Adjustable Positive-Negative Signal in Self-Driven Photodetector based on Cubic CH₃NH₃PbI₃

Large Single Crystal

Xuewei Fu,^a Yunying Wang,^a Huawei Zhou,^{a,*} Yan Chen,^a Chen Wang,^a Xingchen Hu,^a Yi Wang,^a Jie Yin,^{a,*} and Xianxi Zhang^{a,*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

In this study, for the first time, self-driven photodetector based on cubic CH₃NH₃PbI₃ large single crystal (C-MAPbI₃ LSC) ¹⁰ with adjustable positive-negative signal is fabricated. The preparation of MAPbI₃ large single crystal (MAPbI₃ LSC) is realized by the method of growth-drop-growth (GDG). The band gap of MAPbI₃ single crystals with Pm-3m (221) space group (6.134×6.134×6.134 Å, 90.00 x 90.00 x 90.00) is 1.58 eV.

- ¹⁵ CH₃NH₃⁺ cation is orientation-disorder within the perovskite cubo-octahedral cavity. The photocurrent density at 803 nm of the C-MAPbI₃ LSC photodetector under different bias voltages is the highest under different wavelength. The responsivities (R), response time, external quantum efficiencies
 ²⁰ (EQE) and the detectivity (D) for C-MAPbI₃ LSC
- photodetector at 803 nm wavelength with 1 W m⁻², respectively, is 508.7 μ A/mW, 0.1338 ms, 79.6% and 8.64*10¹¹ Jones. Notably, the C-MAPbI₃ LSC photodetector can be self-driven under 0 V bias voltage, in particular, the positive and negative
- ²⁵ values of the photocurrent can be adjusted. The proposed mechanism of poling inducing built-in potential is explained adjustable positive-negative signal in self-driven photodetector based on cubic CH₃NH₃PbI₃ large single crystal.
- In recent years, various types of perovskite photodetectors have ³⁰ been developed rapidly due to their excellent light harvesting performance. Among them, there are many studies on photodetectors based on CH₃NH₃PbI₃ (MAPbI₃) perovskite materials, and there are roughly the following types. The first type is polycrystalline perovskite film photodetectors with different
- ³⁵ morphology. For example, Yin Zhang, Juan Du¹ and their partners developed photodetectors based on island-structured CH₃NH₃PbI₃ thin films; S. Tong, H. Wu² and their partners developed photodetectors based on polycrystalline CH₃NH₃PbI₃ films by insitu thermal-treatment doctor blading technique in ambient
- ⁴⁰ condition (humidity ~45%). The second type is a variety of heterojunction photodetectors. For example, Huayan Xia, Sichao Tong³ and their partners developed perovskite network photodetectors based on CH₃NH₃PbI₃/C8BTBT bulk heterojunction; Yafei Wang, Ting Zhang⁴ and their partners
- ⁴⁵ developed CH₃NH₃PbI₃/PCBM heterojunction photodetectors through an anti-solvent process. In addition, there are CH₃NH₃PbI₃/C60⁵ and solution processed CH₃NH₃PbI₃/SnO₂⁶ heterojunction photodetectors. The third type is photodetectors with single crystal particles. For example, Xiang Qin, Yifan Yao⁷
- 50 and their partners developed CH₃NH₃PbI₃ crystals with the morphologies of nanowires and nanoplates via a simple solution immersing method and used them to prepare photodetectors. In

addition, transparent and flexible photodetectors⁸ (PDs) based on CH₃NH₃PbI₃ perovskite and photodetectors based on 2D⁹ or 1D¹⁰ ⁵⁵ hybrid organic-inorganic perovskite (i.e., CH₃NH₃PbI₃) nanocrystals were developed.

However, the photodetector based on cubic CH₃NH₃PbI₃ large single crystal (C-MAPbI₃ LSC), in particular, adjustable the positive and negative values of the photocurrent, to date, is not ⁶⁰ reported. In this study, for the first time, self-driven photodetector based on cubic CH₃NH₃PbI₃ large single crystal (C-MAPbI₃ LSC) with adjustable positive-negative signal are fabricated.

Figure 1: (a) Photo of the MAPbI₃ crystal seeds in γ -GBL; (b) Photo of the 70 MAPbI₃ large single crystal via growth-drop-growth method; (c) SEM image of the surface of unpolished MAPbI₃ large single crystal; (d) SEM image of the surface of polished MAPbI₃ large single crystal; (e) Crystal structure diagram of cubic MAPbI₃; (f) X-ray Diffraction pattern of C-MAPbI₃ SC prepared by GDG and calculated via single crystal data.

The photo of the MAPbI₃ crystal seeds prepared by the modified inverse temperature crystallization method is shown in the Figure 1a. The preparation of MAPbI₃ large single crystal (MAPbI₃ LSC) is realized by the method of growth-drop-growth (GDG). Detailed experimental process are listed in the experimental section. A photo of MAPbI₃ LSC is shown in Figure 1b. The size of MAPbI₃ LSC reaches centimeter level. The surface

- ⁵ topography of the unpolished MAPbI₃ LSC was characterized by scanning electron microscope (SEM), as shown in Figure 1c. The large convex crystalline grains are observed on MAPbI₃ LSC surface, which will affect the conductivity of the interdigital gold electrode and further affect the collection of photoelectrons.
- ¹⁰ Therefore, the surface of the MAPbI₃ LSC is smoothed by mechanical polishing, and the polished surface is very flat and uniform, as shown in Figure 1d. The crystal structure of MAPbI₃ crystal seeds is solved by Shelxtl software. From the single crystal diffraction data, we can know that: MAPbI₃ single crystal has a
- ¹⁵ cubic phase with Pm-3m (221) space group (6.134×6.134×6.134 Å, 90.00 x 90.00 x 90.00). Figure 1e shows the schematic diagram of the crystal structure of MAPbI₃. CH₃NH₃⁺ cation is orientationdisorder within the perovskite cubo-octahedral cavity. The detailed crystal structure information is listed in Table S1-S6. The X-ray
- ²⁰ diffraction patterns of C-MAPbI₃ SC prepared by GDG and calculated via single crystal data with Diamond software is shown in Figure 1f. The peaks appear at 20.17 and 40.72 degree, which correspond to (200) and (400) crystal planes, respectively.

25 Figure 2. (a) Diffuse Reflectance Spectra of C-MAPbI₃LSC; (b) hv-(hvF(R ∞))² curve of C-MAPbI₃LSC.

The optical properties of C-MAPbI₃ LSC were characterized by diffuse reflectance spectroscopy as shown in Figure 2a. To calculate the band gap of C-MAPbI₃ LSC, the diffuse reflectance ³⁰ spectrum is converted to Kubelka-Munk spectrum. The results indicate that the band gap of C-MAPbI₃ LSC is 1.58 eV, as shown in Figure 2b.

Figure 3. (a) Photo of C-MAPbI₃ LSC after evaporating interdigital gold electrode; (b) Model diagram of the photodetector based on C-MAPbI₃ LSC; (c) SEM image of the surface of C-MAPbI₃ LSC after evaporating ⁴⁰ interdigital gold electrode; (d) A linear fitted line of △I_{803 nm}-bias voltage; (e) and (f) Photocurrent density—time curve of the photodetector based on C-MAPbI₃ LSC after applying positive and negative bias voltage under 803 nm wavelength with 1 W m⁻² light intensity; (g) Hysteresis characteristics of photodetector based on C-MAPbI₃ LSC measured from 0 to 1 V with 500 ⁴⁵ mV s⁻¹; (h) Diagram of voltage inducing migration of ion in the photodetector based on C-MAPbI₃ LSC.

Photo and model diagram of C-MAPbI3 LSC after evaporating interdigital gold electrode, respectively, is shown in Figure 3a and 3b. The width of the interdigital gold electrode and 50 photodetector is 40 µm, and 60 µm, respectively, as shown in SEM in Figure 3c. To study the photoelectric performance of the photodetector based on C-MAPbI3 LSC, we evaluated the response of photocurrent density at different wavelengths through continuous illumination and linear scanning voltage (where 678 55 nm was measured at 18 W m⁻², 922 nm at 20 W m⁻², 957 nm at 25 W m⁻² and 975 nm at 28 W m⁻², other wavelength at 30 W m⁻²), and the results are shown in Figure S1. It can be seen that for any wavelength, the photocurrent increases as the voltage increases. We transformed Figure S1 into the photocurrent density-60 wavelength curve, as shown in Figure S2. At any voltage, the maximum photocurrent response is obtained at 803 nm. Different bias voltages were applied to the device at 803 nm wavelength with 1 W m⁻² light intensity to research its periodicity. The photocurrent density-time curve (0, 0.5, 1, 1.5, 2, 2.5, and 3 V) is shown in 65 Figure S3. The results show that $\triangle I_{803 \text{ nm}}$ ($\triangle I_{803 \text{ nm}} = I_{\text{on}} - I_{\text{off}}$, 803 nm is the wavelength, Ion and Ioff, respectively, represents the photocurrent density under the light radiation and the dark state) increases as the increase of bias voltage. According to the regularity, the $\triangle I_{803 \text{ nm}}$ -bias voltage curve is plotted and linear 70 fitted as shown in Figure 3d. The correlation coefficient is 0.9877, which indicates that they have good linear relationship. Besides, the value of $\triangle I_{803 \text{ nm}, 3V}$ reach to 55.28 μ A cm⁻² from 0.85 μ A cm⁻ ² at 0V, which indicates that the sensitivity for weak light (1 W m⁻ ²) is significantly improved. Meanwhile, we calculated the 75 responsivities (R), external quantum efficiencys (EQE) and the detectivity (D) of C-MAPbI3 LSC photodetector under 3 V bias voltage and 803 nm wavelength with 1 W m⁻² light intensity using data in Figure 3S. By substituting the data into following formulas (Equ.1 to 3), R=508.7 µA/mW, EQE=79.6 % and D=8.64*10¹¹ 80 Jones can be obtained.

$$R = \frac{I_{PC-I_{Dark}}}{P \times S} \qquad (Equ.1)$$

$$\begin{split} & \text{EQE} = \frac{\text{R} \times \text{hc}}{\text{e}\lambda} \quad (\text{Equ.2}) \\ & \text{and } \text{D} = \frac{\text{R}}{(2\text{e}\times\text{I}_{\text{Dark}})^{\frac{1}{2}}} \quad (\text{Equ.3}) \end{split}$$

In the above formulas, I_{PC} and I_{Dark} are photocurrents of the photodetector with and without illumination, respectively. P is the

- s light intensity. S is the effective area of the photodetector. C stands for light speed and λ is the wavelength of light source. Response times, as shown in Figure S4, of the C-MAPbI₃ LSC is 0.1338 ms under 1 V bias potential and 803 nm with 1 Wm⁻².
- In addition, we found that the C-MAPbI₃ LSC photodetector ¹⁰ can be self-driven under 0 V bias voltage, in particular, the positive and negative values of the photocurrent can be adjusted, as shown in Figure 3e and 3f. After applying 3 V external bias voltage (poling), we tested the photoelectric response of the C-MAPbI₃ LSC photodetector under 0 V bias voltage. The photocurrent
- ¹⁵ obtained at this time is negative. After applying -3 V bias voltage, we tested the photoelectric response of the photodetector under 0 V bias voltage. The photocurrent obtained at this time is positive. We know that perovskite material appears hysteresis phenomenon when it is used as solar cell. Figure 3g is the CV test of
- ²⁰ photodetector. The CV with other scanning speed is shown in the Figure S5-S8 in the supporting information. From these CV results, we can see that the hysteresis phenomenon appears in C-MAPbI₃ LSC photodetector in the process of applying bias voltage. In addition, the results of scanning 100 CV cycles, as shown in Figure
- 25 S9-S11 show that the hysteresis phenomenon shows good repeatability. Its mechanism is shown in the Figure 3h: MA⁺ cations transfer directionally under the action of bias voltage. Polarization occur inside C-MAPbI₃LSC, which will form a builtin potential. The direction of the built-in potential inside C-
- ³⁰ MAPbI₃ LSC is opposite to that of bias voltage. The built-in potential drives the photoelectrons to move directionally. By changing the positive and negative values of bias potential, the direction of the built-in potential will be changed. The change in the direction of built-in potential changes the positive and negative ³⁵ values of the photocurrent.

Acknowledgements

This work was financially supported by the Shandong Province Natural Science Foundation (Grant No. ZR2019MB021).

Notes and references

⁴⁰ ^aSchool of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage; Liaocheng University.

* E-mail: zhouhuaweiopv@163.com; yinjieily@163.com; 45 xxzhang3@126.com.

- Y. Zhang, J. Du, X. Wu, G. Zhang, Y. Chu, D. Liu, Y. Zhao, Z. Liang and J. Huang, Acs Applied Materials & Interfaces, 2015, 7, 21634-21638.
- S. C. Tong, H. Wu, C. J. Zhang, S. G. Li, C. H. Wang, J. Q. Shen, S. Xiao, J. He, J. L. Yang, J. Sun and Y. L. Gao, *Organic Electronics*, 2017, 49, 347-354.
- 3. H. Y. Xia, S. C. Tong, C. J. Zhang, C. H. Wang, J. Sun, J. He, J. Zhang, Y. L. Gao and J. L. Yang, *Applied Physics Letters*,
- 2018, **112**, 5024330.

- Y. F. Wang, T. Zhang, P. Zhang, D. T. Liu, L. Ji, H. Chen, Z. D. Chen, J. Wu and S. B. Li, *Organic Electronics*, 2018, 57, 263-268.
- 60 5. Y. K. Wang, D. Z. Yang, X. K. Zhou, S. M. Alshehri, T. Ahamad, A. Vadim and D. G. Ma, *Organic Electronics*, 2017, 42, 203-208.
 - 6. H. R. Wu, Z. S. Su, F. M. Jin, H. F. Zhao, W. L. Li and B. Chu, *Organic Electronics*, 2018, **57**, 206-210.
- 65 7. X. Qin, Y. F. Yao, H. L. Dong, Y. G. Zhen, L. Jiang and W. P. Hu, *Chemistry-an Asian Journal*, 2016, **11**, 2675-2679.
 - J. Y. Liu, Y. Z. Xue, Z. Y. Wang, Z. Q. Xu, C. X. Zheng, B. Weber, J. C. Song, Y. S. Wang, Y. R. Lu, Y. P. Zhang and Q. L. Bao, *Acs Nano*, 2016, **10**, 3536-3542.
- 70 9. Y. Wang, Q. G. Song, T. Lin, Y. Fu, X. Sun, B. Chu, F. M. Jin, H. F. Zhao, W. L. Li, Z. S. Su and Y. T. Li, *Organic Electronics*, 2017, **49**, 355-359.

75

 X. Zhang, C. C. Liu, G. Ren, S. Y. Li, C. H. Bi, Q. Y. Hao and H. Liu, *Nanomaterials*, 2018, 8, 8050318.