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ABSTRACT: Molecular string representations are a key asset in cheminformatics and are becoming increasingly relevant to 
the general chemical community, due to the steadily growing impact of Big Data and Machine Learning. Among all of the 
existing string representations that have been proposed, SMILES (Simplified Molecular Input Line Entry Specification) are 
probably the de facto standard as of today. Despite their convenience as a way to store unique molecular structures in data-
bases, however, SMILES are not easy to understand for most chemists: that is, it is difficult for an untrained chemist to grasp 
the molecule that a SMILES is describing. To mitigate this, we propose the HumanSMILES algorithm: a simple procedure that 
can translate a SMILES string into a more interpretable name, inspired by common abbreviations and names employed in 
general organic chemistry. The Human-Readable SMILES can describe linear structures and general non-fused cyclic struc-
tures, with a set of naming rules that combines automated processing and chemical knowledge. The code is available open-
source, as well as a web application. 

INTRODUCTION 

The nomenclature of compounds has been an essential 
part of Chemistry since its earliest days: discovering a novel 
substance was almost always immediately followed by 
choosing a name for it. Throughout the years, this naming 
process started to be less arbitrary and more rational, build-
ing on all the previous understanding of compositions and 
structures. However, even nowadays, when very systematic 
naming frameworks have been defined1, a lot of the older 
naming conventions still prevail among scientists. 

Properly ’naming’ a chemical structure means to choose a 
unique combination of letters and numbers, unambiguously 
related to the structure in question. In this sense, molecular 
string representations such as SMILES (Simplified Molecu-
lar Input Line Entry Specification) 2–4 or InChIs (INterna-
tional CHemical Identifier)5 could be also considered as a 
way of naming molecules, as stated by Weininberg in the 
very first introduction of SMILES as a “chemical language”.  

A major divergence between traditional names and mo-
lecular identifiers is their target: while names are made for 
humans, these strings are tailored for machines. Therefore, 
concepts as pronounceability, readability or adjustment to 
language rules are not strictly relevant for this kind of 
strings. In contrast, it is even more important for them to be 
complete, systematic and unambiguous, as computers can-
not rely on chemical intuition or context to guess unpro-
vided information as we humans might do. 

The relevance of molecular identifiers is now bigger than 
ever. On the one hand, the sheer amount of chemical infor-
mation that is now available requires of robust databases to 
adequately store all this data. String-based identifiers are 
extremely convenient for this kind of storage, as they pro-
vide unique identifiers that require minimal disk space, 
compared to e.g., molecular graphs that require more space. 
Current online databases (PubChem6, ChemBL7) include 
SMILES and InChIs as part of the available data, while da-
tasets (GDB-X8,9, QM910,11…) are often provided as CSV files 
where strings are indeed the only way to communicate 
structural information. 

On the other hand, the importance of machine learning in 
chemistry is steadily growing12–17. Most ML-related tasks 
require to process very large amounts of data, making 
string-based identifiers an excellent choice for the in-
put/output of the machine learning algorithm. SMILES, due 
to their early installment, are probably the most common 
string representation for most of these applications.  While 
alternative identifiers have been developed to avoid some 
of their drawbacks in direct ML applications, such as DeepS-
MILES18 or SELFIES19, it seems likely that SMILES continue 
to be a standard on the field. Therefore, as this kind of ap-
plications keep extending to other fields of Chemistry, more 
and more chemists shall eventually employ string represen-
tations in general, and SMILES in particular. 



 

 

Figure 1. Functioning scheme for HumanSMILES. Yellow circles represent steps undertaken by all input strings, blue circles corre-
spond to the processing of cyclic structures. 

However, as we already stated, an undeniable drawback 
of these identifiers is that they lack human readability. Of 
course, it can be argued that it is the computer who must 
understand the representation, not the human behind it. 
Nevertheless, we think that improvements on string reada-
bility would lead to a better understanding of the methods 
and results of cheminformatics by the general chemical 
community, and consequently, to a more collaborative and 
better science. There is also a growing interest and a very 
active development in making scripting and programming-
based tools easier to use and share. Tools such as Jupyter 
Notebooks20, combining code, results and explanations in a 
single environment have become a staple in Data Science 
and its area-specific applications. In this context, the reada-
bility of the code snippets in the notebook becomes a very 
desirable asset, and even more so regarding how common 
is to share this kind of resources in online repositories. For 
the case of Chemistry, the availability of human-readable 
names for molecules supposes a step forward in this quest 
for readable code that can be easily reused and adapted by 
a wide audience.  

In this spirit, we propose a translation algorithm for the 
conversion of SMILES defining small molecules to a molec-
ular-formula-inspired string which can be read and under-
stood by any chemist, even without any background on 
cheminformatics or string representations. To focus on sim-
plicity and readability, only acyclic, single-cyclic and non-
fused polycyclic molecules are supported, as the nomencla-
ture of fused polycycles becomes quite convoluted (just like 
for their systematic naming1). The algorithm is proposed in 
the form of a Python library21 based on the RDKit22, which 
can be easily integrated with any other Python code to add 
this naming capacity to pre-existing workflows painlessly. 
The Human-Readable SMILES are not designed as any kind 
of replacement to molecular string representations, but as a 
complement to improve the general understandability of 
computational protocols relying on them.  

THE ALGORITHM 

A Python implementation of our proposed protocol, 
named HumanSMILES, is available on a GitLab repository21 

(dgarayr/humansmiles). Along this paper, we will explain 
the design of the algorithm and the steps that it takes from 
a given input SMILES string to the final human-readable 
name. 

First, we present a simplified graphical depiction of the 
algorithm (Figure 1). From this chart, we can proceed to ex-
plain every individual step, depicted as the yellow and blue 
circles in Figure 1. 

1. SMILES uniformization: read the input(s) as mole-
cule(s) in RDKit and generate expanded SMILES with 
explicit hydrogens.  

2. Simplification of common monodentate motifs: locate 
groups with convoluted SMILES and reduce them into 
simpler, single groups. 

• Phenyl group: [c]1[cH][cH][cH][cH][cH]1 → [Ph] 

• Trifluoromethyl: [C]([F])([F])[F] → [CF3] 

• tert-Butyl: [C]([CH3])([CH3])[CH3] → [tBu] 

This step works through direct queries to an inner 
dictionary, which can be expanded as needed.  

3. Single-cycle detection: uses the “]1” string in the 
SMILES as a flag to locate structures which contain cy-
cles. 

• Polycycles are discarded from the algorithm. 

• Single cycles are processed further to identify the 
cyclic fragment and locate branches (onto steps 
4a-4b-4c). 

• Non-cyclic structures are directly simplified: the 
brackets in the SMILES are removed, as valences 
are already fulfilled and the individual groups can 
be easily identified. These go directly to step 5. 



 

  

Figure 2. Selected string transformation examples in HumanSMILES. Triangles represent strings that are not changed in given step. 

4. Cycle processing. 

a. The “ ]1” delimiters present in the SMILES to de-
fine single cycles are used to split the string in 
three parts: START (before 1st match), END (after 
last match) and CYCLE (in between matches). 

b. Into the CYCLE fragment, the valences of the most 
common elements inside cycles (C, N, O and S) are 
analyzed to locate substitution points. These sub-
stituents are also detected by matching parenthe-
ses and brackets inside the string. Then, the string 
is broken to isolate the main cycle (MAINCYC) from 
the substituents (BRANCH), storing position infor-
mation. START and END fragments are joined with 
the BRANCH in a list of substituents. 

c. The MAINCYC is compared with an inner diction-
ary containing common & identifiable cyclic mo-
tifs: all substituted benzenes and pyridines. If it 
matches any of the stored motifs, a name is taken 
from the dictionary. When MAINCYC is not in the 
database, a custom name is generated automati-
cally: the MAINCYC string is simplified (bracket re-
moval, as in step 3c), and it is preceded by a cycN- 
prefix stating the number of atoms in the cycle. The 
final cycle name is joined with the BRANCH and 
START strings: position information precedes the 
cycle name to specify how it is substituted as in 
common molecular formulas. 

5. Methylene simplification: the processed string (from 
either acyclic or single-cycle structures) is recursively 
searched for consecutive CH2 groups, which are con-
verted to (CH2)N strings. 

6. Clean-up and wrap up: final strings are searched for fi-
nal commas, hyphens or empty parentheses resulting 
from the auto-naming process that can be safely re-
moved. 

To better illustrate how our translation procedure works, we 
selected three representative SMILES, for which we will show 
every transformation along the flowchart in Figure 1. These 
three main pathways along the code are shown in   

Figure 2 (polycycles, which would be discarded after step 
3, have been omitted for brevity). 

• Linear molecules (dark orange) do only require minor 
changes after uniformization of the string: mainly, re-
moving the brackets that delimit individual groups in 
the SMILES. 

• The trifluoromethyl group in the blue string is simpli-
fied to [CF3] in step 2. 

• Both cycles (in green and in blue) are split in order to 
separate the fragment that describes the cyclic part 
alone (MAINCYC) and the branches, which may appear 
before, after or inside the cyclic-defining string in the 
SMILES. The blue string, corresponding to a disubsti-
tuted benzene, is identified in the library and receives 
a pre-defined name. The green string, in contrast, is a 
more complex heterocycle that is not stored anywhere 
in the library, and thus receives the automatic cyc5- no-
menclature. 

 

Apart from the main library, we have also set up a web 
application23 in a Heroku instance, allowing the user to 
quickly test HumanSMILES interactively before download-
ing the code and its dependencies. This application has been 
designed as a straightforward demo, where the user inputs 
a single SMILES string at a time and receives the corre-
sponding Human-Readable SMILES and the RDKit-drawn 
molecular structure.  
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USE CASES 

To showcase the capabilities of our protocol, we will be 
presenting two main use cases. 

1. Generation of a named database of monodentate lig-
ands. 

2. Application to a large dataset of small molecules. 

Case I: Substituent database. 

During the development of a project on the small-scale 
automatization of QM calculations for catalyst design, we 
needed to generate a reasonable database with the 3D 
structures for several common substituent groups. As a 
starting point, we selected the list produced in a recent 
work by P. Ertl24 , including the SMILES defining the 6278 
most common monodentate substituents taken from 
>700000 bioactive molecules in the ChemBL database.  

While generating the corresponding 3D structures from 
the SMILES is a trivial task to accomplish with RDKit, the re-
sulting database was not indexed properly: neither SMILES 
nor index numbers seemed clear or informative enough as 
DB keys. In contrast, the ’translated’ Human-Readable 
SMILES that we propose are much clearer, giving the chem-
ist an immediate idea of which substituent is being re-
quested at a time. In this way, not only the overall automa-
tization code gets more readable, but also the results be-
come easier to organize, as simple and ’comfortable’ strings 
are available at every part of a given workflow. In the spe-
cific case of our automatization script, the Human-Readable 
SMILES do not only allow to easily index the ligand data-
base, but also to have interpretable names for all intermedi-
ate files and folders, simplifying the further processing and 
curation of this data.  

In the original list of SMILES, the point of substitution of 
every structure is marked with the string “[R]”, which is not 
recognized by RDKit. A first pre-processing step replaces 
this string by the “[*]” notation to properly read all struc-
tures as molecules. From there, the rest of the protocol does 
not require further changes to deal either with radicals or 
with “full” molecules. The linking point of the substituent 
will be the first item in the string for all the resulting Hu-
man-Readable SMILES. 

From the 6278 substituents in the original list, 5228 are 
accepted and named (83.3%): the remaining 16.7% corre-
sponds to polycyclic structures that are not integrated in the 
naming heuristics. 

Table 1. Percentage of substitutions made in step 2 of 
the algorithm for Ertl's monodentate substituent DB. 

Substituent % of struc.   

–CN 2.47 –CF3 3.19 

–tBu 1.61 –OCH3 7.75 

–Ph 5.37 –CONH2 2.54 

–NO2 1.68 –COOH 6.14 

–SO2 3.98 –CCl3 0.02 

A focal point of our naming strategy is the substitution of 
common motifs present in the expanded SMILES (step 2 in 

Figure 1). Therefore, it is interesting to check how many of 
these substitutions are actually applied across the DB, as 
shown in Table 1. 

Most of the tested groups, except for the trichloromethyl, 
have an important presence along the database: we might 
highlight the methoxy, the carboxylate and the phenyl 
groups, each supposing >5% of the structures.  

The other main point in the string humanization is the de-
tection of cyclic patterns (steps 3 – 4). Here, from our 5228 
named structures, 3729 of them (71.3%) are processed as 
cycles (not including here monosubstituted phenyl groups, 
which are handled in the previous step). Specifically, 1706 
are auto-named through the cycN + simplified SMILES syn-
tax, 1680 are polysubstituted benzene derivatives and 343 
are pyridine derivatives.  

Regarding the compaction of methylenes (step 5), almost 
a quarter of the entries of the ligand database (23.7%) have 
consecutive CH2 groups and thus can be quite abbreviated 
in this stage.  
 

 

Figure 3. Selection of Human-Readable SMILES for several 
structures along Ertl's database, highlighting the most relevant 
transformations. Original SMILES are shown above every 
structure for reference. 

A small selection on the kind of names generated for this 
database is provided in Figure 3, while a more complete ref-
erence can be found in the Supporting Information. These 
examples were selected to highlight the most relevant fea-
tures of the protocol, such as i) the C6H(6-n) string used to 
name n-substituted benzene derivatives, ii) the high degree 
of compaction for long methylene chains, both in linear and 
in cyclic molecules, iii) the ability to seamlessly name non-
recognized heterocyclic structures, iv) the simple nomen-
clature for common groups such as the phenyl (Ph), the tri-
fluoromethyl (CF3) or the sulfoxide (SO2) or v) the proper 
labelling of the substituted positions in cycles. 
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Case II: Large molecular dataset. 

As we did already mention, molecular datasets are a cru-
cial asset in Chemistry, and are becoming more and more 
important as Big Data and Machine Learning keep develop-
ing. While the available models get more powerful and easy 
to use and the datasets grow in size, the interpretability of 
how the model works in the end can be lost. Because of this, 
another important topic in Machine Learning and its appli-
cations is, precisely, to aim for more understandable ap-
proaches and models, inspecting the ’innards’ of the pro-
gram instead of considering it a black box.  

Our approach to string simplification might enter in this 
quest for interpretability: for example, the intermediate 
structures generated by a given model could be converted 
to SMILES and then translated to comprehensible strings. 
This additional plain text output is much easier to analyze 
at a glance than traditional molecular string representa-
tions, while also requiring less storage and overhead than, 
for example, generating image-based visualizations for mo-
lecular graphs. To assess the adequacy of our current pro-
tocol for this goal, we will be testing the GDB-108,9 database 
to determine how many of the present molecules are even-
tually converted (recalling that polycycles are not sup-
ported and will be immediately discarded) and which kind 
of names are generated in such a large set. 

Here, we will discuss some important aspects about the 
application of the HumanSMILES protocol to the GDB-10 da-
tabase, comprising more than three million and a half mol-
ecules. The structures in the dataset contain from 1 to 10 
non-H atoms, which may be C, O, F or N.  

First of all, we have that humanization can be applied to 
70.0% of the SMILES in the database: the remaining 30.0% 
corresponds to discarded polycyclic structures. The per-
centage of acceptance is higher for the smaller GDB-n sub-
sets, that include simpler molecules overall and therefore 
do not comprise as many polycycles. For example, the nam-
ing ratio is 79.9% for GDB-9, with 500k structures, and 
88.5% for GDB-8, with 70k. Nevertheless, even for the 
larger collection GDB-10, more than two thirds of the struc-
tures, or approximately 2.5 million molecules, are satisfac-
torily named. 

Figure 4. Histograms for character counts in "raw" SMILES 
from the database, Human-Readable SMILES and expanded 
explicit-hydrogen-containing SMILES. 

Due to the volume of data here, it will not make much 
sense to assess the quality of the generated names through 
individual inspection, while some examples are still pro-
vided in the Supporting Information. In contrast, we will be 
presenting some statistics comparing the number of char-
acters of the input SMILES, the Human-Readable SMILES 
and the non-simplified, expanded SMILES with explicit hy-
drogens that are used in the first step of the protocol. 

The histograms in Figure 4 show how the raw SMILES, 
right as present in the database, are remarkably shorter 
than the Human-Readable SMILES, with these being also 
much shorter than the expanded SMILES they are based on. 
While the compactness of SMILES is desirable in terms of 
storage, it contributes to their relative obscurity: SMILES 
are so compact, no matter the described structure, that it 
becomes difficult to grasp the molecule they refer to. On the 
other side, while the expanded SMILES are very explicit, 
they are consistently quite long, even for simpler structures: 
the left tail of the red histogram is mostly overlapping with 
the right tail of the blue one. The distribution for the Hu-
man-Readable SMILES, in contrast, appears in between the 
two SMILES variants: more explicit and easier to interpret 
than the very short raw SMILES but not as long and clunky 
as the expanded ones. Moreover, it is also wider than the 
other two distributions: instead of being either very short 
or very long, the character span of the Human-Readable 
SMILES depends more on the complexity and size of the rep-
resented molecule. 

Libraries based on the exploration of the chemical space 
up to a given number of atoms, such as GDB-10, are ex-
pected to have quite a large number of cyclic and heterocy-
clic structures. Therefore, most of them will not follow any 
of the stored templates, but will be auto-named instead 
(step 4c). In fact, in our current subset, we have that 69.1% 
of the named structures are indeed auto-named cycles, 
compared to a very minor 0.09% of polysubstituted ben-
zenes and 0.30% of substituted pyridines. This reflects how 
the auto-naming of cycles is essential for the generalization 
of the protocol. Furthermore, the explicit statement of the 
number of atoms in the ring through the cycN- prefix pro-
vides an immediate idea of ring size which is lacking from 
SMILES. 

As for the simplification of common monodentate substit-
uents (step 2), which we already commented for the ligand-
database situation, we have: 

Table 2. Percentage of substitutions made in step 2 of 
the algorithm for the GDB-10 molecules. 

Substituent % of struc.   

–CN 5.97 –CF3 0.24 

–NC 2.44 –OCH3 3.49 

–tBu 0.33 –CONH2 1.69 

–Ph 0.01 –COOH 1.31 

–NO2 0.11 –CCl3 0.02 

 

We see that the most common motif is the nitrile group: 
combining the two possible CN and NC forms, more than 8% 
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of the named molecules contain this substructure. The rest 
of the queries in the pre-simplification stage are much rarer 
in this specific dataset: this is particularly notorious for 
groups like Ph or CF3, which were quite abundant along the 
dataset used in case 1, originally built considering the most 
common substituents along structures in the ChemBL. How-
ever, we must recall the constraints of the dataset: as GDB-
10 only considers molecules with up to 10 non-hydrogenic 
atoms, relatively large groups (6 non-H atoms in phenyl, 4 
in CF3 or tBu) do not allow for as many combinations as the 
smaller groups like the nitrile or the methoxy (second most 
abundant group, spanning 3.5% of entries). More so, the 
kind of brute-force approach to explore the chemical space 
employed to build this kind of datasets does not consider 
the stability or commonness of structures, also contributing 
to the large presence of rare heterocycles and substituents 
instead of ubiquitous chemical motifs like the benzene ring. 
In light of this, the capability of the current procedure to 
provide sensible names for complex structures stands out.  

CONCLUSIONS 

The HumanSMILES strategy provides a tool to generate 
human-readable names for small molecules that can be eas-
ily embedded in more complex workflows. The improve-
ment on readability allows to make cheminformatic meth-
ods and results more understandable for the general chem-
ical community, contributing to facilitate the collaboration 
between groups with different backgrounds and providing 
an alternative asset for communicating results. 

The current Python-based implementation has already 
been demonstrated to generate reasonable names for very 
different structures. Due to its open-source nature and its 
design, each user may adequate the details of the naming 
process to their specific needs, e.g. adding additional base 
strings to the substitution libraries.  

The first use case demonstrates the good performance of 
HumanSMILES for a small and precurated dataset including 
a few thousands of very common structural fragments. Not 
only a high naming ratio (>80%) is attained despite the ap-
parent simplicity of the protocol, but also the detailed anal-
ysis on the percentages of functional group substitutions 
and cycle types highlights the adequacy of the proposed 
rules to handle usual chemical structures. 

The application to the GDB-10 database shows the gener-
ality of the protocol, achieving a good naming ratio (70%) 
for a much larger dataset on the range of millions of mole-
cules. At this much larger scale, it becomes possible to as-
sess the language-related aspects of HumanSMILES, show-
ing how the generated names fall right in the middle be-
tween the very compact SMILES and their very long ex-
panded form including explicit hydrogens, finding a good 
balance between readability and practicality.  

All in all, the combination of human knowledge (inner li-
braries of common substituents and cycle motifs) and auto-
mated processing (cycle location and vacant position detec-
tion) lying at the core of HumanSMILES shows as the major 
factor contributing to the overall versatility of the tool.  

DATA & SOFTWARE AVAILABILITY 

 The HumanSMILES Python code is available free of 
charge at GitLab https://gitlab.com/dgarayr/humansmiles 

The demo web application is hosted at the Heroku plat-
form and can be accessed at https://humansmiles-web.her-
okuapp.com/ 

The datasets employed in the two use cases are not redis-
tributed in the repository, but can be found at: 

1. https://github.com/peter-ertl/craigplot  

2. https://gdb.unibe.ch/downloads/ 
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