1.46−. The most prominent line located at 1653 cm−1 is inline with

the emerging ring C=O peak of the dhtp upon electrochemical doping. This supports the

trivalent dhtp, i.e. δ = 2, as claimed previously in the doped Mn-MOF-74 materials[38, 26].

Identifying the oxidation state of manganese upon electrochemical doping is challenging,

but the electrochemically-doped state of the Mn-MOF-74 can also be sustained to some

extent by fast drying the Mn-MOF-film immediately after positive biasing in 0.2M LiClO4
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acetonitrile electrolyte solution. Figure 4a shows the Raman spectrum of the Mn-MOF-74

film that was biased at 0.4V, then taken out and dried in air. As compared with the spectrum

of the non-doped Mn-MOF-74 film, the peak emerging at a frequency of 1611 cm−1 indicated

by the dashed red line is consistent with the C=O stretching mode of the dhtpδ− observed

upon electrochemical doping in Fig. 3, meaning that the dried films are still dominantly

doped with ClO4− anion.

These doped solid films allow X-ray photoemission spectroscopy (XPS) analysis of the

oxidation state of the manganese ion in the framework (see SI for further details). Figure 4b

show the XP spectra of the Mn 3s and 2p photoelectrons for the doped and non-doped Mn-

MOF-74 films. The differenece in binding energy between the resolved two 3s peaks, 7S and

5S, located at binding energies of approximately 84 and 90 eV, respectively, originate from

the exchange coupling between the 3s core hole and the 3d electrons in the photoemission

final state. This exchange splitting energy is known to decrease proportionally as the valence

number of manganese increases [40, 41]. Despite the difference in doping level, the exchange

splitting energy for both samples is approximately 6 eV, indicating that the oxidation state

of manganese stays divalent, i.e. Mn2+. Fig. 4b shows the Mn 2p XPS spectra of both doped

and non-doped Mn-MOF-74 exhibiting the Mn 2p3/2 major peak located at 641.7 eV and

the shake up satellite at 646.3 eV, both typical for Mn2+ [42, 41, 43] These XPS results are

in line with the previously reported effective magnetic moment corresponding to a half filled

Mn2+ state unchanged upon chlorination of Mn-MOF 74 [26, 44].

Here, the combined Raman and XPS analysis has revealed that the redox reaction of the

dhtp linker is responsible for the colour change of the framework upon positive electrochemical

doping.

Finally, towards optoelectronic applications, a Mn-MOF-74 film synthesised onto a FTO-

coated glass is encapsulated in an electrochromic device together with 0.2M LiClO4 acetoni-

trile electrolyte solution, see Fig. 5. The colour of the MOF device changes reversibly upon

alternating positive and negative biasing, see the pictures of the device being biased at -3 V

and 5 V in Fig. 5 as well as a video in the SI. The corresponding chronoamperogram in Fig.

5 exhibits its performance sustained over 100 cycles. The device reaches a charge of ca. 9

mC upon biasing at 5V for 10 seconds and -8 mC at -3V for 10 seconds, that are reduced to
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52 % and 53 %, respectively, after 100 cycles, yet the electrochromic effect is sustainable for

further cycling.

Conclusion

Electrochemical doping is a powerful technique to alter physical properties of solid states.

We have demonstrated that the M-MOF-74 (M = Mg, Mn, Co, or Zn) thin film synthesised

directly on the transparent electrode exhibit electrochromism that originates from the redox

reaction of 2,5-Dihydroxyterephthalic acid liker while the metal oxidation state stays diva-

lent. The electrochromic device fabricated based on the Mn-MOF-74 thin film has shown

its promising performance and stability. Provided that all densely-packed redox-active sites

are principally accessible throughout the nano-framework of a large volume, electrochromic

MOFs of a large variety could serve as viable alternatives to some of the common elec-

trochromic materials.
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Figure 1: Pictures of thin films of M-MOF-74 (M = Mg, Mn, Co and Zn in the order from

the top to the bottom) on FTO-coated glass plates biased at -0.2 V (left) and 1.0 V (center)

in 0.2M LiClO4 acetonitrile electrolyte solution and corresponding cyclic voltammograms

(right).
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Figure 2: a) Cyclic voltammograms of a Mn-MOF-74 measured in 0.2M LiClO4 acetonitrile

electrolyte solution at scan rates of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 and 1.0 V/s. b) The peak

current vs square root of scan rate following a linear function. c) UV/Vis spectra of Mn-MOF-

74 biased at stepwise positive biasing up to 1.0 eV in 0.2M LiClO4 acetonitrile electrolyte

solution.
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Figure 3: a. Raman spectra of Mn-MOF-74 biased at stepwise basing from -0.2 V to

1.0 eV in 0.2M LiClO4 acetonitrile electrolyte solution, measured at a laser energy of 515 nm.

The asterisks indicates the peaks of Acetonitrile (MeCN). The cirle indicates the peak of

stray light. b. Theoretical Raman lines of [dhtp]1.46−[2BF4]
1.46+ calculated based on the

density functional perturbation theory. c. FT Raman spectrum of dhtp measured at a laser

wavelength of 1064 nm. The vertical bars are theoretical Raman lines of [dhtp]0.
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Figure 4: a) Raman (a) Mn 3s photoemission (b) and Mn 2p photoemission (c) spectra of

doped and non-doped Mn-MOF-74. The overlapping spectral features were resolved into in-

dividual peaks using the damped non-linear least squares method after subtraction of Shirley

background using Gaussian-Lorentzian line shape.
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Figure 5: a) A diagram of the electrochromic device. Layer 1 on which a MOF film is

deposited on, and layer 2 and 3 are glued together encapsulating electrolyte. b) Mn-MOF-

74-based electrochromic device encapsulating 0.2M LiClO4 acetonitrile electrolyte solution

biased at -3 V. c) Mn-MOF-74-based electrochromic device encapsulating 0.2M LiClO4 ace-

tonitrile electrolyte solution biased at +5 V. d) The inset shows the chronoamperogram upon

bias switching between -3 V and 5 V at 95 -100 cycles. The corresponding maximum charge

accumulated in the device upon biasing at -3 V and 5 V for 10 seconds. e) Cyclic voltammo-

gram of the Mn-MOF-74-based electrochromic device at a scan rate of 0.1 V/s in the bias

range between -3 V and 5 V.
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