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Abstract 
Chemical compounds can be identified through a graphical depiction, a suitable string 
representation, or a chemical name. A universally accepted naming scheme for chemistry was 
established by the International Union of Pure and Applied Chemistry (IUPAC) based on a set of 
rules. Due to the complexity of this rule set a correct chemical name assignment remains 
challenging for human beings and there are only a few rule-based cheminformatics toolkits 
available that support this task in an automated manner.  
 
Here we present STOUT (SMILES-TO-IUPAC-name translator), a deep-learning neural machine 
translation approach to generate the IUPAC name for a given molecule from its SMILES string as 
well as the reverse translation, i.e., predicting the SMILES string from the IUPAC name. The open 
system demonstrates a test accuracy of about 90% correct predictions, also incorrect predictions 
show a remarkable similarity between true and predicted compounds. 
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Introduction 
Assigning names to chemical compounds so that an author can refer to them in the text of a 
scientific article, book or a patent has a long history. In the early days and even still today, such 
names were often chosen based on physicochemical or perceptible properties, but also named 
after species, people, named after fictional characters, related to sex, bodily functions, death and 
decay, religion or legend, or other [1]. Usually, this makes it impossible to conclude from the name 
to the chemical structure of the compound. To overcome this dilemma, the International Union of 
Pure and Applied Chemistry (IUPAC) established a set of rules and guidelines for chemical 
nomenclature [2–5] where the systematic name can be generated from the structure and 
substructures of the chemical compound and the structure of the compound can be regenerated 
based on the name. Often, more than one systematic IUPAC name can be generated for the 
same compound. In their current draft of the Blue Book, the IUPAC therefore introduced the 
IUPAC preferred name, preferring one of the possible names over all others.  
 
Other types of string representations of molecules, such as SMILES [6], InChI [7], and SMARTS 
[8] are more concise forms of line representations. These are designed to be machine-readable, 
they are in principle also human-readable, and have been incorporated into many major open-
source and proprietary cheminformatics toolkits. They are not commonly used in text to 
denominate chemical compounds for the purpose of recognition by human readers. 
 
IUPAC name generation, due to its algorithmic complexity and the large set of rules, is missing in 
many cheminformatics toolkits in general. For a human, IUPAC name generation for more than a 
handful of molecules is cumbersome. People therefore resort to the few available automatic tools 
for IUPAC name generation. 
 
Among the available and reliable solutions is the “molconvert” software, a command-line program 
in Marvin Suite 20.15 from ChemAxon (https://www.chemaxon.com) [9]. It is available for 
researchers under an academic license. Open-source programs such as the Chemistry 
Development Kit (CDK) [10], RDKit [11], or Open Babel [12] do not (yet) provide any algorithms 
that can automate the process of IUPAC naming for molecules. 
 
With this work we report a proof-of-concept application of Neural Machine Translation (NMT) for 
the conversion of machine-readable chemical line notations into IUPAC names and back. The 
large training set was generated with ChemAxon’s molconvert software and we would like to 
emphasise that this work would not have been possible without the generous offer by ChemAxon 
for the academic scientific community to use the software for free. We also like to point out that 
the purpose of this work is not to make ChemAxon’s tool obsolete. As a deterministic tool, it will 
continue to be the first choice for practical naming tasks in databases.  
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For the work presented here, we were inspired by Google’s multiple NMT models and came up 
with the idea to build a SMILES-TO-IUPAC-name translator called STOUT. STOUT was 
developed based on language translation and language understanding. We treated the two 
chemical representations as two different languages - each SMILES string and corresponding 
IUPAC name was treated as two different sentences that have the same meaning in reality.  
 
All these language models can only achieve greater than 90% accuracy with sufficient data to 
train them on. The majority of state-of-the-art language translation models are trained on millions 
of words and sentences to achieve such high levels of accuracy. Moreover, to train such large 
models in an adequate amount of time dedicated and powerful machine learning hardware is 
required. In this work, we report substantially shortened training times for our models using 
Google’s Tensor Processing Units (TPU). 

Methods 
Using deep machine learning methods such as NMT for SMILES-to-IUPAC-name translation is a 
completely data-driven task so that high quality data from a reliable source is mandatory. In this 
work, datasets were created for SMILES-to-IUPAC-name translation as well as for IUPAC-name-
to-SMILES translation respectively. 

Data 
All molecules were obtained from Pubchem [13], one of the openly available large, small molecule 
databases, where the entire PubChem database was downloaded from its FTP site in SDF format. 
Using the CDK, explicit hydrogens were removed from the molecules and their topological 
structures were converted to SMILES strings. The obtained 111 million molecules were filtered 
according to the rule set of our previous DECIMER work [14], i.e., molecules must 
 

● have a molecular weight of fewer than 1500 Daltons, 
● not possess any counter ions, 
● contain only C, H, O, N, P, S, F, Cl, Br, I, Se and B, 
● not contain any hydrogen isotopes(D, T), 
● have between 3 and 40 bonds, 
● not contain any charged group, 
● contain implicit hydrogens only, except in functional groups, 

 
to arrive at a dataset of 81 million molecules. These selected SMILES strings were converted into 
IUPAC names using Chemaxon’s molconvert software, a command-line program in Marvin Suite 
20.15 from ChemAxon (https://www.chemaxon.com). 
 
Using SMILES strings directly for training Neural Networks (NN) may cause various problems due 
to their intricate structure which is difficult to split into separate meaningful tokens necessary for 
the machine input. To tackle this problem, two other representations are available, DeepSMILES 
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[15] and SELFIES [16]. For a discussion of the problem of string tokenization for deep learning, 
we refer our readers to those two publications. Our results confirm the superiority of SELFIES for 
the task discussed here and in our work on Optical Chemical Entity Recognition [14] Thus, for 
this work all SMILES strings were converted into SELFIES using a custom python script. 
 
 

 
 
Figure 1: SMILES, DeepSMILES and SELFIES split into tokens which are separated by a space 
character. 
 
Two datasets were constructed, a 30 million and a 60 million molecules set with SELFIES and 
corresponding IUPAC names, where the 60 million set contained all 30 million molecule entries 
of the former. Every SELFIES string and IUPAC name was split into separate tokens using the 
space character as a delimiter. SELFIES were split according to a closed square bracket “]” and 
an open square bracket “[”. For IUPAC names a small set of rules was applied to split them 
uniformly: After every, 
 

● open bracket “(”, “{” and “[”, 
● close bracket “)”, “}” and “]”, 
● dash symbol “-”, 
● full stop “.”, 
● comma “,” 

 
a space character was added as a delimiter. After adding the delimiter, the dataset was padded 
to fit to the maximum length, a “start” token was added to each string to indicate the beginning of 
the string, and an “end” token was added at the end of the string. The strings were tokenized and 
saved into small TFRecord files for training with GPUs or TPUs. Finally, two SELFIES-to-IUPAC-
name datasets and two IUPAC-name-to-SELFIES datasets - with 30 million (exactly 30728192) 
and 60 million (exactly 61440000) molecules each - were generated. 

Network 
The NMT network follows the implementation reported by Google for their language translation 
models, which itself is built on the network designed by Luong et al. [17] for neural machine 
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translation, using a soft attention mechanism developed by Bahdanau et al. [18]. It is based on 
an autoencoder-decoder architecture and is written on Python 3 with Tensorflow 2.3.0 [19] at the 
backend. The encoder network and the decoder network use Recurrent Neural Networks (RNNs) 
with Gated Recurrent Units (GRU). The input strings are passed to the encoder and the output 
strings to the decoder. The encoder network generates the encoder output and the encoder 
hidden state. The attention weight is calculated by the attention mechanism implemented in the 
network. Encoder output with attention weights then create the context vector. Meanwhile, the 
decoder output is passed through an embedding layer. The output generated by the embedding 
layer and the context vector are concatenated and passed on to the GRUs of the decoder. An 
Adam optimizer with a learning rate of 0.0005 is applied and Sparse Categorical cross-entropy is 
used to calculate the loss with a modified loss function. A batch size of 256 Strings is used for a 
GPU and a global batch size of 1024 Strings for a TPU where the global batch size is divided 
between the nodes. 
 
For SELFIES-to-IUPAC-name and IUPAC-name-to-SELFIES translation the same network 
architecture is used with the input/output datasets simply being swapped. Figure 2 shows the 
STOUT architecture for SMILES-to-IUPAC-name translation. 
 
 

 
 
Figure 2: STOUT architecture for SMILES-to-IUPAC-name translation 
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Model training 
For large datasets, training a neural network efficiently is a challenging task. As an initial test, the 
network was trained with 15 Million molecules on a server with an nVidia Tesla V100 GPU, 384GB 
of RAM, and two Intel(R) Xeon(R) Gold 6230 processors. The average training epoch was 
evaluated to be about 27 hours so that training of larger datasets appeared to be prohibitive. With 
more than 100 epochs of training time used in our training described below, those 27 hours per 
epoch translate into almost 4 months of training time, with multiples of that for training with 30 Mio 
or 60 Mio structures. Thus, the training scripts were modified to use Tensor Processing Units 
(TPUs) available on the Google cloud using the TensorFlow distributed learning API. A 
corresponding training with TPU V3-8 units (with 8 nodes each) reduced the average training 
epoch to about 2 hours. 

Model test 
In order to evaluate the models' performance, independent test sets for the 30 Million and the 60 
Mio molecules training sets were constructed with 1.9 million molecules each. A uniform and 
highly similar frequency distribution of unique SELFIES tokens in training and test data was 
ensured by corresponding test molecule selection. The SELFIES-to-IUPAC-name translation and 
the reverse IUPAC-name-to-SELFIES translation were tested with the same set. 
 
To assess the predictive accuracy BLEU scoring [20] was used (see appendix for details). In 
addition, Tanimoto similarities were calculated between original and predicted strings using 
PubChem fingerprints. For the predictions of IUPAC names as an output, the IUPAC names were 
re-converted to canonical SMILES using OPSIN 2.5 [21] with the resulting SMILES being utilized 
for Tanimoto similarity calculations. 

Results and Discussion 

Computational considerations 
Table 1 summarizes the increase in unique SELFIES/IUPAC-name tokens with the increase of 
data set size. Note, that the token set sizes differ significantly from dataset to dataset with smaller 
differences for the SELFIES tokens and considerable ones for the IUPAC name tokens. This also 
reflects the need for sufficient memory to fit in the big sets of tokens without chopping the dataset. 
 
 
Table 1: Number of unique SELFIES and IUPAC-name tokens for each dataset. 
 

Dataset Size Number of SELFIES tokens Number of IUPAC tokens 

15 Million 33 56834 



7 

30 Million 35 73864 

60 Million 38 93270 
 
 
As already stated above, training a 15 Million molecule dataset on a TPU V3-8 requires 2 hours 
per epoch which is 13 times faster than using a GPU V100. Using a TPU V3-32 allows for an 
additional 4 times faster performance in comparison to a TPU V3-8 and is 54 times faster 
compared to a GPU V100, see figure 3. 
 
 

 
 
Figure 3: Average training time per epoch on different hardware (lower is better). 
 
 
Figure 4 shows the different training times per epoch of the different datasets on TPU V3-8 units 
where all models were trained for more than 100 epochs until convergence. The difference 
between the SELFIES-to-IUPAC-name and IUPAC-name-to-SELFIES training is caused by the 
different number of I/O tokens of each dataset: For the SELFIES-to-IUPAC-name translation, the 
output tokens are derived from the IUPAC names whereas for the IUPAC-name-to-SELFIES 
translation the output tokens are taken from SELFIES strings. Since SELFIES strings are smaller 
and less complex than IUPAC name strings the IUPAC-name-to-SELFIES translation is 
considerably faster. 
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Figure 4: Average training time per epoch for different datasets using TPU V3-8.  
 
 

Test results 

SELFIES-to-IUPAC-name translation 
Table 2 summarizes the overall accuracy and the BLEU scores for the 30 million and the 60 
million molecules dataset. A predicted string with a BLEU score of 1.0 means 100% accuracy. 
 
 
Table 2: Overall accuracy and BLEU scores. 
 

Training dataset size 30 Mio 60 Mio 

Overall accuracy 95.35% 89.95% 

Total number of strings with BLEU 1.0 84.07% 66.95% 
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BLEU-1 0.98 0.95 

BLEU-2 0.97 0.93 

BLEU-3 0.96 0.92 

BLEU-4 0.95 0.90 

 
 
The 30 million molecules dataset achieves an accuracy of over 95%, the 60 million molecules 
dataset slightly less than 90%. Although the 60 million molecules data set has more molecules to 
train on - which should lead to an increased accuracy - it has to be taken into account that it also 
contains a considerably increased number of input and output tokens (compare above). The  input 
and output space volumes to be learned are considerably increased in comparison to the 30 
million molecules data set. Thus, the larger the number of tokens, the more difficult it becomes to 
learn the IUPAC names. This demonstrates the need for more training data within the same set 
of tokens, i.e. same input/output space volumes, to not compare “apples and oranges”. 
 
In order to assess the network’s ability to learn “chemistry” we calculated the Tanimoto similarities 
between the predicted and the original molecules by translating the original and the predicted 
IUPAC names back to SMILES strings using OPSIN. The IUPAC names that OPSIN was able to 
translate back to SMILES strings were counted as valid IUPAC names while the others were 
counted as invalid. Only the valid IUPAC-name-to-SMILES translation was used for the Tanimoto 
similarity calculation. The Average Tanimoto was measured on the Valid IUPAC-name-to-
SMILES. Additionally, both Tanimoto calculations were readjusted to the number of data points 
present on the test dataset (see table 3). 
 
 
Table 3: Tanimoto similarities. 
 

Training dataset size 30 Mio 60 Mio 

Invalid IUPAC names 5.18% 15.78% 

Valid IUPAC names 94.82% 84.22% 

100 % accurate IUPAC names 84.07% 66.95% 

Tanimoto 1.0 count on the total test dataset 85.25% 69.56% 

Tanimoto 1.0 count on valid IUPAC names 89.91% 82.59% 

Average Tanimoto (measured for total test dataset) 0.93 0.82 
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Average Tanimoto (measured for valid IUPAC names) 0.98 0.97 

 
 
The invalid IUPAC names are the ones that were rejected by OPSIN and could not be converted 
into SMILES. This inability is the result of errors with the IUPAC names being predicted. In most 
cases, the IUPAC name predictions failed because 
 

● they did not contain a comma,  
● some of them were missing a close bracket symbol corresponding to the open bracket 

symbol,  
● the valence of an atom was wrong,  
● a certain block of text was uninterpretable,  
● they failed to assign all bonds correctly,  
● of a disagreement between lengths of bridges and alkyl chain length,  
● the IUPAC names were too long. 

 
Table 4 presents a few examples of IUPAC names that could not be converted to SMILES strings 
with an explanation of the failure. 
 
 
Table 4: Failed IUPAC-name-to-SMILES translations. 
 

IUPAC names Reason for failure 
(OPSIN error messages) 

1. N-[6-(2,3-diaminopropylidene)-1-methyl-1,2,4a,5,6,8a-
hexahydroquinolin-6-yl]-N-methylpropanamide 

 

Atoms are in an 
unphysical valency state. 
Element: C valency: 5 

2. 2-[({[(3-ethoxypropyl)amino]({[2-(2-
fluorophenyl)ethyl]amino})methylidene}amino)-N,N-
dimethylacetamide 

Unmatched opening 
bracket found 

3. 3'-(propan-2-yl)-2',3',4',5',6',7',8',8'a-octahydro-2'H-
spiro[imidazole-4,1'-indolizin]-2-amine 

The following being 
uninterpretable: 
2',3',4',5',6',7',8',8' 

4. ({2',6'-difluoro-2',6'-dimethyl-[1,1'-biphenyl]-4-
yl}methyl)(propyl)amine 

Failed to assign all 
double bonds 

5. 1,4,5-trimethyl-1-[1,2-dimethylpropyl)-2-methyl-1-
propylbicyclo[12.2.1]tetradeca-1,5-diene 

Disagreement between 
lengths of bridges and 
alkyl chain length 
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The Tanimoto similarity index 1.0 count with 85% (30 million molecules set) of the test data is 
already remarkable but the astonishing average Tanimoto similarity over 0.9 (30 million molecules 
set) suggests that an “understanding” of the “language of chemistry” emerged. In addition, it 
becomes obvious that the number of predictions with a Tanimoto similarity of 1.0 is greater than 
the number of predictions with a BLEU score of 1.0, see table 5: Although there are different 
IUPAC names, using OPSIN to re-translate these names led to SMILES representations with 
similar or even identical chemical graphs, see figure 5. This also illustrates the extent to which 
the model is capable to successfully generalise the information of the training data. 
 
 
Table 5: Predicted IUPAC name strings with a Tanimoto similarity index of 1.0 but a low BLEU 
score. 
 

No 

IUPAC names 
BLEU 
Score 

IUPAC names 
translated into SMILES 

using OPSIN 

Tanimo
to 

similari
ty 

Index Original Predicted Original Predicted 

1. 

N,N-dimethyl-2-[(11-oxa-2-thia-
5,7-diazadodecan-6-
ylidene)amino]acetamide 

2-({[(3-
methoxypropy
l)amino]({[2-
(methylsulfany
l)ethyl]amino})
methylidene}a
mino)-N,N-
dimethylaceta
mide 0.13 

CN(C(CN=
C(NCCSC)
NCCCOC)
=O)C 

COCCCNC(N
CCSC)=NCC(
=O)N(C)C 1.0 

2. 
(1Z,3Z,5Z,7Z,9Z)-cyclohexacosa-
1,3,5,7,9-pentaene 

cyclotetracosa
-1,3,5,7-
tetraene 0.20 

C1=CC=CC
=CC=CC=C
CCCCCCC
CCCCCCC
CC1 

C1=CC=CC=
CC=CCCCCC
CCCCCCCCC
CC1 1.0 

3. 

4-[1-(4-methoxypyrimidin-2-
yl)piperidine-4-
carbonyl]thiomorpholine 

4-methoxy-2-
[4-
(thiomorpholin
e-4-
carbonyl)piperi
din-1- 0.23 

COC1=NC(
=NC=C1)N
2CCC(CC2
)C(=O)N3
CCSCC3 

COC1=NC(=
NC=C1)N2C
CC(CC2)C(=
O)N3CCSCC
3 1.0 
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yl]pyrimidine 

4. 
1,2,2-tris(propan-2-yl)-1,1-
bi(cyclohexane) 

1,2-
bis(propan-2-
yl)-2-[2-
(propan-2-
yl)cyclohexyl]c
yclohexane 0.32 

CC(C)C1(C
(CCCC1)C(
C)C)C2C(C
CCC2)C(C)
C 

CC(C)C1C(C
CCC1)(C2C(C
CCC2)C(C)C)
C(C)C 1.0 

5. 

(2-methoxyethyl)(3-
methoxypropyl)({4-
[(propylamino)methyl]furan-2-
yl}methyl)amine 

[(5-{[(2-
methoxyethyl)
(3-
methoxypropy
l)amino]methy
l}furan-3-
yl)methyl](pro
pyl)amine 0.41 

COCCN(C
C=1OC=C(
C1)CNCCC
)CCCOC 

COCCN(CCC
OC)CC1=CC(
=CO1)CNCC
C 1.0 

6. 1-hydroxyicosane-7-sulfonicacid 

1-
hydroxyicosan
e-8-
sulfonicacid 0.50 

OCCCCCC
C(CCCCCC
CCCCCCC)
S(=O)(=O)
O 

OCCCCCCCC
(CCCCCCCCC
CCC)S(=O)(=
O)O 1.0 

7. 

2-({3-[(3,4-
dimethoxyphenyl)methoxy]-2-
hydroxypropyl}(2-
hydroxyethyl)amino)ethan-1-ol 

1-[(3,4-
dimethoxyphe
nyl)methoxy]-
3-[(2-
hydroxyethyl)(
2-
hydroxyethyl)a
mino]propan-
2-ol 0.61 

COC=1C=
C(C=CC1O
C)COCC(C
N(CCO)CC
O)O 

COC=1C=C(
C=CC1OC)C
OCC(CN(CC
O)CCO)O 1.0 

8. 

1-[4-(4-{4-[4-(1H-pyrrol-1-
yloxy)butoxy]butoxy}butoxy)but
yl]-1H-pyrrole 

1-[(4-{4-[4-
(1H-pyrrol-1-
yl)butoxy]buto
xy}butoxy)but
oxy]-1H-
pyrrole 0.74 

N1(C=CC=
C1)OCCCC
OCCCCOC
CCCOCCC
CN2C=CC
=C2 

N1(C=CC=C1
)CCCCOCCC
COCCCCOCC
CCON2C=CC
=C2 1.0 
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9. 

N-butyl-N-[(3-chloro-6-
hydrazinylpyridin-2-
yl)methyl]aniline 

N-[(3-chloro-6-
hydrazinylpyri
din-2-
yl)methyl]-N-
butylaniline 0.83 

C(CCC)N(C
1=CC=CC=
C1)CC2=N
C(=CC=C2
Cl)NN 

ClC=1C(=NC(
=CC1)NN)C
N(C2=CC=CC
=C2)CCCC 1.0 

10. 

[2-hydroxy-3-(propan-2-
yloxy)propyl](3-
methoxypropyl)[(5-
methylfuran-2-yl)methyl]amine 

[2-hydroxy-3-
(propan-2-
yloxy)propyl][(
5-methylfuran-
2-yl)methyl](3-
methoxypropy
l)amine 0.90 

OC(CN(CC
=1OC(=CC
1)C)CCCO
C)COC(C)C 

OC(CN(CCC
OC)CC=1OC(
=CC1)C)COC
(C)C 1.0 
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Figure 5: Chemical structures depicted with the CDK depiction generator for predictions with 
Tanimoto similarity 1.0 but low BLEU score.  
 

 

IUPAC-name-to-SELFIES translation 
 
The IUPAC-name-to-SELFIES translation was tested with the same 1.9 million test molecules as 
the SELFIES-to-IUPAC-name model before, but in reverse order. As a measure for current top 
performance, OPSIN is able to convert 98.17% of IUPAC names generated by the molconvert 
algorithm back to SMILES. Table 6 summarizes the overall accuracy, the calculated BLEU scores, 
and the Tanimoto similarities that were carried out on the test molecules for IUPAC-name-to-
SELFIES translation. 
 
 
Table 6: Overall accuracy, BLEU Scores, and Tanimoto similarity calculations. 
 

  30 Mio 60 Mio 

Overall accuracy 94.72% 92.14% 

Total number of predicted strings with BLEU 1.0 80.76% 68.98% 

BLEU-1 0.98 0.97 

BLEU-2 0.97 0.95 

BLEU-3 0.96 0.94 

BLEU-4 0.95 0.92 

Tanimoto Calculations 

Average Tanimoto similarity index 0.96 0.94 

Number of predicted strings with Tanimoto 1.0 82.54% 73.10% 

 
 
The 30 million molecules result is near the OPSIN top performance. The difference between the 
30 and 60 million molecules data sets is considerably reduced in comparison with SELFIES-to-
IUPAC-name translation since the SELFIES token output space volume difference is smaller than 
the IUPAC-name token output space difference before. Again, the predictions with Tanimoto 



15 

similarity index 1.0 exceed those with BLEU scores 1.0. The reason for this is that BLEU is 
calculated by mapping word to word for an original and predicted SELFIES string while Tanimoto 
similarity is calculated according to the corresponding chemical structure, see table 7 and figure 
6. To improve these results more molecules with the same set of unique tokens would be needed. 
 
 
Table 7: Predicted SELFIES with low BLEU scores and Tanimoto similarity 1.0. 
 

No. 

SELFIES 

BLEU 
Score 

SELFIES decoded back 
into SMILES 

Tanimo
to 

similari
ty 

Index Original Predicted Original Predicted 

1. 

[O][=C][N][C][N][=C][N][=C][C][Ex
pl=Ring1][Branch1_2][N][=C][Ring
1][Branch2_3][C][Branch1_2][C][
=O][N][C] 

[O][=C][Branch
1_1][Ring1][N]
[C][C][=N][C][C
][=N][C][=N][C]
[Expl=Ring1][B
ranch1_2][N][
C][Ring1][Bran
ch2_3][=O] 0.19 

O=C1NC=
2N=CN=C
C2N=C1C(
=O)NC 

O=C(NC)C1=
NC=2C=NC=
NC2NC1=O 1.0 

2. 

[O][=C][C][=C][Branch1_1][Branch
1_3][C][Branch1_2][C][=O][O][C][
C][Branch1_1][C][O][=C][N][Ring1
][O] 

[O][=C][Branch
1_1][Ring1][O]
[C][C][=C][C][B
ranch1_2][C][=
O][N][C][=C][Ri
ng1][Branch1_
3][O] 0.26 

O=C1C=C(
C(=O)OC)
C(O)=CN1 

O=C(OC)C1=
CC(=O)NC=C
1O 1.0 

3. 

[O][=N][C][C][=C][Branch1_1][Rin
g1][C][=O][C][=C][Branch1_1][Rin
g2][C][Expl=Ring1][Branch2_1][C]
[O] 

[O][=N][C][=C][
C][Branch1_1][
Ring1][C][=O][
=C][C][Branch1
_2][Ring2][=C][
Ring1][Branch
2_1][C][O] 0.28 

O=NC=1C
=C(C=O)C
=C(C1)CO 

O=NC1=CC(
C=O)=CC(=C
1)CO 1.0 

4. 
[O][=C][C][Branch1_1][C][F][=C][B
ranch1_1][O][N][C][=C][Ring1][Br

[O][=C][C][Bra
nch1_2][O][=C 0.32 

O=C1C(F)
=C(NC=C1

O=C1C(=CN
C(=C1F)C)C( 1.0 
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anch1_3][C][Branch1_1][C][F][F][
C] 

][N][C][Branch
1_2][Branch1_
1][=C][Ring1][
Branch1_2][F][
C][C][Branch1_
1][C][F][F] 

C(F)F)C F)F 

5. 

[Cl][C][C][Branch1_1][C][N][=C][N
][=C][S][N][=C][Branch1_1][Branc
h1_2][C][Ring1][Branch1_1][Expl=
Ring1][Branch2_3][C] 

[Cl][C][=C][Bra
nch1_1][C][N][
C][=N][C][S][N]
[=C][Branch1_
1][Branch1_2][
C][Ring1][Bran
ch2_3][Expl=Ri
ng1][Branch1_
1][C] 0.43 

ClC=1C(N)
=CN=C2S
N=C(C21)
C 

ClC1=C(N)C=
NC=2SN=C(
C12)C 1.0 

6. 

[F][C][Branch1_1][C][F][C][=N][C][
Branch1_2][O][=C][Branch1_1][Br
anch1_2][C][=C][Ring1][Branch1_
2][I][C][Br][C][O] 

[F][C][Branch1
_1][C][F][C][N]
[=C][Branch1_
1][O][C][Branc
h1_2][Branch1
_2][=C][C][Expl
=Ring1][Branc
h1_2][I][C][Br][
C][O] 0.51 

FC(F)C1=
NC(=C(C=
C1I)CBr)C
O 

FC(F)C=1N=
C(C(=CC1I)C
Br)CO 1.0 

7. 

[N][#C][C][C][=C][C][Branch1_2][C
][=O][C][C][C][Ring1][Branch1_2][
=C][C][Expl=Ring1][Branch2_3][I] 

[N][#C][C][C][=
C][C][Branch1_
2][Branch1_2][
=C][C][Expl=Ri
ng1][Branch1_
2][I][C][Branch
1_2][C][=O][C]
[C][Ring1][Bra
nch2_2] 0.64 

N#CC=1C
=C2C(=O)
CCC2=CC1
I 

N#CC=1C=C
2C(=CC1I)C(
=O)CC2 1.0 

8. 

[O][=C][C][C][C][Branch2_1][Ring
1][Ring1][C][N][=C][Branch1_1][B
ranch1_2][C][=C][C][Expl=Ring1][

[O][=C][C][C][C
][Branch2_1][R
ing1][Ring1][C] 0.70 

O=C1CCC(
C=2N=C(C
=CC2)C(F)

O=C1CCC(C
2=NC(=CC=C
2)C(F)(F)F)C 1.0 
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Branch1_2][C][Branch1_1][C][F][
Branch1_1][C][F][F][C][Ring1][#C] 

[=N][C][Branch
1_2][Branch1_
2][=C][C][=C][R
ing1][Branch1
_2][C][Branch1
_1][C][F][Branc
h1_1][C][F][F][
C][Ring1][#C] 

(F)F)C1 1 

9. 

[N][#C][C][=C][Branch1_1][N][C][
=C][C][=C][N][=C][N][Ring1][Branc
h2_2][Ring1][Branch1_1][C] 

[N][#C][C][=C][
Branch1_1][N]
[C][=C][C][=C][
N][=C][N][Ring
1][Branch1_1][
Ring1][Branch
2_2][C] 0.83 

N#CC1=C(
C=CC2=C
N=CN12)C 

N#CC1=C(C=
CC2=CN=CN
21)C 1.0 

10. 

[O][B][Branch1_1][S][O][C][Branc
h1_1][C][C][Branch1_1][C][C][C][
Ring1][Branch1_3][Branch1_1][C]
[C][C][C][=C][C][=C][Branch1_1][B
ranch2_1][C][=C][Ring1][Branch1
_2][C][C][C][C][C][C] 

[O][B][Branch1
_1][S][O][C][Br
anch1_1][C][C]
[Branch1_1][C]
[C][C][Ring1][B
ranch1_3][Bra
nch1_1][C][C][
C][C][=C][C][=C
][Branch1_1][B
ranch2_3][C][=
C][Ring1][Bran
ch1_2][C][C][C
][C][C][C] 0.92 

O1B(OC(C
)(C)C1(C)C
)C2=CC=C
(C=C2CCC
)CCC 

O1B(OC(C)(
C)C1(C)C)C2
=CC=C(C=C2
CCCCC)C 1.0 
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Figure 6: Chemical structures depicted with the CDK depiction generator for predictions with 
Tanimoto similarity 1.0 and low BLEU score. 

Conclusion 
With this work, purely data-driven deep learning models for translation between different chemical 
entity representations are reported. We show that deep learning models are able to  capture the 
essence of SMILES to IUPAC name string conversion (and vice versa) with reaching the 90% 
accuracy threshold. Despite this promising finding, any large scale and uncurated application 
should be currently handled with care. 
 
With more data and additional training epochs STOUT is expected to further improve its prediction 
accuracy in the future. At best, it may finally play in the ballpark of the rule-based systems which 
further on define the possible top performance. Using the TPU platform will enable the models to 
be trained in an acceptable amount of time in the order of a few weeks. In addition, STOUT may 
be extended to alternative sophisticated models used in language translation and understanding, 
such as BERT [22].  
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Appendix 
BLEU scoring for machine translations is a scoring metric introduced in 2002 used to compare a 
predicted sentence with the original sentence. Each predicted word is compared with the original, 
and each word is called a unigram or a 1-gram. In longer sentences we can also compare word 
pairs or bigrams. Here, we calculated BLEU-1 for unigram comparison, BLEU-2 for the bigram 
comparison, BLEU-3 for 3-gram comparison and BLEU-4 for 4-gram comparison.  
 
In order to compare the predicted IUPAC name with the original IUPAC name a sentence-to-
sentence comparison should be done, so we used the sentence BLEU scoring function inbuilt in 
Python Natural Language Toolkit [23]. We use the original IUPAC name as the reference string 
and the predicted IUPAC name as the candidate string to calculate BLEU. If all words in the 
candidate match the reference, a perfect score of 1.0 will be awarded. 
 
Reference : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
Candidate : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
BLEU score: 1.0 
BLEU-1: 1.00 
BLEU-2: 1.00 
BLEU-3: 1.00 
BLEU-4: 1.00 
 
 
BLEU score will reduce according to the following, 

- each wrong word matches 
- each wrong word pair matches 
- length of the candidate string is longer/ shorter than reference string 
- order of the predicted words are wrong 

 
For these a penalty will be awarded so the overall score will decrease. Few examples are given 
below. 
 
Wrong word 
Reference : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
Candidate : 1 , 3 , 7 - trimethylpurine - 2 , 6 - trione 
BLEU score: 0.91 
BLEU-1: 0.92 
BLEU-2: 0.92 
BLEU-3: 0.92 
BLEU-4: 0.91 
 
 
Wrong word pair 
Reference : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
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Candidate : 1 , 3 , 7 - trimethylpurine - 2 , 6 , trione 
BLEU score : 0.82 
BLEU-1: 0.85 
BLEU-2: 0.84 
BLEU-3: 0.85 
BLEU-4: 0.82 
 
 
Shorter prediction 
Reference : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
Candidate : 1 , 3 , 7 - trimethylpurine - 2 
BLEU score : 0.64 
BLEU-1: 0.64 
BLEU-2: 0.64 
BLEU-3: 0.64 
BLEU-4: 0.64 
 
 
Longer Prediction 
Reference : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
Candidate : 1 , 3 , 7 - trimethylpurine - 2, 6 - dione , 6 - dione, 6 - dione 
BLEU score : 0.59 
BLEU-1: 0.63 
BLEU-2: 0.59 
BLEU-3: 0.58 
BLEU-4: 0.48 
 
 
Wrong order of predictions 
Reference : 1 , 3 , 7 - trimethylpurine - 2 , 6 - dione 
Candidate : 1 , 3 , 7 - trimethylpurine - 6 , 2 - dione 
BLEU score: 0.65 
BLEU-1: 1.00 
BLEU-2: 0.82 
BLEU-3: 0.74 
BLEU-4: 0.65 
 
 

List of abbreviations 

BLEU: BilinguaL Evaluation Understudy 
 
BERT: Bidirectional Encoder Representations from Transformers 
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CDK: Chemistry Development Kit 
 
DECIMER: Deep lEarning for Chemical Image Recognition 
 
FTP: File Transfer Protocol 
 
GPU: Graphics Processing Unit 
 
IUPAC: International Union of Pure and Applied Chemistry 
 
InChI: International Chemical Identifier  
 
NMT: Neural Machine Translation 
 
OPSIN: Open Parser for Systematic IUPAC Nomenclature 
 
RAM: Random Access Memory 
 
RNN: Recurrent Neural Network 
 
SDF: Structure Data File 
 
SELFIES: Self-Referencing Embedded Strings 
 
SMARTS: SMILES arbitrary target specification 
 
SMILES: Simplified Molecular-Input Line-Entry System 
 
STOUT: Smiles TO iUpac Translator 
 
TPU: Tensor Processing Units 
 
TFRecord: TensorFlow Record file 
 
VRAM: Video Random Access Memory 

Availability of data and materials 
The code for STOUT and the trained models are available at https://github.com/Kohulan/Smiles-
TO-iUpac-Translator 
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