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Abstract

The over expression of Tumor necrosis  factor-α (TNFα) has been implicated in  a
variety of disease and is classified as a therapeutic target for inflammatory diseases (Crohn
disease,  psoriasis,  psoriatic  arthritis,  rheumatoid  arthritis).  Commercially  available
therapeutics  are  biologics  which  are  associated  with  several  risks  and  limitations.  Small
molecule inhibitors and natural compounds (saponins) were identified by researchers as lead
molecules against TNFα, however, they were often associated with high IC50 values which
can lead to their failure in clinical trials. This warrants research related to identification of
better  small  molecule  inhibitors  by  screening  of  large  compound  libraries.  Recent
developments have demonstrated power of natural compounds as safe therapeutics, hence, in
this work, we have identified TNFα phytochemical inhibitors using high throughput in silico
screening  approaches  of  6000  phytochemicals  followed  by  200  ns  molecular  dynamics
simulations and relative binding free energy calculations. The work yielded potent hits that
bind  to  TNFα  at  its  dimer  interface.  The  mechanism  targeted  was  inhibition  of
oligomerization of TNFα upon phytochemical binding to restrict its interaction with TNF-R1
receptor. MD simulation analysis (Principal component analysis, Dynamic Cross Correlation
Matrices,  Free  energy  landscapes)  resulted  in  identification  of  two  phytochemicals  that
showed  stable  protein-ligand  conformations  over  time.  The  two  compounds  were
triterpenoids:  Momordicilin  and Nimbolin  A with  relative  binding  energy-  calculated  by
MM/PBSA to be -190.5 kJ/Mol and -188.03 kJ/Mol respectively.  Therefore,  through this
work it is being suggested that these phytochemicals can be used for further in vitro analysis
to confirm their inhibitory action against TNFα or can be used as scaffolds to arrive at better
drug candidates.

Keywords: Virtual  screening,  Docking,  MD  simulations,  TNF-α,  Anti-inflammatory,

Phytochemicals.
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1. Introduction

Tumor  necrosis  factor  α  (TNFα),  also  known  as  cachectin,  is  a  well-established

therapeutic target for various inflammatory and autoimmune related diseases [1]. TNFα is a

25 kDa transmembrane protein and 17 kDa when secreted. The autoimmune diseases related

to  unregulated  TNFα  activity  include  inflammatory  bowel  disease,  diabetes,  rheumatoid

arthritis,  systemic  sclerosis,  systemic  lupus  erythematosus,  multiple  sclerosis,  diabetes,

asthma, ankylosing spondylitis,  cancer and AIDS [2,3]. The pleiotropic cytokine TNFα is

produced by macrophages and by several other proinflammatory cells, including monocytes,

dendritic cells, B cells, CD4+ cells, neutrophils, mast cells and eosinophils, and the structural

cells [4]. The signalling pathway TNFα involves activation of the nuclear factor κB, which

interacts with the DNA to increase transcription of IL1B, IL6, IL8, and TNFα itself [3]. It is

thus clear that inhibition of TNFα activity will benefit TNFα mediated diseases.

The binding of  TNFα trimer  to its  receptors  effects  the activation of transcription

factors related to cell proliferation, differentiation, cell survival or apoptosis [5]. A series of

synthetic  antibodies  (infliximab,  etanercept,  adalimumab,  certolizumab  and  glolimumab)

have been developed for the treatment of cancer and autoimmunity [6,7]. These biologics are

often  associated  with  high  cost,  poor  clinical  response,  and  requirement  for  intravenous

administration.  Small  molecule  inhibitors  are  relatively  cheaper  and can  be  taken orally.

Small molecule therapies for  TNFα have not led to approved products [8]. Therefore, the

identification of small molecules that can inhibit TNFα-regulated pathways is a promising

research area that has lately received much attention. However, to this point, there have been

no  publications  of  small-molecule  inhibitors  past  the  proof-of-concept  stage  of  targeting

TNFα [9]. Disruption of TNFα binding to TNFR1, has been the goal in the development of

therapeutics [10,11]. 

Majority of the small molecules target TNF by down regulating its expression. TNFα

binds to its receptor in a trimeric form, its potential inhibitors can be selected for preventing

the formation of trimer by stabilizing the inactive dimeric form [12]. A limited number of

compounds is reported to directly disrupt this interaction [13]. Suramin and its analogues

were  reported  to  inhibit  TNFα interaction  with  its  receptor  by  causing  inhibition  of

oligomerization of the TNFα trimer with an IC50 of 0.65 mM [14,15]. Compounds similar in
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structure with suramin: Trypan blue and Evans blue were reported with IC50 of 0.75 and 1

mM, respectively. All the three compounds were reported to make contact of Arg103, Tyr119

and Lys98 in  TNFα structure [16]. These residues have been reported to be important for

trimer association [17]. Further development of small molecule inhibitor was by He et al. [18]

who synthesized SPD305 which inhibits TNFα interaction with its receptor with an IC50 of

22 μM measured  by ELISA. SPD305 also led to  deoligomerization  of  TNFα making 16

contacts  with  the  interface  residues  including  Tyr59  and  Tyr119.  There  residues  were

reported to be important for trimer contact [18]. However, this molecule is still a proof of

concept and has not been perused further for in vivo testing and is related with high toxicity

[19]. This may be related to its high IC50 value by ELISA [9].  Progressive research led

Buller et al. [20] to identify compounds that inhibited TNFα by using DNA-encoded library.

They  identified  analogues  with  dichloro-benzophenone  moiety  to  inhibit  TNFα at

concentrations  higher  than  300  μM  [20].  Natural  compound  inhibitors  for  TNFα  were

reported by Shah et al. [21] from the methanolic extract of Parthenium hysterophorus.  The

compounds were saponins (terpenoid class of natural compounds). These class of compounds

have been reported to have including anti-inflammatory activity [22]. It was proposed that

these compounds led to inhibition of TNFα by deoligomerization like the compound SPD305

[21]. Choi and co-authors [12] virtually screened a library of 240,000 compounds. The three

top  compounds  all  shared  a  pyrimidine-2,4,6-trione  moiety  and  involved  all  involved

hydrophobic  interactions  with  Tyr59,  Tyr119  and  Tyr159.  Further  research  led  to  the

identification of hydrophobic natural products that could mimic the binding of SPD305 [23].

Quinuclidine with an IC50 ~50 μM and indoloquinolizidine with an IC50 ~ 10 μM were

reported as TNF inhibitors. Their binding was like SPD305 [23]. Wua et al. [24] reported that

curcumin can bind to TNFα by molecular docking studies. Melagraki et al. [13] identified

two molecules T23 and T8 to be direct inhibitors of TNFα. 

It  is  to  be  noted  here  that  the  potency  of  TNF for  TNF receptor  1  (TNFR1)  is

picomolar range [8].The reported small molecules showed potential inhibitory activity with

TNFα but they have high IC50 values in vitro. This may lead to their failure in clinical trials.

This warrants research related to identification of better small molecule inhibitors. Recent

developments have demonstrated power of natural compounds as drugs [25-29]. Inspired by

this, in this work  the disassembly of  TNFα similar to that proposed by He et al.  [18] by

phytochemicals were analysed by performing virtual screening of 6000 natural compounds

from medicinal plants reported to have anti-inflammatory activities. This was followed by
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calculation of relative binding free energies of the top hits to identify the best phytochemical

inhibitors.

2. Materials and methods

2.1. Virtual screening of phytochemicals from medicinal plants

The crystal  structure of TNFα (2az5) with resolution 2.1 Å was downloaded from

RCSB PDB. The structure is with a small molecule inhibitor (SPD-305) which was reported

to  inhibit  TNFα  activity  in  biochemical  and  cell-based  assays  with  median  inhibitory

concentrations of 22 and 4.6 micromolar, respectively [18]. The ligand binding site of TNFα

was predicted using the PDBsum server [30]. The ligand binding site lies between chain A

(Val91, Asn92, Leu93, Phe124) and chain B (His15, Val17, Ala18, Pro20, Arg32 Ala33,

Asn34, Ala35, Tyr119, Phe144, Glu146, Ser147, Gly148, Gln149 and Val150). MGLTools-

1.5.6  was  used  for  the  generation  of  grid  file  and  the  docking  file  parameters.  Virtual

screening of 6000 phytochemicals  from medicinal  plants,  reported to be effective against

inflammatory diseases, was performed using the Raccoon plug-in of Autodock 4.2.6. The

configurations files generated from MGLTools-1.5.6 are incorporated in the Raccoon plug-in

package. The virtual screening was run with 10 Lamarkian Genetic Algorithm (LGA) runs

with the default parameters of Autodock 4.2.6. Phytochemicals with lowest binding energies

(kcal/mol)  were identified and subjected for re-docking for 100 LGA runs.  The inhibitor

obtained from the crystal structure (SPD305) was also docked as a control for 100 LGA runs.

The docked complexes were visualized using BIOVIA Discovery Studio Visualiser [31].  

2.2. Toxicity analysis of top scoring phytochemicals by in silico approaches

Adsorption, Distribution, Metabolism, Excretion (ADME) properties were calculated

using SwissADME [32-34]. Toxicity profiles (T) were annotated using the vNN web server

[35]. ADME/T associated properties of Gastro Intestinal absorption (GI), Blood Brain Barrier

permeation (BBB), CYP inhibition, pharmacokinetic properties like Lipinski rule of 5 [36],

PAINS [37] and Brenk [38] and Lead likeness were calculated [39]. 

2.3. Molecular dynamics simulations and trajectory analysis

The  top  scoring  phytochemicals  obtained  by  virtual  screening  and  the  control

inhibitor were analysed by all atom molecular dynamics (MD) simulations for 1µs (Table 1).

All the simulations were carried out with Gromacs 2020.2 software package with all atom
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AMBER99SB-ILDN force field [40]. The force field parameters for the phytochemicals and

the repurposed drugs were generated by ACPYPE (AnteChamber PYthon Parser interface)

[41].  Complex  charges  were  neutralized  with  sodium and  chloride  ions.  Simulation  was

conducted at 300 K under a pressure of 1 bar. Each system was minimized with 5,000 steps

by steepest descent algorithm. Particle-Mesh-Ewald summation (PME) was used to calculate

electrostatic interactions [42]. In NVT and NPT ensembles the systems were equilibrated for

1 ns using position restraint simulations of 1000 kJ mol−1 nm−2. This was followed by a no

restraint production run for 200 ns.  Post-MD analyses included root mean square deviation

(RMSD), root mean square fluctuations (RMSF), the radius of gyration (Rg) and hydrogen

bond occupancy.  PCA on Cα atomic coordinates was performed using R Studio and Bio3d

[43]. The eigenvectors and eigenvalues and their projection along with the first two principal

components  were  analysed  [44].  It  was  assumed  that  a  stable  drug  bound  complex  will

undergo fewer dynamic fluctuations due to enhancement of rigidity of the drug bound site.

Further, DCCM Cα atomic coordinates was performed using the Bio3D package. Molecular

Mechanics  -  Poisson  Boltzmann  Surface  Area  (MM-PBSA)  was  applied  on  snapshots

obtained  from  MD  trajectory  to  estimate  the  relative  binding  free  energy  ∆G busing  the

GROMACS tool g_mmpbsa [45,46]. The Free Energy landscape was obtained from PC1 and

PC2  projections  using  g_sham  tool  in  GROMACS  MD  package.  The  global  minimum

conformations were extracted from the FEL bins. These structures acted as representatives

for network centrality measures and protein interaction network analysis for cliques. High

centrality measures correlate to a node’s capacity to effect protein function. According to

graph theory, the more connected a node (amino acid residue) to others the higher its degree

centrality.  More details about the network centrality measures can be found in the work of

Chakrabarty et al. 2016. A high degree node has high betweenness centrality because many

of the shortest paths may pass through that node. These properties were expected for the

phytochemical inhibitor- TNFα complexes to be like the control-TNFα complex.

3. Results 

3.1. Virtual screening of phytochemicals for TNFα

KEGG pathway analysis shows that TNFα is binds to two different receptors, TNFR1

and TNFR2, and activate  caspase-mediated apoptosis,  NF-κB, activator  protein-1,  MAPK

and ERK signalling and p13k-Akt signalling (Figure 1). Crystal structures TNFα have a high

degree  of  anti-parallel  β-sheet  [9].  The core  consists  of  4  β -strands  and the  quaternary
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structure is a homo-trimer [9]. The inter-chain contact is formed by hydrophobic residues

(Tyr119, Leu57 and Leu157).  Hydrophobic residue interactions also exist between Tyr59,

Tyr119 and Gly153 of one subunit and Phe124 of a neighbouring subunit. A salt bridge also

exists between Lys11 of one subunit and Leu156 of another subunit [47]. Therefore, these

residues  were  considered  as  the  binding  site  of  TNFα.  Docking  grid  was  generated

considering residues to be present in the binding pocket.

Figure 1: TNFα in inflammation related diseases. The signalling pathway was adapted from
KEGG. The diseases associated have been illustrated in blue circles. The biologics available
for TNF are illustrated in orange circle. The cartoon representation of the structure of TNFα
in complex with a small molecule inhibitor (represented in cyan ball and stick) was obtained
using PyMol molecular graphics tool. The bar graph depicts the % of compounds from the
medicinal plants that docked to TNFα with docking score lesser than the bound control ligand
obtained from RCSB PDB (PDB ID: 2az5).

A total of 6000 compounds were screened against TNFα. A total of 742 compounds

showed lower  docking  score  as  compared  to  the  control  compound  (-8.64  kJ/Mol).  The

medicinal  plants  to which these 742 compounds belong were quantified  according to the

percentage of hits obtained for their compounds (Figure 1A). It was interesting to observe

that majority of the phytochemicals that were able to dock to TNFα binding site (8.35%)

were  from  Momordica  charantia.  The  other  important  medicinal  plants  whose  >2%

compounds  docked  to  TNF  were  observed  to  be  from  Azadirachta  indica,  Withania

somnifera,  Mangifera  indica,  Euphorbia  hirta and  Nigella  sativa.   The  top  10  scoring

compounds with docking score < -10 kJ/Mol were from Momordica charantia, Azadirachta

indica,  Strychnos nux-vomica,  Bauhinia purpurea,  Swertia chirayita,  Solanum torvum  and

Mangifera indica (Table 1).

Table 1: Top 10 phytochemicals docked to TNFα

Sl. No. Compound Name Score (kJ/
Mol)

Source 2D structure MRTD 
dose

mg/day
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1 Goyaglycoside-a -11.7 Momordica 
charantia

99

2 Charantoside I -11.55 Momordica 
charantia

94

3 Nimbolin A -11.12 Azadirachta 
indica

195

4 Momordicilin -11.06 Momordica 
charantia

109

5 Swertanone -10.79 Swertia 
chirayita

183

6 Solanolactoside A -10.66 Solanum 
torvum

79
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7 Strychnoflavine -10.65 Strychnos 
nux-vomica

71

8 Mangiferolic acid -10.6 Mangifera 
indica

821

9 Ergosterol peroxide -10.57 Bauhinia 
purpurea

29

10 Jacoumaric acid -10.55 Psidium 
guajava

203

11 6,7-Dimethyl-3-
[[methyl-[2-[methyl-
[[1-[3-
(trifluoromethyl)phen
yl]indol-3-
yl]methyl]amino]eth
yl]amino]methyl]chr
omen-4-one

-8.64 Control from
PDB

202
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The  docked  complexes  and  the  residues  in  TNFα  interacting  with  the  top  four

compounds  and the  control  drug have  been illustrated  in  Figure  2.  The toxicity  profiles

calculated by vNN-ADMET have been presented in Appendix I. The top three compounds

with good docking scores and following standard toxicity profile along with the control were

submitted  for  MD  simulation  analysis  production  run  of  200  ns.  The  significant

pharmacokinetic parameters for ADME/T associated properties of Gastrointestinal absorption

(GI),  Blood Brain Barrier  permeation  (BBB),  CYP inhibition,  pharmacokinetic  properties

like Lipinski rule of 5, PAINS, Brenk and Lead likeness showed that these compounds were

not toxic (Supplementary Materials).

Figure  2:  Docked  complexes  and  residue  interaction  2D  image  of  phytochemicals  and
control  drug  with  TNF  α  having  lead  likeness  3.  A)  Control,  B)  Goyaglycoside-a,  C)
Charantoside I, D) Nimbolin A, E) Momordicilin.

Analysis of Figure 2 has been presented in Table 2. The phytochemicals formed more

hydrogen bonded interactions with residues of chain A and chain B in the TNFα structure in

comparison  to  the  control.  π-alkyl  and  π-π  stacking  interactions  were  also  observed  to

dominate  the binding of the phytochemicals  and the control  drug to  TNFα. The residues

interacting with the phytochemicals and the control drug were Tyr119 B, Lys98 B, Pro117 B,

Lys98 A, Ser60 A, Leu120 A, Tyr151 A, Tyr59 A, Leu57 A, Tyr 119 A, Tyr151 B, Gly121

A, Tyr59 B, Leu57 B, Gly121 B, Ile58 A, Leu 120 A, Tyr119 B, Tyr119 A and Leu120 B.

Table 2: Molecular interactions obtained after docking of phytochemicals and control drug

with the homodimer of TNFα

H-bonds π-Alkyl π-π Halogen
Goyaglycoside-a

Tyr119 B Tyr151 A - -
Lys98 B Tyr59 A - -
Pro117 B Leu57 A - -
Lys98 A Tyr119 A - -
Ser60 A - - -

Leu120 A - - -
Charantoside I

Tyr119 B Tyr151 A - -
Pro117 B Tyr59 A - -
Lys98 A Leu57 A - -
Lys98 B Tyr119 A - -

Nimbolin A
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Tyr151 B Tyr59 B Leu57 A -
Gly121 A Leu57 B Tyr59 A -

Momordicilin

Tyr151 B Tyr59 B - -
- Tyr119 A - -
- Tyr119 B - -
- Leu57 A - -

Control
Gly121 B Tyr119  B Tyr119 A Tyr119B
Ile 58 A - Tyr119 B -

Leu 120 A - Leu120 B -
- - Tyr59 B -

                              - Not found

3.2. Molecular dynamics simulation trajectory analysis

The 200 ns trajectory  analysis  of the top four docked complexes  and the control.

Figure 3A illustrates stable RMSD over 200 ns for all the trajectories (average: 0.30 nm). The

average RMSD values for the phytochemicals were Goyaglycoside-a: 0.26 nm, Nimbolin A:

0.24 nm, Charantoside I: 0.28 nm, Momordicilin: 0.29 nm and the control: 0.27. This shows a

stable binding profile of the phytochemicals and the control compound with TNFα. 

Figure 3: 200 ns trajectory analysis of phytochemicals and control drug. A) RMSD, B) Rg,

C) RMSF.

Figure 3B is a plot of radius of gyration for the trajectories over 200 ns. It revealed

similar structural compactness of all the phytochemicals and the control (average- 1.92 nm).

Interesting observations were made from the RMSF plot (Figure 3C). The average RMSF of

the phytochemical complexes were like that of the control TNF complex (average: 0.14 nm).

Only the complex with Nimbolin  A showed a slightly lower RMSF (average:  0.12 nm).

Analysis of the RMSF of the interface residues of chain A and chain B observed to interact

with the phytochemicals and the control drug post docking has been presented in Table 3 and

as bar chart in Figure 4.

Table 3: RMSF of Cα of residues interacting with the phytochemicals and the control
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Leu 57 A 647-665 0.15 0.10 0.13 0.12 0.12
Ile58 A 666-684 0.10 0.12 0.11 0.10 0.13
Tyr 59 A 685-703 0.08 0.09 0.08 0.11 0.11
Lys98 A 1299-1320 0.14 0.11 0.11 0.11 0.11
Tyr119 A 1463-1483 0.14 0.10 0.19 0.08 0.17
Tyr151 A 1955-1975 0.08 0.07 0.07 0.08 0.08
Gly153 A 1996-2002 0.06 0.05 0.05 0.06 0.06
Leu157 A 2056-2070 0.18 0.18 0.15 0.15 0.14
Leu57 B 2799-2817 0.13 0.11 0.13 0.09 0.12
Tyr59 B 2840-2957 0.08 0.07 0.07 0.07 0.07
Lys98 B 3451-3472 0.12 0.11 0.12 0.11 0.11
Pro117 B 3645-3658 0.07 0.06 0.06 0.06 0.06
Tyr119 B 3678-3698 0.05 0.05 0.05 0.05 0.06
Leu120 B 3699-3717 0.07 0.08 0.07 0.08 0.08
Gly121 B 3718-3724 0.06 0.06 0.06 0.05 0.06
Tyr151 B 4170-4188 0.05 0.04 0.05 0.05 0.05

Figure 4: RMSF of residues interacting with the phytochemicals and the control.

From Table 3 and Figure 4 it can be observed that binding of Goyaglycoside-a leads

to reduction in fluctuation of residue Tyr 59 A compared to the other phytochemicals and the

control. Nimbolin A results in reduction of fluctuation of most of the interface residues and

reduction in fluctuation in Tyr119 A was significant with Momordicilin and Nimbolin A.

Binding  of  Charantoside  I  do  not  show  any  significant  reduction  in  fluctuation  of  any

residues.  It  can be said here that  as these residues are important  for oligomerization,  the

binding of these phytochemicals that reduces its fluctuation, lower than the control inhibitor,

may interfere with TNFα oligomerization as observed with the control ligand.

Hydrogen bond analysis over 200 ns trajectories revealed the residues with highest

hydrogen bond occupancies were Tyr151 for the control inhibitor (24% occupancy), Gly121

for Goyaglycoside-a (36%) and Charantoside I (13%), Tyr59 for Nimbolin A (24.4%) and

Momordicilin  (24.4%).  For  all  the  phytochemicals,  Tyr59  and  Tyr119  hydrogen  bond

occupancy was calculated to range from 8-23%. Tyr119 and Gly121 were observed to be the

residues redundantly involved in hydrogen bonds with the phytochemicals and the control
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inhibitor.  Among  the  phytochemicals,  Momordicilin  was  observed  to  possess  higher

hydrogen bond occupancies over the simulation time frame. Therefore, it  can be expected

that Momordicilin and TNFα complex will be more stable compared to the control and the

other phytochemicals.

3.3. PCA and DCCM analysis of the trajectories

To extract the structural variations in detail upon the binding of the phytochemicals

and the control drug, principal component analysis (PCA) on the Cα atom was performed

(Figure 5). The first five eigen vectors captured around ~50% of the motions.  The residue

fluctuations were comparable to the control complex. Interestingly Nimbolin A showed lower

fluctuations  in  comparison  to  the  control  and  the  other  phytochemical  complexes.  This

corroborates with the RMSF values observed for the residues in the interface of chain A and

B (Figure 4). Furthermore, to understand the effect of phytochemicals binding on the internal

dynamics of TNFα, the dynamic cross-correlation matrix (DCCM) was calculated by using

the coordinates of Cα atoms from the trajectories. DCCM analysis (Figure 6) showed that

overall correlation increased, and anti- correlation decreased on binding of Nimbolin A and

Momordicilin to TNFα in comparison to the control and the other two phytochemicals. Thus,

it  can  be  said  that  Nimbolin  A  and  Momordicilin  creates  a  more  stable  environment

compared to the binding of the other phytochemicals and the control inhibitor.

Figure 5: PCA and residue fluctuation in PCA analysis of TNFα in complex with top scoring

four phytochemicals. A) Control, B) Goyaglycoside-a, C) Charantoside I, D) Nimbolin A, E)

Momordicilin

Figure 6:  DCCM analysis of TNFα in complex with top scoring four phytochemicals. A)

Control, B) Goyaglycoside-a, C) Charantoside I, D) Nimbolin A, E) Momordicilin.

3.5.  Relative  binding free energy of  phytochemicals  and control  inhibitor  from 200 ns

trajectories

The relative binding free energy were calculated for each complex of phytochemicals

and the control using MM-PBSA (Table 4). The standard errors were calculated by 500 steps

of bootstrap analysis. It was observed that the relative binding free energies obtained for the
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complexes agreed with the  RMSD, RMSF, PCA and DCCM calculations. Lowest relative

binding  energy  was  obtained  for  Momordicilin  and  TNFα  complex  (-190.5  kJ/Mol).

Nimbolin A and the control inhibitor had comparable relative binding free energies, -188.03

and -187.67 kJ/Mol respectively. 

Table 4: Relative binding energy calculated by MM/PBSA 
van  der
Waal energy
(kJ/Mol)

Electrostatic
energy
(kJ/Mol)

Polar
solvation
energy  (kJ/
Mol)

SASA
energy
(kJ/Mol)

Binding
energy
(kJ/Mol)

Goyaglycoside-a -235.81 -6.55 86.535 -22.576 -178.402
*Std Error +/- 16.755 +/-    3.348 +/-   12.245 +/-    1.432 +/-   15.092
Charantoside I -219.158 -7.102 96.189 -22.004 -152.074
Std Error +/-   15.823 +/-    3.644 +/-   15.026 +/-    1.426 +/-   17.398
Nimbolin A -237.253 -2.548 72.794 -21.024 -188.032
Std Error +/-   12.418 +/-    1.391 +/-    7.032 +/-    1.016 +/-   11.950
Momordicilin -239.086 -1.491 71.683 -21.597 -190.492
Std Error +/-   13.092 +/-    1.219 +/-    6.636 +/-    1.028 +/-   12.481
Control -224.41 -0.902 58.664 -21.023 -187.672
Std Error +/-   18.589 +/-    1.404 +/-    8.950 +/-    1.684 +/-   17.961
*The standard error (Std Error) was calculated after 500 step bootstrap analysis.

Residue  decomposition  for  their  contribution  towards  the  relative  binding  energy

showed that Leu57, Tyr59 and Tyr119 were the lowest relative free energy contributors (~7-

10 kJ/Mol). These residues were also observed to have lower fluctuations as analysed by the

RMSF, PCA and DCCM calculations. 

3.4. Free energy landscape and network centrality analysis

Free energy landscapes (FEL) were constructed using the projections of first (PC1)

and second (PC2)  eigenvectors  using  g_sham tool  of  GROMACS.  The contour  maps  of

Momordicilin and Nimbolin A complexes showed similar energy clusters as the control. The

global minimum energy conformations were obtained from FEL bins at 200ps for control,

150 ns for Momordicilin and 52 ns for Nimbolin A (Figure 7). FEL revealed ΔG value 0 to

11, 12.7 and 11.4 kJ/mol for control, Momordicilin and Nimbolin A complexes respectively

with TNFα. The conformations  found in the blue area are  more stable  than the red area.

Different global minima were observed during the 200 ns MD simulations for the control and

the phytochemical complexes with TNFα. Several minima were observed corresponding to

the metastable conformational states separated with small energy barriers.
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Figure  7:  Free  energy  landscape  contour  maps  and  network  centrality  analysis  of  the

structure with minimum energy obtained from FEL. Red: Higher Gibbs free energy, Blue:

Lower Gibbs free energy.

The global energy minimum conformation obtained from FEL bin were subjected to

network centrality  analysis.  Weighted network analysis  with atom pair  contact  and upper

threshold of 5 Å were constructed and the centrality  measures of betweenness centrality,

degree centrality and interaction strength were compared among the structures (Figure 7). It

was observed that the degree, betweenness centrality and interaction strength of residues near

the ligand binding site were like the control, being slightly higher for the TNFα complex with

Momordicilin, which was also calculated to have the lowest relative binding free energy. This

indicates that the phytochemicals can become potent inhibitors of TNFα. It was also observed

that  degree,  betweenness centrality  and residue interaction strength increased for residues

Lys98, Tyr119 and Tyr151 in case of Momordicilin complex. 

4. Discussions

The aim of this project was to identify phytochemicals as inhibitors of TNFα. TNFα

was chosen as  a  drug target  as  it  is  the  therapeutic  target  for  various  inflammatory  and

autoimmune  related  diseases  [1]. More  specifically  phytochemicals  that  can  lead  to  de-

oligomerisation of TNFα similar to the inhibitors reported by He et al. [18] from Sunesis

Pharmaceuticals, USA [9,18]. A total of 6000 compounds were screened for TNFα. It was

interesting to observe that phytochemicals from Momordica charantia,  Azadirachta indica,

Withania somnifera, Mangifera indica, Euphorbia hirta and Nigella sativa were screened to

have potential binding affinity- comparable to the control for TNFα dimer binding site.  In

traditional medicine Momordica charantia has been used as antiviral, anti-malarial, and anti-

bacterial agent. It is also reported to be anti-diabetic [48]. 

Further analysis revealed that the top 10 scoring compounds with docking score < -10

kJ/Mol  were  from  Momordica  charantia,  Azadirachta  indica,  Strychnos  nux-vomica,

Bauhinia purpurea,  Swertia chirayita,  Solanum torvum  and  Mangifera indica. The results

corroborate  with  the  report  where  Momordica  charantia was  reported  to  have  anti-

inflammatory effect in sepsis mice and reduced the levels of cytokines IL-1, IL-6, and TNF-α
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[49]. Interestingly  Momordica charantia fruit extract was reported to have protective effect

on TNFα-induced NF-κB activation and cardiomyocyte apoptosis [50]. After identifying the

top 10 docked complexes having docking score to be more negative than the control was

subjected to toxicity analysis. The control inhibitor (ligand PDB ID: 307) was extracted from

the  crystal  structure  of  TNFα (2az5).  Four  phytochemicals  having  low  toxicity  profile,

docking score <-10 kJ/Mol  and the control inhibitor were subjected to all atom molecular

dynamics simulation of 200 ns to establish the binding stability of the phytochemicals in

comparison  to  the  control.  The  selected  four  phytochemicals  were  Goyaglycoside-a,

Charantoside I, Nimbolin A and Momordicilin. The stability analysis by RMSD, RMSF and

Rg revealed that the phytochemicals formed stable interaction with the binding site of TNFα.

PCA and DCCM analysis showed that a more stable environment was created by binding of

Nimbolin  A  and  Momordicilin  in  comparison  to  the  control  and  the  other  two

phytochemicals. This was evident by decreased fluctuation of the binding site residues and

increased correlation in the residues of  TNFα. Interestingly calculation of relative binding

free  energy  over  the  200  ns  simulation  trajectories  revealed  that  Nimbolin  A  and

Momordicilin were with more negative relative binding free energy compared to other two

phytochemicals and like the control. Therefore, it can be said that these phytochemicals can

be potential inhibitors for causing TNFα de-oligomerization. Analysis of residue interaction

with these phytochemicals showed that Tyr59 and Tyr119 hydrogen bond occupancy was

calculated  to  be  8-23%.  Tyr119,  Gly121  were  observed  to  be  the  residues  involved  in

hydrogen bonds with the phytochemicals and the control inhibitor. Residue decomposition

analysis for contributing towards the relative free binding energy showed that Leu57, Tyr59

and Tyr119 were the lowest relative free energy contributors (~7-10 kJ/Mol). 

Interestingly  network  analysis  performed  on  the  global  energy  minimum

conformation also showed that the degree, betweenness centrality and interaction strength

were similar  for the control,  Momordicilin  and Nimbolin A complexes.  There was slight

increase  in  centrality  measures  in  Lys98,  Tyr119  and  Tyr151  in  case  of  Momordicilin

complex. This indicates TNFα formed stable complexes with these phytochemicals. This also

corroborates with earlier report where small molecule was reported to interact with Tyr119

resulting in disruption of TNF trimer [18]. These residues were also reported to interact with

capsazepine derivatives [51]. Therefore, these phytochemicals can be potential inhibitors of

TNF preventing its oligomerization and interaction with TNF-R1. 

5. Conclusions
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In conclusion the master regulator for inflammatory pathways in human, TNFα, was

used as a drug target to screen phytochemical inhibitors in machino. The aim was to identify

potent  phytochemicals  that  can  bind  to  TNFα  dimer  at  a  site  that  causes  inhibition  of

oligomerization and prevention of its binding to TNF-R1 receptor. Two potential triterpenoid

phytochemicals from  Momordica charantia and  Azadirachta indica; namely Momordicilin

and  Nimbolin  A  respectively  were  identified  from 6000  phytochemicals  to  be  potential

inhibitors.  The stability of the inhibitors was established by performing 200 ns molecular

dynamics simulations. The relative binding free energies were calculated to be -190.5 kJ/Mol

for Momordicilin and -188.03 kJ/Mol for Nimbolin A. Conclusively these phytochemicals

can be used for further  in vitro analysis to confirm their inhibitory efficacy against TNFα.

Conclusively, this work paves the way for a class of phytochemicals capable of modulating

TNFα function probably by trimer destabilization.
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Figure 1: TNFα in inflammation related diseases. The signalling pathway was adapted from

KEGG. The diseases associated have been illustrated in blue circles. The biologics available

for TNF are illustrated in orange circle. The cartoon representation of the structure of TNFα

in complex with a small molecule inhibitor (represented in cyan ball and stick) was obtained

using PyMol molecular graphics tool. The bar graph depicts the % of compounds from the

medicinal plants that docked to TNFα with docking score lesser than the bound control ligand

obtained from RCSB PDB (PDB ID: 2az5).

Figure  2:  Docked  complexes  and  residue  interaction  2D  image  of  phytochemicals  and

control  drug  with  TNF  α  having  lead  likeness  3.  A)  Control,  B)  Goyaglycoside-a,  C)

Charantoside I, D) Nimbolin A, E) Momordicilin.

Figure 3: 200 ns trajectory analysis of phytochemicals and control drug. A) RMSD, B) Rg,

C) RMSF.

Figure 4: RMSF of residues interacting with the phytochemicals and the control.

Figure 5: PCA and residue fluctuation in PCA analysis of TNFα in complex with top scoring

four phytochemicals. A) Control, B) Goyaglycoside-a, C) Charantoside I, D) Nimbolin A, E)

Momordicilin

Figure 6:  DCCM analysis  of TNFα in complex with top scoring four phytochemicals.A)

Control, B) Goyaglycoside-a, C) Charantoside I, D) Nimbolin A, E) Momordicilin
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