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Biogas, regarded as a promising renewable energy source, still needs to be upgraded. This calls for the removal of the most prominent
contaminants, among others the octamethylcyclotetrasiloxane (D4) molecule. Herein, high throughput computational screening in
tandem with synthesis and adsorption testing revealed the hydrophobic Zr-MOF PCN-777 as an optimal D4 adsorbent with record
gravimetric (1.8 g g−1) and volumetric (0.49 g cm−3) uptakes, alongside a reversible and fast adsorption/desorption process, good
cyclability and easy regeneration. This MOF was demonstrated to encompass an ideal combination of mesoporous cages and chemical
functionality to enable an optimal packing of the siloxane molecules and their efficient removal while maintaining the process highly
reversible thanks to moderately high host/guest interactions. This work highlights the efficacy of an integrated workflow for accelerating
adsorbent selection for a desired application, spanning the entire pipeline from method validation to computational screening, synthesis
and adsorption testing towards the identification of the optimal adsorbents.

1. Introduction1

Biogas capture from landfill sites or wastewater treatment2

plants is identified as an appealing strategy to procure a re-3

newable energy fuel, simultaneously promoting a reduction in4

greenhouse gas emissions and an increase in waste treatment5

profitability 1. The use of biogas as an energy green resource6

critically calls for a substantial increase of its CH4 quality by re-7

moving gaseous and vapour impurities resulting from anaerobic8

digestion processes 1. One prominent class of biogas impurities9

are the linear (denoted “L”) and cyclic (denoted “D”) silox-10

anes, as degradation by-products of silicone polymers from11

packaging, construction, cosmetics, and household items 2,3.12

This family of molecules is also known to damage subsequent13

energy recovery systems, e.g. combustion engines, fuel cells14

and steam reformers, via their decomposition into amorphous15

silica on heated surfaces that leads to abrasive solid deposits16

on critical machinery, and to inactivation of gas reforming17

catalysts 4. Octamethylcyclotetrasiloxane commonly labelled18

D4 is the most representative siloxane species present in biogas,19

which spans from 50 to 70% of the total siloxane content due to20

its relatively low water solubility (56 µg l−1) and its significant21

vapour pressure (196 Pa at 303 K) 3–5.22

Multiple technologies have been proposed to mitigate the23

presence of siloxanes in biogas outlet streams, including min-24

eral acid/base scrubbing, deep chilling, or iron oxide beds,25

often working in tandem to remove other impurities 6. The26

physisorption-based removal of D4 by porous filters is also a27

promising alternative, due to its relatively low potential ener-28

getic cost, while avoiding the use of environmentally hazardous29

chemicals 7,8. A variety of conventional adsorbents has been30

envisaged for siloxane elimination, including activated carbons 9,31

zeolites 10, and silicas 11. However, these materials suffer from32

several drawbacks that limit their use, in particular insuffi-33
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cient uptake and/or incomplete regeneration under standard 34

conditions. Moreover, downstream biogas commonly contains 35

a proportion of water, which can compete with D4 sorption 36

when using hydrophilic adsorbents 6,12. Therefore, finding a 37

high capacity adsorbent capable of removing siloxanes under 38

moderate humidity conditions in a reversible manner remains 39

a challenge. 40

Metal-Organic Frameworks (MOFs) are one of the most re- 41

cent classes of porous adsorbents. These coordination polymers 42

are built from the assembly of metal nodes and organic multi- 43

dentate linkers to form architectures of different dimensionality 44

from 1D to 4D 13–15. Their near-infinite diversity, thanks to 45

a wide set of building blocks, has made this class of porous 46

solids promising for applications in gas/vapour adsorption/sep- 47

aration 16,17, catalysis 18, and sensing 19,20 among others. Their 48

high and uniform porosity combined with extensive chemical 49

tunability of their pore walls suggest that MOFs may hold 50

promise as candidates for siloxane adsorption. Insofar only two 51

studies have attempted to investigate the potential of MOFs for 52

D4 removal. Mito-Oka and co-workers 21 proposed DUT-4(Al) 53

([Al(OH)(2,6–ndc), DUT: Dresden University of Technology), 54

a wine rack-like MOF, as a first potential adsorbent. Although 55

its hydrophobicity makes this MOF attractive for D4 elimination 56

under humidity, its adsorption capacity of 0.15 g g−1, estimated 57

through single component by TGA measurements, is rather 58

low and its regeneration can only be achieved at very high tem- 59

perature, over 523 K, resulting from a high confinement of D4 60

(kinetic diameter of 8.6Å) in its channels (9 Å × 9 Å). More 61

recently, MIL-101(Cr) (Cr3O(OH)(H2O)2(btc)3, MIL: Material 62

of Institute Lavoisier), a well-known highly porous MOF incor- 63

porating two types of mesoporous cages with diameters of 29 64

Å and 34 Å was demonstrated to exhibit a much higher D4 65

uptake of 0.95 g g−1 at 298 K, however its regeneration was 66

only possible upon heating at 423 K under vacuum 22. Further, 67

since MIL-101(Cr) is known to be highly hydrophilic 23 we can 68

expect a substantial drop of its D4 uptake performance even 69

under low-relative humidity. Indeed, neither of these MOFs 70

tested so far combines a large D4 uptake, low-energy regenera- 71

tion and hydrophobicity to avoid a preferential adsorption of 72

H2O over D4 under low to moderate relative humidity. 73

To date, only a very small number of MOFs has been sam- 74

pled for this application, and therefore relied on researchers’ 75

intuition to identify promising adsorbents. There are, however, 76
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Fig. 1: Workflow of the strategy applied to identify the best MOFs for D4 adsorption, narrowing down candidates from top to bottom through synergistic
computational (left) and experimental (right) actions. The final MOF candidate, PCN-777, is highlighted.

a myriad of hydrophobic MOFs that might perform better for77

D4 adsorption. Since it is unfeasible to individually test the78

performances of all the existing MOFs, several high throughput79

computational screening (HTCS) workflows have been devised80

which identified promising MOFs for diverse adsorption-related81

applications 24–29. However, such a computational strategy can82

only be successful if conducted in strong interplay with a care-83

ful analysis of the best-predicted MOF performers in terms of84

chemical/thermal stability under the target working conditions85

as well as ease of synthesis/activation. This enables the selec-86

tion of the MOF candidate with the best overall compromise87

for further adsorption testing to confirm the expectation.88

With this in mind, we herein devise a hand-in-hand89

computational-experimental strategy whose workflow is summa-90

rized in Fig. 1. As a first stage, the CoRE (Computation-Ready,91

Experimental) MOF 2019 database 30 was computationally92

screened with the objective to identify hydrophobic materials93

showing a D4 uptake higher than the current MOF benchmark,94

e.g. MIL-101(Cr). Notably, the microscopic models used to de-95

scribe both MOF and D4 were validated by a good agreement96

between the simulated D4 uptake and our own experimental97

data collected on the two MOFs mentioned above, i.e. MIL-98

101(Cr) and DUT-4 (Al). From the top 56 predicted MOF99

performers, we selected the Zr carboxylate-based mesoporous100

PCN-777 (PCN for Porous Coordination Network) for further101

experimental testing. This MOF was demonstrated to exhibit102

not only a record D4 uptake (1.8 g g−1) to date for a crystalline103

porous material, but also exceptional cycling and low-energy104

regeneration without the need for thermal treatment, while105

its confirmed hydrophobicity strongly suggests a preservation106

of its adsorption performance under low to moderate relative107

humidity conditions. An in-depth analysis of the adsorption108

mechanism further revealed the dominant host-guest interac-109

tions that control the adsorption of the first D4 molecules and 110

their effective packing in the whole porosity up to saturation. 111

2. Methodology 112

2.1. Computational methods.We used the CoRE-MOF 2019 113

database 30 (over 14 000 MOFs), recently updated to remove 114

solvent molecules and disordered structures, to which we also 115

added further 29 well-known MOFs owing to their good chem- 116

ical/thermal stability and permanent accessible porosity (listed 117

in Table S7 SI). The geometric characterization of MOFs, in- 118

cluding pore limiting diameters (PLDs), densities, N2-accessible 119

surface areas (SAs), pore volumes (PVs) and void fractions (φ), 120

were calculated by Zeo++ software 31. All Monte Carlo simu- 121

lations were performed with the RASPA simulation package 32. 122

Henry coefficients of H2O (KH,H2O) and isosteric enthalpy 123

of adsorption (∆H0
st,H2O) were initially computed at 298 K 124

for all MOFs using the Widom particle insertion method 33. 125

These simulations were carried out using 1 × 105 production 126

cycles and 5 × 104 cycles for equilibration. We applied the 127

same Widom insertion method to calculate isosteric enthalpy of 128

adsorption at low coverage for D4 in DUT-4(Al) and PCN-777 129

with the consideration of 1 × 106 production cycles and 5 × 130

105 steps for equilibration. Continuous fractional component 131

Monte Carlo (CFCMC) simulations 34 were performed to evalu- 132

ate the saturation D4 uptake of all the selected hydrophobic 133

MOFs at 298 K. All CFCMC simulations were carried out for a 134

total of 1 × 104 cycles with 5 × 103 cycles for equilibration. A 135

cycle consists of N Monte Carlo steps, where N is equal to the 136

number of molecules (which fluctuates during a CFCMC simu- 137

lation). For each cycle, random insertion, rotation, translation 138

and continuous-fractional swap moves were attempted. The 139

D4/MOF and H2O/MOF interactions were described by the 140

sum of van der Waals (Lennard-Jones) and Coulombic terms. 141
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The electrostatic interactions were calculated by the Ewald142

summation 35 while a cut-off radius of 12.8 Å was considered143

for the van der Waals term. Indeed, unit cell dimensions were144

increased to at least 25.6 Å in each three directions for all145

MOFs and their frameworks were treated as rigid. Atomic146

charges for all atoms in the MOFs were estimated using Ex-147

tended Charge Equilibration (Qeq) method as implemented148

in RASPA 32 and their LJ parameters were taken from the149

UFF forcefield as currently employed 36,37. H2O was modelled150

using TIP4P/2005 38. D4 was described by a semi-flexible all151

atom model with intramolecular parameters taken from the152

consistent-valence force field (CVFF) 39 (Tables S1 to S5, SI)153

while the LJ parameters for all atoms were taken from the154

UFF forcefield as done in earlier work 40 and their charges were155

calculated at the DFT level (Table S6, SI).156

All the results of the HCTS are available as CSV files in the157

SI. A web-based explorer, which can be used to interactively158

display the dataset is available at https://pauliacomi.com/159

mof4d4.160

2.2. MOF sorbents. The benchmark MIL-101(Cr) sample was161

taken from a previous work 41, with all textural characteris-162

tics as stated in reference. DUT-4(Al) was purchased from163

Materials Center (TU Dresden, Germany). PXRD, TGA and164

N2 physisorption measurements for DUT-4(Al) are available165

in the SI (Fig. S6). Brunauer-Emmet-Teller (BET) areas of166

3475 m2 g−1 and 1610 m2 g−1 were determined for MIL-101(Cr)167

and DUT-4(Al), respectively. PCN-777 was synthesised by op-168

timizing a previous published methodology 42. Full synthesis169

methodology, activation procedure and phase purity analysis170

using TGA, PXRD and N2 physisorption are given in the SI.171

All samples were activated at 423 K under vacuum prior to172

adsorption experiments.173

2.3. Material characterization. PXRD patterns were recorded174

on a Panalytical X’Pert PRO PXRD diffractometer with a Cu175

Kα radiation source, in a Bragg-Brentano reflection geometry,176

using a spinning sample holder with a low-background silicon177

insert. N2 isotherms at 77 K were recorded in a Micromeritics178

Tristar manometric analyser (displayed in Fig. S8, SI). The179

BET areas were calculated using the pyGAPS suite 43, with180

the application of the Rouquerol rules for isotherm region181

selection yielding a minimum Pearson correlation coefficient of182

R = 0.997 (see Fig. S9 for resulting fitting).183

2.4. D4 sorption experiments. Sorption measurements were184

gravimetrically recorded using a dynamic method in a DVS Vac-185

uum instrument (Surface Measurement Systems, UK). In this186

setup, a continuous adsorbate flow sourced from the headspace187

of a reservoir enters the sample enclosure, passes the suspended188

sample pan, and is entrained by a vacuum system. Pressure is189

controlled by a butterfly valve located before the outlet. Uptake190

is monitored by a magnetically suspended balance, capable of191

measuring mass changes at a resolution of 0.1 µg. The entire192

apparatus is kept in a temperature-controlled chamber to avoid193

any condensation points. For each experiment, a stainless-steel194

sample pan is first tared, then loaded with about 10 mg of195

sample. The sample is activated in situ under dynamic vacuum196

(1 × 10−2 Pa) to 423 K. The adsorption-desorption isotherms197

for D4 and H2O and subsequent repeats were recorded at198

303 K in the 0-10 Pa range of pressure. Adsorption cycling199

was similarly recorded, switching between two setpoints of200

low (0.5 Pa) and high pressure (10 Pa). The D4 used for the201

sorption experiments was sourced from Sigma Aldrich, with202

minimum 98% purity.203

3. Results and discussion 204

3.1. Pre-selection of hydrophobic MOFs.We first excluded 205

from our considered MOF database all structures with PLDs 206

lower than 6 Å, a threshold selected as the average between 207

the kinetic diameter of D4 (8.6 Å) and the effective diameter 208

of its constitutive inner Si-O ring (4.5 Å). A total of 1739 209

remaining non-disordered MOFs were further considered, their 210

geometric and textural properties, i.e. PV, SA, and φ, as well 211

as their density (ρ) being summarized in Fig. S1. As siloxane- 212

rich biogas streams often contain water vapour, the optimal 213

D4 adsorbent should have a relatively low water affinity to 214

avoid competing adsorption. Moreover, hydrophobic MOFs 215

are known to possess increased resistance to the hydrolysis 216

of the metal-linker bond 44,45, alleviating long-term water sta- 217

bility concerns. Therefore, we screened the water affinity of 218

the 1739 MOFs by computing their Henry coefficient of water 219

(KH,H2O) and the isosteric enthalpy of adsorption at infinite di- 220

lution (∆H0
st,H2O) at 298 K using the Widom particle insertion 221

method 33. This approach is generally applied in HTCS studies, 222

providing a quick way to gauge the hydrophobicity/hydrophilic- 223

ity of MOFs 36,46. All the computational details including the 224

force fields used to describe both MOFs and water are provided 225

in the methodology section and SI. In the frame of biogas 226

upgrading, an extremely hydrophobic adsorbent is not required 227

since the water content usually ranges from 38% to 85% relative 228

humidity 4, therefore the following thresholds were applied to 229

select MOFs with moderate to high hydrophobicity: KH,H2O < 230

1 × 10−5 mol kg−1 Pa−1 and ∆H0
st,H2O < 33 kJ mol−1 (below 231

the vaporization enthalpy of water ~40 kJ mol−1) 47. As a frame 232

of reference, the highly hydrophobic ZIF-8 is characterized 233

by KH,H2O = 2.5 × 10−6 mol kg−1 Pa−1 and ∆H0
st,H2O = 234

30 kJ mol−1 48. Overall, among the 1739 MOFs, 811 structures 235

(47% of our material library) were predicted to fulfill these 236

two criteria. This hydrophobic MOF dataset encompasses 237

structures of density ranging from 0.24 g cm−3 to 2.04 g cm−3
238

and with a wide range of geometric and textural features: 6 239

Å < PLD < 36 Å, 0.42 < φ < 0.90, 0.27 cm3 g−1 < PV < 240

3.72 cm3 g−1 and 320 m2 g−1 < SA < 6700 m2 g−1, as shown 241

in Fig. S1. 242

3.2. Prediction of the D4 uptake performance for the hy- 243

drophobic MOFs. As a validation stage of the computational 244

method, the D4 uptakes for MIL-101(Cr) and DUT-4(Al) were 245

first predicted using the CFCMC approach described in the 246

methodology section and compared with the available exper- 247

imental data. The simulated uptake for MIL-101(Cr), the 248

current best MOF performer, was found to be 1.03 g g−1 vs. 249

0.95 g g−1 as reported in the original experimental study 22. We 250

equally confirmed the good agreement between the calculated 251

and the experimental D4 uptake by recording an additional 252

adsorption isotherm on a MIL-101(Cr) sample, finding a D4 253

capacity of 1.15 g g−1 at 298 K. The D4 uptake for DUT-4(Al) 254

was however predicted to be substantially higher (0.42 g g−1) 255

than the experimental value reported previously of 0.15 g g−1 21. 256

We therefore collected a D4 adsorption isotherm on a pristine 257

DUT-4(Al) sample, finding a D4 uptake of 0.5 g g−1 (Fig. S10), 258

more in line with our theoretical assessment. The lower D4 259

capacity reported in the original study is attributed to the 260

method used to quantify the adsorbed amount, based on mass 261

loss upon heating. It is likely that only a fraction of D4 was 262

released, since D4 was demonstrated to strongly interact with 263

DUT-4(Al) due to a high confinement in its pores 21. 264

Overall, the good agreement between the simulated uptakes 265

and the corresponding experimental data for the previously 266

investigated MOFs served to validate both the applicability 267

of our computational method and the reliability of our experi- 268

mental setup. This further highlights the importance of a dual 269
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Table 1: Top 10 promising hydrophobic MOF materials identified for D4 uptake at 298 K.

MOF PLD SA ρ PV φ KH,H2O ∆H0
st,H2O Gravimetric D4 Volumetric D4

(Å) (m2 g−1) (g cm−3) (cm3 g−1) (mol kg−1 Pa−1) (kJ mol−1) uptake (g g−1) uptake (g cm−3)

FOTNIN (PCN-777) 28.36 2990 0.27 3.31 0.90 2.80 × 10−6 7.82 2.68 0.72
RUTNOK 14.65 6200 0.24 3.72 0.90 6.70 × 10−6 14.81 2.57 0.62
CUSYAR 12.18 5700 0.25 3.65 0.90 3.42 × 10−6 8.15 2.35 0.59
WUHDAG 10.50 5500 0.29 2.99 0.87 4.69 × 10−6 16.28 2.01 0.58
HOHMEX 14.89 5000 0.32 2.74 0.87 4.66 × 10−6 13.24 1.97 0.63
ECOKAJ 17.58 3600 0.33 2.68 0.87 6.89 × 10−6 17.20 1.97 0.65
DAJWET 26.59 5000 0.28 3.06 0.87 7.73 × 10−6 17.92 1.93 0.54
RUBDUP 19.25 4200 0.30 2.90 0.87 3.79 × 10−6 11.62 1.93 0.58
WUHCUZ 12.21 5500 0.30 2.91 0.87 3.75 × 10−6 12.94 1.80 0.54
ADATAC 10.28 5130 0.34 2.57 0.87 4.16 × 10−6 12.78 1.68 0.57

experimental-computational approach even prior to starting270

the high-throughput screening. We then transitioned towards271

the search for better performers amongst the 811 identified272

hydrophobic MOFs. Fig. 2a reports their computed D4 uptakes273

vs. their ∆H0
st,H2O values at 298 K, with a similar correlation274

depicted vs. KH,H2O in Fig. S4, SI. The dashed line represents275

the current known upper bound for D4 uptake in MOFs, con-276

sidering MIL-101(Cr) as the benchmark sorbent (0.95 g g−1) 22.277

56 hydrophobic MOFs were predicted to be more attractive278

candidates than MIL-101(Cr) on the basis of gravimetric D4279

uptake. Common geometric and textural features of these280

MOF candidates are void fractions φ larger than 0.81 and pore281

volumes (PV) higher than ~1.7 cm3 g−1. Typically, the relation282

between gravimetric D4 uptake and PV is shown in Fig. S3.283

The 10 best MOFs showing the highest D4 uptakes ranging284

from 1.68 to 2.68 g g−1 are highlighted in Fig. 2a by their285

Cambridge Structural Database (CSD) 49 refcode and listed in286

Table 1. Notably, all these identified candidates were found287

to be highly hydrophobic with associated KH,H2O of about288

5 × 10−6 mol kg−1 Pa−1 and their ∆H0
st,H2O ranging from 8289

to 18 kJ mol−1 which make these adsorbents also potentially290

effective under moderate humidity conditions. Table 1 shows291

that the highly hydrophobic FOTNIN is predicted to exhibit the292

highest saturated D4 uptake (2.68 g g−1), in relation with its293

high PV (3.31 cm3 g−1) and large mesoporous cages (33.7 Å294

× 28.4 Å). Remarkably, this gravimetric D4 loading translates295

into a spectacular improvement as compared to MIL-101(Cr) 22.296

RUTNOK (common name IRMOF-76 50) gave almost a similar297

D4 uptake (2.57 g g−1) as FOTNIN, in part due to similar298

PV (3.72 cm3 g−1) and φ (0.9). Other candidates exhibit299

high D4 uptakes, including CUSYAR (also known as MOF-300

210 51), WUHDAG and WUHCUZ (NU-1104, and NU-1103 52,301

respectively). Full structural properties of these 10 MOFs 302

including organic ligands and metal sites are given in Table S8. 303

In the scope of the practical application of a sorbent for a 304

filter bed or column, volumetric uptake is a reliable metric due 305

to its direct relation to equipment sizing. Trade-offs between 306

gravimetric and volumetric uptakes have been previously re- 307

ported for the storage of various fluids using porous materials 26. 308

Fig. 2b shows the relation between the computed gravimetric 309

and volumetric D4 uptakes for the hydrophobic MOFs database. 310

Unlike gravimetric uptake which increases indefinitely, the vol- 311

umetric uptake in porous materials is limited by the density 312

of the adsorbate fluid phase, to which it asymptotically ap- 313

proaches as framework density decreases (and void fraction 314

increases) 53. Interestingly FOTNIN remains the top MOF 315

performer in terms of volumetric uptake as well (0.72 g cm−3, 316

see Fig. 2b). This MOF (common name PCN-777 42) is built 317

from large planar tritopic linkers (4,4’,4’ ’-s-triazine-2,4,6-triyl- 318

tri-benzoate or TATB) coordinated to Zr6-oxoclusters in an 319

antiprismatic fashion, forming vertex-sharing supertetrahedra 320

surrounding a mesoporous cage of 33.7 Å as depicted in Fig. 2c. 321

These cages are interconnected by hexagonal windows (30 Å) 322

and are typically decorated by OH/H2O moieties coordinated 323

to the remaining axial positions of the Zr6 node. 324

3.3. Experimental assessment of the D4 sorption perfor- 325

mance for the top MOF.While HTCS enabled a rapid and 326

effective screening on the performance indicator, additional 327

criteria, such as thermal/chemical stability, synthesis route, 328

activation conditions, precursor toxicity and linker availability 329

need to be considered to select the optimal adsorbents. We 330

therefore critically assessed PCN-777 prior to further experi- 331

mental action. Our selection criteria for PCN-777 were (i) the 332
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Fig. 2: (a) Predicted D4 uptake performance at 298 K for the hydrophobic MOF database plotted as a function of computed ∆H0
st,H2O , and colour coded by

void fraction, φ. Top performing 10 candidates are represented by different symbols in the legend. (b) Relation between gravimetric (g g−1) and volumetric
(g cm−3) D4 uptake for all MOFs at 298 K. Marker size represents PV while colour denotes φ. Dashed line represents the gravimetric and volumetric uptake
of benchmark MIL-101(Cr) 22. (c) Illustration of the structure of our promising material identified for D4 uptake, PCN-777. Zr, N, O, C, and H atoms are
depicted in light blue, dark blue, red, dark grey, and light grey, respectively.
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Fig. 3: (a) Single component adsorption/desorption isotherms for D4 (blue) and H2O (red) collected at 303 K for PCN-777 in the pressure range of 0-10 Pa
(corresponding to 0–0.05 p/p0 for D4). Solid and open symbols represent adsorption and desorption branches, respectively. (b) Comparison of the D4 capacity
of MOFs investigated in the present study with other classes of porous materials (data from Wang et al. 4 ), with error bars placed at one standard deviation of
mean capacity. (c) 5 D4 sorption-desorption cycles recorded after the first two isotherms on PCN-777, in the same pressure range. (d) PXRD of pristine
PCN-777 sample (black) and samples recovered after D4 cycling (blue) and water adsorption (red).

excellent known stability of the oxo-Zr-carboxylate metal node,333

at the origin of the high chemical and thermal resistance of334

the framework, alongside with (ii) the commercially available335

linker and well-controlled synthesis procedure documented else-336

where 42,54. Indeed, this material was synthesised accordingly337

(details provided in the methodology section).338

The D4 adsorption isotherm for PCN-777 was first recorded339

up to 10 Pa at 303 K using a dynamic vapour sorption system340

(experimental details in the methodology section). The re-341

sulting isotherm, depicted in Fig. 3a, exhibits a characteristic342

type V shape 55 with a sharp D4 uptake increase above 7 Pa343

up to a maximum of 1.8 g g−1 that translates into 0.49 g cm−3.344

This value is however lower than the predicted uptake due to345

two combined reasons: (i) an incomplete evacuation of the346

porosity (theoretical PV=3.3 cm3 g−1 vs the experimental one347

of 2.2 cm3 g−1 determined through N2 physisorption at 77 K,348

in Fig. S8, SI) commonly observed for mesoporous MOFs 56,57349

and (ii) only a partial accessibility of the super-tetrahedral350

cages to D4 owing to their relatively small windows. Indeed,351

while optimized activation procedures may recover more of352

the expected porosity, the attained D4 uptake constitutes a353

record among porous solids. This positions PCN-777 as the354

crystalline porous material with the highest currently known D4355

uptake, almost twice higher than the benchmark MIL-101(Cr),356

5–10 times that of the most promising silicas and zeolites, and357

above the best performing activated carbons as illustrated in358

Fig. 3b 4. Notably, the step-like adsorption behaviour is ideal359

from the application point of view of a breakthrough filter,360

as it ensures a narrow mass transfer zone and minimises the361

column dead zone at break point. Remarkably, the maximum362

uptake for PCN-777 is attained at low pressure of 7 Pa that363

makes this MOF highly promising for D4 removal in a gas364

phase concentration below 75 ppm.365

Throughout desorption (dotted line with open symbols in 366

Fig. 3a), a small hysteresis occurs with a width of about 367

1 Pa. Under complete vacuum, a minute amount of D4, about 368

0.1 g g−1, i.e. 5% of total capacity, is retained in the struc- 369

ture. We attribute this capacity loss to D4 molecules irre- 370

versibly trapped in the super-tetrahedral cages or on a small 371

fraction of defect sites. Overall, PCN-777 acts as a highly 372

reversible D4-adsorbent. A second sorption cycle reveals the 373

excellent repeatability of D4 sorption by this MOF, with iden- 374

tical condensation pressure and total uptake, the adsorption- 375

desorption branches now overlapping in the very low-pressure 376

region (Fig. 3a). 377

To further investigate the D4 adsorption-desorption cyclabil- 378

ity of PCN-777, a subsequent set of five cycles was recorded on 379

the same sample, covering the entire uptake range from fully 380

loaded to empty under a medium vacuum level of 0.5 Pa (see 381

Fig. 3c). No further capacity loss is observed after the initial 382

5 wt% from cycle 1 to cycle 2 with a pressure drop sufficient 383

to fully remove adsorbed D4 in every cycle without the need 384

of thermal treatment. This is a leap forward compared to the 385

previous MOF candidates, i.e. MIL-101(Cr) and DUT-4(Al). 386

The former was reported 22 to be fully regenerable only at high 387

temperatures (outgassed under vacuum at 423 K), and we note 388

that vacuum alone was unable to fully desorb D4, with nearly 389

50% of siloxane remaining in the structure after desorption in 390

our experiments (Fig. S10, SI). D4 adsorption in DUT-4(Al) is 391

even more irreversible, owing to the strong confinement of the 392

siloxane molecules in its pores 21, with essentially no desorption 393

observed under vacuum (Fig. S10, SI). The global sorption 394

kinetics was further qualitatively evaluated by observing the 395

equilibration time throughout cycling steps. Fig. 3c reveals 396

that an adsorption/desorption cycle can be achieved in less 397

than 30 minutes. Such a fast kinetics is a clear advantage 398
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Fig. 4: Representative snapshots of the preferential sitting of D4 in the pores of PCN-777 at 298 K for increasing loading at (a) 10% with highlighted interactions
distance between D4 and the MOF framework, and at (b) 40%, (c) 65%, and (d) 100% fractional loading (θ). Framework atoms (sticks) and D4 molecules
(lines, and ball and sticks) are coded as Zr, N, O, Si, C, and H atoms in light blue, dark blue, red, yellow, dark grey, and light grey respectively. The separating
distance is represented by dashed black lines and reported in Å.

for practical use. In addition, the water adsorption collected399

for PCN-777 further confirmed its predicted hydrophobicity400

and revealed that below P = 7 Pa, water loading is negligible,401

i.e. under 0.02 g g−1 (see Fig. 3a). This observation strongly402

suggests that PCN-777 is expected to maintain its high-level403

performance for D4 removal under low to moderate humidity404

working conditions.405

Stability of PCN-777 after its use as a D4 adsorbent was406

also evaluated by checking its crystallinity and porosity. PXRD407

patterns recorded after the D4 cycling experiments show similar408

Bragg peak positions and broadenings as the pristine material,409

testifying that no amorphisation or decrease of crystallinity were410

incurred (Fig. 3d). The same conclusion holds true for PCN-411

777 upon water adsorption. Further, N2 adsorption isotherms412

collected at 77 K for PCN-777 after H2O and D4 adsorption413

both present a similar shape than that of the pristine solid414

(see Fig. S8). Slightly lower pore volume (1.87 cm3 g−1 vs415

2.20 cm3 g−1) and BET area (1544 m2 g−1 vs 1730 m2 g−1)416

were obtained for the material after D4 cycling compared to417

the pristine solid, attributed to the small amount of D4 retained418

in the porous framework during the first adsorption cycle.419

3.4. Adsorption mechanism. A careful analysis of the adsorp-420

tion mechanism of D4 in PCN-777 was further explored by421

considering MC simulations in the canonical ensemble with422

increasing loading up to the saturation. At the initial stage of423

adsorption, the coordinated OH/H2O moieties of the MOF Zr6424

node pointing towards the pore were found to act as primary425

adsorption sites (Fig. 4a). The D4 molecule interacts mostly via426

its methyl group with an averaged separating H(CH3)–H(H2O)427

distance of 2.8 Å (see the radial distribution function plotted428

for the corresponding pair in Fig. S5a) as illustrated in Fig. 4a.429

This preferential sitting of D4 is associated with a moderately430

high simulated adsorption enthalpy of 83.5 kJ mol−1 in line431

with the isosteric heat of adsorption we assessed experimen- 432

tally that ranges from 65 and 75 kJ mol−1 (Fig. S11). Both 433

values are higher than the enthalpy of liquefaction of D4 at 434

303 K as 54.5 kJ mol−1 47. We further demonstrated that this 435

value remains substantially lower than the one simulated for 436

DUT-4(Al) (194.0 kJ mol−1) for which the adsorption of D4 437

is governed by a high degree of confinement leading to an 438

irreversible process. This observation clearly states that the 439

adsorption energetics in PCN-777 offers a good compromise 440

to ensure an efficient adsorption of D4 as well as an almost 441

fully reversible and fast adsorption/desorption process. While 442

increasing the loading, D4 molecules tend to form a monolayer 443

near the wall of the cage owing to their interactions with both 444

the organic linkers and inorganic nodes of the MOF as shown 445

in Fig. 4b-c. Finally, at higher loading, the molecules form 446

multilayers and further occupy the whole cage corresponding 447

to the scenario of the capillary condensation (Fig. 4d). This 448

effective packing is governed by guest-guest interactions involv- 449

ing averaged separating H(CH3)–H(CH3) distance of 2.7 Å at 450

saturation (the radial distribution function plotted for this pair 451

is shown in Fig. S5b). Such pore filling mechanism has been 452

commonly observed in diverse mesoporous materials for a range 453

of molecules 58. Indeed, PCN-777 exhibits an ideal combination 454

of a large cage to enable an effective packing of the siloxane 455

molecules and the presence of moieties accessible to D4 to 456

favour moderately high host/guest interactions to ensure an 457

efficient trapping of the D4 molecules initially adsorbed. 458

4. Conclusions 459

In this work, a high throughput computational screening first 460

identified a series of hydrophobic MOFs with octamethylcy- 461

clotetrasiloxane uptakes outperforming by far the performance 462

of the conventional adsorbents. The best-predicted MOF per- 463

former, PCN-777, was synthesized and its predicted exceptional 464
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adsorption capacity for this typical contaminant present in bio-465

gas was further experimentally confirmed. This stable MOF466

was demonstrated to exhibit record gravimetric (1.8 g g−1) and467

volumetric (0.49 g cm−3) uptake alongside with a reversible and468

fast adsorption/desorption process, very good cyclability and469

easy regeneration under continuous pressure cycling owing to a470

step-like sorption isotherm. The attractiveness of PCN-777 was471

found to result from a synergistic combination of mesoporous472

cages and chemical functionality pointing towards the center473

of the cages to ensure moderately high host/guest interactions474

and favour an efficient removal of D4 at low pressure and an475

efficient packing of the siloxane molecules at higher pressure476

while maintaining the process highly reversible. Moreover, its477

hydrophobicity makes this MOF promising for the selective478

removal of siloxanes in moderate humidity conditions. In a479

broader sense, this study highlights the efficacy of an inte-480

grated workflow for accelerating the selection of adsorbents for481

a target application, spanning the entire pipeline from method482

validation to computational screening, synthesis, adsorption483

testing and finally identification of the optimal candidates.484
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