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Abstract 

We develop a theory to investigate how energetic nonhomogeneity of active sites 

determines the overall activity of an electrocatalyst and how the evolution of the 

nonhomogeneity determines the overall durability. The simple theory is amenable to exact 

analytical solutions and thus fosters an in-depth transparent analysis. It is revealed that 

nonhomogeneity does not necessarily diminish the electrocatalytic activity; instead, the 

highest overall activity is obtained with a suitable level of nonhomogeneity that is 

commensurate with the mean property. The evolution kinetics of nonhomogeneity is 

described by using the Fokker-Planck theory. Exponential decay of the activity is predicted 

theoretically and confirmed experimentally. The present work represents a first step toward 

closing the gap between model and practical electrocatalysts using statistical 

considerations. 

Main text 

Electrocatalysts can alter the reaction path and lower the activation barrier of a reaction 

while retaining their own identity and integrity.[1] In many applications, such as fuel cells 

and water splitting devices, electrocatalysts are usually present in the form of nanoparticles 

because of their increased surface area. In contrast to model electrocatalysts, e. g., 

atomically well-defined single crystals,[2-4] real-world electrocatalysts have a large 

variety of active sites on the atomic level.[5,6] These active sites reveal a dissimilar 

electrocatalytic activity as demonstrated in high-resolution catalytic activity mapping 

studies.[7-12] Consequently, it is indispensably required to understand the influence of 

nonhomogeneously distributed active sites since this knowledge is important to the rational 

design of electrocatalysts.[13] 

An electrocatalytic reaction, for example, the oxygen reduction reaction (ORR), is a 

reaction network consisting of several elementary steps and different adsorbing reaction 

intermediates. Interlinking the electrocatalytic activity with binding energies of adsorbing 

intermediates is a major straddle in comprehending and controlling the structure 

dependence of electrocatalysis.[14-17] Furthermore, binding energies of different 

intermediates are linearly correlated with each other among a wide range of 

electrocatalysts.[18,19] Consequently, one of the binding energies can be chosen as the 

descriptor of a class of materials. The relation between the electrocatalytic activity and the 
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chosen descriptor usually manifests in a volcano plot; that is, the activity increases until a 

maximum is reached, and then declines as the descriptor is varied from small to large values. 

The basic idea refers to the well-known Sabatier principle[20], indicating that the optimum 

electrocatalyst binds the reaction intermediates neither too strongly nor too weakly.[1,21] 

This binding-energy approach prevails, with proven efficacy, in electrocatalysis, and the 

vast majority of research aspires to climb up the volcano apex.[22,23] 

In line with the binding-energy approach, it appears viable to endow the chosen descriptor 

with a probability distribution function (PDF) for different active sites. This will contribute 

to answer the question how the active-site distribution influences the overall activity and 

durability of an electrocatalyst. So far, only a few works have addressed such issues. 

Norskov et al. presented a conceptual analysis on the varying contributions of different 

types of active sites to the overall activity.[1] Eikerling et al. systematically studied the 

degradation of the electrochemical surface area of Pt-based ORR catalysts.[24-26] In this 

Letter, we develop a new statistical theory for understanding the activity and durability of 

electrocatalysts from the perspective of spatially distributed and temporally evolving 

binding energy at active sites. Our theory is universally applicable for heterogeneous 

electrocatalysis and may spur further progress in a rational design of active sites. 

Theory 

We consider a nonhomogeneous electrocatalyst, as shown schematically in Figure 1 (a), 

with nonhomogeneously distributed active sites. The nonhomogeneity results in a binding-

energy distribution characterized by a probability density function (PDF). The 

phenomenon that the activity of the electrocatalyst changes as a function of time is 

described as a consequence of the evolution of the PDF. The task is to interlink the overall 

activity with parameters to the PDF, and further to connect the degradation of the 

electrocatalytic activity to the evolution kinetics of the PDF. 

We assume the activity descriptor’s PDF as a normal distribution, depicted in Figure 1 (c) 

and given by 

𝑝(𝑥) =
1

√2𝜋𝜎
exp(−

1

2
(
𝑥 − 𝜇

𝜎
)
2

), (1) 

where 𝑥 (eV) is the activity descriptor, 𝜇 (eV) the mean value, and 𝜎 (eV) the standard 

deviation. We assume that the electrocatalytic activity is a symmetric volcano-shaped 

function of the descriptor, Figure 1 (b). After normalization with respect to the maximum 

activity, the volcano plot is expressed as 

𝑓(𝑥) = exp(−𝛽|𝑥|), (2) 

where the coefficient is 𝛽 = (2𝑘𝐵𝑇)
−1 with 𝑘𝐵 (eV K-1) being the Boltzmann’s constant 

and T (K) the absolute temperature. At T=300 K, we have 𝛽 = 19.4 eV-1. As volcano plots 

are potential-dependent,[27-30] it is thus important to note that the present theory describes 

the performance of electrocatalysts at constant potential, rather than constant current 

(density). The specific forms of 𝑝(𝑥)  and 𝑓(𝑥)  are reasonable in terms of physical 
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significance, and also simple in terms of algebraic manipulation. The subsequent derivation 

is generic to other forms of 𝑝(𝑥) and 𝑓(𝑥), for example, asymmetric volcano-shaped 

functions. 

 

Figure 1. (a) Schematic illustration of a nonhomogeneous electrocatalytic particle. Circles in different colors 

represent active sites with different binding energies. (b) shows the volcano-shaped activity function 𝑓(𝑥) =
exp(−𝛽|𝑥|) with 𝛽 being the exponential coefficient. The vertical axis has a logarithmic scale. (c) shows a 

normal distribution of binding energy, viz., the activity descriptor, among different active sites 𝑝(𝑥) with a 

mean value of 𝜇 (eV) and a standard deviation of 𝜎 (eV). 

The fraction of active sites falling into the descriptor range of [𝑥, 𝑥 + 𝑑𝑥] is 𝑝(𝑥)𝑑𝑥, each 

contributing to the overall activity with an amount of 𝑓(𝑥). The overall activity is the sum 

of all active sites 

⟨𝑓⟩ = ∫ 𝑑𝑥 𝑓(𝑥)𝑝(𝑥)
∞

−∞

. (3) 

Some algebraic manipulations result in an analytical solution for ⟨𝑓⟩ 

⟨𝑓⟩ =
1

2
(exp(

𝛽2𝜎2 + 2𝛽𝜇

2
) erfc (

𝛽𝜎2 + 𝜇

√2𝜎
)

+ exp(
𝛽2𝜎2 − 2𝛽𝜇

2
) erfc (

𝛽𝜎2 − 𝜇

√2𝜎
)), 

(4) 

where erfc(x) is the complementary error function. 

Figure 2 (a) depicts the variation of ⟨𝑓⟩ as a function of 𝜎 for different values of 𝜇. Since 
⟨𝑓⟩ is an even function of 𝜇, we only have to consider positive values of 𝜇, corresponding 

to the weak-binding leg of the volcano plot. The analysis applies equally to the strong-

binding leg of the volcano, i. e., 𝜇 < 0 . When 𝜇 = 0  (the mean binding energy is 

reconciled with the volcano’s apex), ⟨𝑓⟩ monotonically decreases as 𝜎 grows, implying 
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that the overall activity of an averagely optimal electrocatalyst decreases rapidly when the 

homogeneity deteriorates. When 𝜇 ≠ 0, ⟨𝑓⟩ changes nonmonotonically with increasing 𝜎, 

implying that nonhomogeneity is, surprisingly, not always detrimental. Specifically, ⟨𝑓⟩ 
increases when 𝜎 reaches ~𝜇, and then decreases slowly. An intuitive explanation of this 

peculiar nonmonotonicity is that a certain degree of nonhomogeneity, commensurate with 

the mean property, renders the highest fraction of active sites near the volcano’s apex. In 

other words, for the vast majority of electrocatalysts whose mean property deviates from 

the optimum, the overall activity is highest when 𝜎 ≈ 𝜇 instead of the expected outcome 

𝜎 = 0. 

  

Figure 2. (a) The overall activity ⟨𝑓⟩  and (b) the positive-defined descriptor value of the homogenous 

counterpart Δ as a function of 𝜎 for different values of 𝜇 (in steps of 0.1 eV from 0 to 0.5 eV). (c) Schematic 

illustration of the homogeneous counterpart of a nonhomogeneous electrocatalyst. 

Homogeneous counterpart 

A homogeneous counterpart is a homogeneous electrocatalyst (𝜎 = 0) that provides the 

same amount of activity as that of the nonhomogeneous electrocatalyst, c.f. Figure 2(c). 

The descriptor value of this homogenous counterpart is denoted as 𝛥 (eV) and adopts 

positive values only (note again that ⟨𝑓⟩ is an even function of 𝑥). From the definition, we 

have 𝑓(𝛥) = ⟨𝑓⟩, leading to 
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𝛥(𝜇, 𝜎) = −
𝛽𝜎2

2
−
1

𝛽
ln

(

 
𝑒𝛽𝜇erfc (

𝛽𝜎2 + 𝜇

√2𝜎
) + 𝑒−𝛽𝜇erfc (

𝛽𝜎2 − 𝜇

√2𝜎
)

2

)

 . (5) 

When 𝜇 ≠ 0, 𝑒𝛽|𝜇|erfc (
|𝜇|+𝛽𝜎2

√2𝜎
) ≪ 𝑒−𝛽|𝜇|erfc (

𝛽𝜎2−|𝜇|

√2𝜎
), and 𝛥 is approximated as 

𝛥(𝜇 ≠ 0) ≈ |𝜇| −
𝛽𝜎2

2
−
1

𝛽
ln (

1

2
erfc (

𝛽𝜎2 − |𝜇|

√2𝜎
)). (6) 

When 𝜇 = 0, Eq.(5) is reduced to 

𝛥(𝜇 = 0) =
𝛽𝜎2

2
−
1

𝛽
ln (erfc (

𝛽𝜎

√2
)), (7) 

which, by using the approximation, erfc(x) ≈
1

√𝜋

𝑒−𝑥
2

𝑥
 for 𝑥 ≫ √2/𝜋 , namely, 𝜎 ≫

2

𝛽
√
2

𝜋
= 0.08 eV, could be further simplified to 

𝛥(𝜇 = 0, 𝜎 ≫
2

𝛽
√
2

𝜋
) =

1

𝛽
ln (√

𝜋

2
𝛽𝜎). (8) 

Figure 2(b) visualizes how 𝛥 varies as a function of 𝜇 and 𝜎. At the vertical line 𝜎 = 0, 

namely, for homogeneous electrocatalysts, we retrieve the expected result, 𝛥 = 𝜇. For a 

given 𝜇, 𝛥 first decreases but then increases with raising 𝜎, which is consistent with the 

nonmonotonic trend of ⟨𝑓⟩ in Figure 2(a). All the curves converge to the same curve, 𝛥 =

1

𝛽
ln (√

𝜋

2
𝛽𝜎), when 𝜎 ≫ max(

2

𝛽
√
2

𝜋
, √

|𝜇|

𝛽
), implying that the overall activity is nearly 

independent of the mean property when the standard deviation is sufficiently high. In other 

words, homogeneity control becomes more important than mean-property control in such 

situations. 

Site-site variation 

In addition to the overall activity, we are also interested in the activity variation between 

different active sites, termed site-site variation for short. Therefore, it is desirable to 

interlink the site-site variation with the PDF. An analytical expression for the site-site 

variation normalized with respect to the average activity 𝛴, is obtained 
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𝛴 = √

2𝑒(𝛽𝜎)
2
[𝑒−2𝛽𝜇 erfc (

2𝛽𝜎2 − 𝜇

√2𝜎
) + 𝑒2𝛽𝜇 erfc (

2𝛽𝜎2 + 𝜇

√2𝜎
)]

[𝑒−𝛽𝜇 erfc (
𝛽𝜎2 − 𝜇

√2𝜎
) + 𝑒𝛽𝜇 erfc (

𝛽𝜎2 + 𝜇

√2𝜎
)]
2 − 1. (9) 

Figure 3 shows 𝛴 as a function of 𝜎 when 𝜇 varies from 0 eV to 1 eV (in steps of 0.1 eV). 

𝛴  first increases exponentially, but then goes through a hump, and finally converges, 

regardless of 𝜇 , to 𝜎0.5  with increasing values of 𝜎 . For a given 𝜎 , 𝛴  is greater with 

increasing 𝜇 . Correspondingly, the activity variation between active sites is more 

pronounced when the mean binding energy deviates further from the volcano’s apex. The 

nonmonotonic behavior of 𝛴 as a function of 𝜎 for 𝜇 > 0 eV can be understood in the same 

way as in Figure 2 (a) and (b) corresponding to ⟨𝑓⟩ and 𝛥, respectively. 

 

Figure 3. Normalized site-site variation Σ as a function of 𝜎 when |𝜇| increases from 0 eV to 1 eV in steps of 

0.1 eV. 

Degradation of activity 

After examining the electrocatalyst at a certain point of its lifetime, we proceed to study 

the degradation behavior. An electrocatalyst may degrade due to a plethora of mechanisms, 

such as, active site poisoning, support corrosion, dissolution and agglomeration of active 

sites, etc.[31-33] A comprehensive treatment of the degradation is beyond the scope of this 

work. Instead, we focus on interlinking the degradation of the activity with the evolution 

of the binding energy of active sites, which can be attributed to atomic mechanisms such 

as active-site poisoning, change in electronic and geometrical factors of the electrocatalyst, 

and change in the local reaction condition near active sites.[31-34] Consequently, the task 

of modelling the degradation of the activity is transformed to that of modelling the 

evolution of the descriptor’s PDF, 𝑝(𝑥). 
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Treated as a Markovian stochastic process, the PDF evolution process is described using 

the Fokker-Planck theory [35] 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
=
𝜕

𝜕𝑥
(−𝛾(𝑥, 𝑡)𝑝(𝑥, 𝑡) + 𝐷(𝑥, 𝑡)

𝜕𝑝(𝑥, 𝑡)

𝜕𝑥
), (10) 

where the first term on the right hand side is a drift flux, and the second term a diffusion 

flux. Generally, the drift coefficient 𝛾(𝑥, 𝑡) and the diffusion coefficient 𝐷(𝑥, 𝑡) are time-

varying and dependent on 𝑥. The usual case where the volcano peak repels active sites 

away from the volcano peak (𝑥 = 0) and the overall activity decreases during aging is 

described by 𝛾(𝑥, 𝑡) > 0. 

We assume that the initial distribution is a normal distribution 

𝑝(𝑥, 0) =
1

√2𝜋𝜎0
exp(−

(𝑥 − 𝜇0)
2

2𝜎0
2 ), (11) 

with 𝜇0 and 𝜎0 being the initial mean value and standard deviation. A zero probability at 

infinity serves as the other boundary condition closing Eq.(10) 

𝑝(±∞, 𝑡) = 0. (12) 

Assuming constant 𝛾 and 𝐷, we obtain an analytical expression of 𝑝(𝑥, 𝑡) 

𝑝(𝑥, 𝑡) =
1

√2𝜋𝜎(𝑡)
exp(−

(𝑥 − 𝜇(𝑡))
2

2𝜎(𝑡)2
), (13) 

with a time-varying mean value 

𝜇(𝑡) = 𝜇0 exp(𝛾𝑡), (14) 

and a time-varying standard deviation 

𝜎(𝑡) = √
𝐷(exp(2𝛾𝑡) − 1)

𝛾
+ 𝜎0

2 exp(2𝛾𝑡). (15) 

The PDF’s evolution is characterized by two phenomenological parameters 𝛾  and 𝐷 . 

Specifically, the growth rate of 𝜇  is solely determined by 𝛾 , while that of 𝜎  is co-

determined by 𝛾  and 𝐷 , and 𝜎(𝑡) = √2𝐷𝑡 + 𝜎0
2  if 𝛾 = 0 . Figure 4 (a)-(c) shows the 

evolution of 𝑝(𝑥, 𝑡) for different initial conditions with a diffusion coefficient of 𝐷 =
0.005 (m eV-2s-1) (An arbitrary value for the mere purpose of quantitative exposition; the 

results of Figure 4 (a)-(c) do not change if we use other values). For 𝜇0 < 0 (𝜇0 > 0), the 

mean of 𝑝(𝑥, 𝑡) is shifted to more negative (positive) values and 𝜎 increases with aging. In 

case of 𝜇0 = 0, however, the mean of 𝑝(𝑥, 𝑡) is kept virtually constant while 𝜎 grows. 
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As 𝑝(𝑥, 𝑡)  retains a normal distribution along aging, the overall activity ⟨𝑓⟩  is still 

expressed as Eq.(13). The degradation pattern, namely, the time dependency of 〈𝑓〉, is 

dependent on the initial distribution. If |𝜇0| > 𝛽𝜎0
2 , the degradation behavior initially 

follows, ln⟨𝑓⟩ ∝ −𝛽[𝛾(|𝜇0| − 𝛽𝜎0
2) + 𝐷]𝑡 and transitions to, ln⟨𝑓⟩ ∝ −𝛾𝑡, at a later stage. 

If |𝜇0| < 𝛽𝜎0
2, only the latter pattern, ln⟨𝑓⟩ ∝ −𝛾𝑡, can be found. Figure 4 (d)-(e) shows 

the evolution of 〈𝑓〉, normalized to its initial value, for different 𝜇0’s and different D’s, 

respectively. Given 𝜎0 = 0.05 eV and 𝐷 = 𝛾σ0
2/2, ln⟨𝑓⟩ decreases with a slope of −1 as 

a function of 𝛾𝑡 for 𝜇0 = 0 eV, while it exhibits a two-stage degradation pattern for 𝜇0 =
−0.2 eV, viz., |𝜇0| > 𝛽𝜎0

2. The first stage becomes steeper when 𝐷 is greater, as shown in 

Figure 4 (e). 

The theoretical prediction of exponential decay in activity is tested using platinum-group 

metal-free (PGM-free) ORR electrocatalysts. This is done for two different reasons. Firstly, 

the present theory describes electrocatalytic activity and durability at a fixed potential. 

Therefore, it is a requirement of consistency that experimental data used to test the theory 

should also be obtained at a fixed potential, which is the usual case for PGM-free ORR 

electrocatalysts. On the contrary, the durability of Pt-based ORR electrocatalysts is 

evaluated, according to standard protocols,[36] by letting electrocatalysts undergo 

potential cycling. Secondly, the present theory describes activity degradation due to 

evolution of the binding-energy distribution, in accordance with the major atomic 

degradation mechanisms of PGM-free ORR electrocatalysts, namely, active site poisoning 

and deactivation.[31-33] As for Pt-based ORR electrocatalysts, the major degradation 

mechanisms are Pt dissolution, agglomeration, and detachment.[24-26] 

Figure 4 (f)-(g) show the activity degradation of two PGM-free ORR electrocatalysts 

belonging to the Fe/N/C catalyst family, including (f) the type A prepared by Shao et al.[34], 

and (g) the type B prepared by Yin and Zelenay.[37] Three type A electrocatalysts, 

prepared at three pyrolysis temperatures (950,1050,1150 °C), are compared at 0.6 VRHE in 

a single H2/O2 cell. The type B electrocatalyst is evaluated at three different potentials (0.84, 

0.70, 0.40 VRHE) in a single H2/O2 cell at 80°C.[37] 
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Figure 4. (a)-(c) Evolution of the probability distribution function from different initial conditions. The 

diffusion coefficient is D=0.005 (m eV-2s-1), the time range is (0, 𝛾−1) , and the time step is (10𝛾)−1 . 

Evolution of 〈𝑓〉 normalized to its initial value for (d) different initial mean values 𝜇0  and (e) different 

diffusion coefficients D with other conditions specified. (f) and (g) Fitting degradation behavior of platinum 

group metal-free (PGM-free) oxygen reduction electrocatalysts using the developed theory. Dashed lines 

represent model simulation, and symbols represent experimental data which have been normalized with 

respect to their initial values. (f) shows the results for NC-ClTeTMPP electrocatalyst (type A) prepared by 

Shao et al.[34] Three pyrolysis temperatures (950,1050,1150 °C) are compared. The degradation tests were 

conducted using a single H2/O2 cell at 0.6 VRHE. (g) shows the results for CM-PANI-Fe-C(Zn) electrocatalyst 

(type B) prepared by Yin and Zelenay.[37] The degradation tests were conducted using a single H2/O2 cell at 

80°C at three different potentials (0.84, 0.70, 0.40 VRHE). 

A two-stage decay pattern, consisting of an initial fast stage and a successive slow stage, 

is found for the two electrocatalysts, falling into the regime of |𝜇0| > 𝛽𝜎0
2 in the present 

theory. 𝜇0  and 𝜎0  of these two electrocatalysts are not reported in the literature. The 

notorious ill-defined nature and variety of active sites prevent us from a reliable 
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determination of 𝜇0 and 𝜎0 using electronic structure calculations. Thus, focus is put on 

the second stage, which follows a relation of ln⟨𝑓⟩ ∝ −𝛾𝑡 according to the present theory. 

From the second stage, values for 𝛾 are obtained unambiguously, and listed beside the 

corresponding curve in Figure 4. It is found that, 𝛾  is lower, indicating retarded 

deactivation of active sites and slower degradation, when the pyrolysis temperature is 

higher and when the overpotential is lower; both trends are intuitively reasonable, lending 

credence to the presented simple theory. 

Conclusion 

We developed a simple theory with exact analytical solutions to describe statistical 

properties of electrocatalytic activity and durability. Our theory demonstrates that the 

overall activity of a nonhomogeneous electrocatalyst is strongly dependent on the 

inhomogeneity and standard deviation of the active sites. More precisely, the highest 

overall activity is obtained when the standard deviation is commensurate with the mean 

value of the binding energy, thus nonhomogeneity is not always detrimental. The site-site 

variation of activity is derived, which can be used as an analytical tool for electrocatalytic 

activity mapping methods. Degradation patterns are analytically related to the evolution 

kinetics of the PDF via the Fokker-Planck theory. Exponential decay of the overall activity 

is predicted by our theory and confirmed by experimental data of ORR catalysts taken from 

the literature. Considering that statistical considerations are urgently needed for 

electrocatalyst design, our theory, the first one of its sort, can be an important theoretical 

tool to characterize and further to design the distribution at the active-site level. 
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