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Abstract

The in silico modeling of molten salts is of crucial importance to emerging "carbon-

free" energy applications, but is inhibited by the computational cost of quantum me-

chanically treating the high polarizabilities characteristic of molten salts. Here, we

integrate configurational sampling using classical force-fields with active learning to

automate the generation of near-DFT accurate machine learning Gaussian Approxi-

mation Potentials (GAP) for molten LiCl using fewer than 600 atomic configurations.

Relative to conventional ab initio molecular dynamics, the molten LiCl GAP model
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exhibits a 19,000x speedup and improved experimental agreement as gauged by calcu-

lated R-factors. The accuracy of the GAP parametrization workflow is validated by its

ability to reproduce experimental structure factors, densities, self-diffusion coefficients,

and ionic conductivities for molten LiCl. This hybrid simulation strategy significantly

accelerates the generation of machine learning potentials for molten salts by reducing

the expensive ab initio calculations required for parameterization to O(100) evalua-

tions, enabling the facile generation of first-principles quality predictions of structural

and dynamical properties of molten salts.

2



Molecular dynamics (MD) simulations constitute a crucial component of modern atom-

istic modeling efforts.1 While in principle many-body energies and forces for MD can be

derived from solutions of the Schrödinger equation,2 the computational costs of ab initio

MD (AIMD) limits the accessible spatiotemporal scales of simulations. In many atomistic

systems the dynamical processes of interest (e.g., structural relaxation, diffusion, transport)

extend beyond the picosecond timescale, and alternatives to direct AIMD are required. The

most common alternative involves the use of efficient classical pairwise interatomic poten-

tials parametrized via ab initio calculations and experiments.3 While these classical poten-

tials exhibit improved computational efficiency, they are approximate and neglect the full

complexity of the potential energy surface, resulting in variable and often poor performance.

Recently, advances in machine learning (ML) have radically transformed the landscape of

dynamical simulations in atomic systems4–10 by providing flexible and computationally effi-

cient functional forms for parametrizing force-fields via reference ab initio datasets of atomic

configurations. These ML potentials (MLP) provide a mechanism for obtaining near AIMD

accuracy at a computational cost dramatically reduced from full AIMD simulation, enabling

the accurate and scalable dynamical modeling of highly polarizable atomic systems that have

been traditionally challenging for either AIMD or classical force-fields.

Molten salts are high temperature ionic liquids with significant potential in energy ap-

plications such as liquid metal batteries,11,12 concentrated solar power13,14 and molten salt

reactors.15 The high chemical reactivity of molten salts makes direct characterization of their

structure and properties experimentally challenging. As a result, computational modeling

has been a crucial component of efforts to understand and design the structure and ther-

modynamics of molten salts for over 50 years.16–19 Despite the early successes of classical

interatomic potentials such as the Rigid Ion Model (RIM), the systematic modeling of molten

salts has been inhibited by the dominant role that many-body electronic polarization plays

in governing the potential energy surface.18,20 Recently, we showed that many-body polariza-

tion in NaCl melts can be captured accurately by using MLP simulations scaled to ∼10,000
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atoms with near Density Functional Theory (DFT) accuracy.21 At these spatiotemporal

scales, structural heterogeneity and ensemble averaging can be incorporated meaningfully

into calculations, combining the accuracy of DFT with the statistical sampling of classical

interatomic potentials.

Despite these successes, the application of MLPs to the broader chemical space of molten

salts is challenged by the difficulty of MLP parametrization. In MLP parametrization efforts,

one must balance the computational cost of training set generation, the sampling of diverse

atomic configurations, and the challenge of ML hyperparameter optimization to develop

MLP models of sufficient predictive accuracy and generalizability. A variety of approaches

have been put forward to augment MLP training in other disciplines,22–24 but comprehensive

strategies facilitating the application of MLPs to general molten salt chemistries are absent

from the literature. A systematic approach for modeling molten salts via automated bottom-

up MLP parametrization would represent a crucial stepping stone towards the understanding

of molten salts, as well as the broader field of ionic liquids of importance to numerous energy

applications.25

In this letter, we present a systematic approach for automating molten salt MLP develop-

ment via the combination of configurational sampling using classical force-fields, active learn-

ing,26 and Bayesian hyperparameter optimization27 of Gaussian Approximation Potentials

(GAP). First, we describe the components of the automated MLP parametrization workflow

for molten salts as well as the criteria for convergence. We then apply this automation scheme

to generate MLP for molten LiCl, and validate MLP performance at multiple temperatures

via comparison to DFT-derived atomic forces and experimentally derived structure factors,

densities, diffusivities, and ionic conductivities. The ability of the parametrized MLP to

accurately reproduce experimental structural, thermodynamic, and dynamical properties of

interest reinforces the efficacy of the proposed modeling paradigm, and we describe further

applications and improvements for the method moving forward.

Motivated by the success of previous applications of active learning to MLP genera-
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Figure 1: Workflow and performance for LiCl GAP model. a) Automated workflow for GAP
parametrization incorporating configurational sampling via RIM, active learning, DFT, and
GAP model fitting. GAP model fitting proceeds iteratively until prediction accuracy of
atomic energies has converged to below a threshold. b) Comparison of parametrized GAP
model and RIM against exact DFT-derived forces for 50 random configurations drawn from
RIM Simulations. Standard deviation of the fit is reported in plot legend parentheses.

tion,28,29 we combine configurational sampling with active learning and DFT single point

calculations to create an automated workflow that iteratively converges GAP model predic-

tion accuracy to within a targeted threshold. The MLP parametrization workflow developed

in this work and applied to molten LiCl is illustrated in Figure 1a). Specifically, a NVT MD

simulation using the Born-Mayer-Huggins-Tosi-Fumi potential16,17,30,31 is used to melt a 64

atom box of LiCl, with sampling then performed at 1800 K over a density range spanning

+/- 40% of the experimental density. Configurations over this density interval are uniformly

sampled and clustered using the HDBSCAN algorithm.32 The clustered configurations are

then resampled to identify configurations for labeling (i.e., calculation of energies and forces)

via DFT calculations at the PBE+D3 level of theory.33–35 This dataset of configurations and

DFT-derived labels is then used to fit a GAP model using the Smooth Overlap of Atomic
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Positions (SOAP) descriptor,36,37 with Bayesian optimization applied to the GAP hyperpa-

rameters. This procedure is then iteratively repeated, with the active learning algorithm

providing additional configurations for labeling and inclusion in the GAP parametrization

until a target accuracy of 5 meV/atom is achieved in the energy predictions. For LiCl this

target accuracy is achieved using only 584 training configurations, with Figure 1b) demon-

strating the superior performance of the GAP potential as compared to the RIM potential

in predicting DFT-derived atomic forces of reference configurations.38 Additional details re-

garding MD simulations, DFT calculations, active learning,28,39 and GAP hyperparameter

optimization (Table 3) are provided in the SI.

The LiCl GAP model resulting from the automated parametrization workflow in Fig-

ure 1a) is next applied to simulate the structure and dynamics of a larger 1024 atom box

of LiCl (512 Li+, 512 Cl−). GAP MD simulations are performed using the LAMMPS soft-

ware package compiled with the QUIP pair style.40 The simulation box is initialized at the

experimental density41 and equilibrated with NVT MD simulations to a target temperature

of 1200 K over 200 ps with a Nose-Hoover thermostat.42,43 The volume of the system is then

relaxed using a NPT MD simulation44–46 (barostat coupling equal to 1 bar) for 750 ps. The

final configurations generated via NPT at 1200 K are then cooled at a rate of 1 K/ps using

NPT MD simulations in steps of 100 K until the lowest temperature of interest (900 K) is

achieved. Finally, for each target temperature (1200 K, 1100 K, 1000 K, 900 K) configura-

tional sampling is performed for over 8 ns in the NVT ensemble, with the final 7.5 ns of the

trajectories being used for calculating the structural and dynamical properties of interest.

The diffusion constants derived from our GAP MD simulations (∼10 nm2/ns) suggest that

the Li and Cl nuclei diffuse ∼10 times the size of an average LiCl bond during our 0.5 ns

equilibration time, suggesting that proper system equilibration is achieved.

To validate the performance of the LiCl GAP MLP we compare the structure of GAP

MD-derived configurations to those obtained from high energy X-ray diffraction (HEXRD)

experiments performed at ∼900 K. The partial pair distribution functions (PDF) for Li+-Li+,
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Figure 2: Comparison of structural properties obtained from simulations and experiments.47
a) Total X-ray structure factor of molten LiCl derived via (blue) GAP MD at 900 K, (red)
HEXRD at 873K and (green) conventional AIMD at 900 K. b) Total pair distribution func-
tion (PDF) of molten LiCl derived via (blue) GAP MD, (red) HEXRD at 873K, and (green)
conventional AIMD at 900 K. The subscript in the GAP label refers to the number of atoms
used in the simulation.
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Li+-Cl− and Cl−-Cl− atomic pairs are obtained from 900 K GAP MD trajectories of the 1024

atom simulation cell and transformed to the total structure factor, S(Q), via Fourier trans-

formation and use of atomic form factors.48,49 The S(Q) obtained via GAP MD simulation

is compared in Figure 2a) with that recorded using HEXRD with a transmission geometry

at beamline 6-ID-D at the Advance Photon Source (APS),47 as well as the results generated

with ab initio MD simulations.47 The GAP MD simulation exhibits excellent agreement with

both full AIMD (216 atoms, 15 ps total simulation time) simulation and HEXRD over all

Q values. GAP also provides improved accuracy over AIMD in resolving the position of the

First Sharp Diffraction Peak (FSDP) at Q ≈ 2 Å−1, as seen in the insert of Figure 2a). The

improved performance at small and intermediate Q values is likely attributable to the sig-

nificantly larger simulation cell and improved configurational sampling of GAP MD relative

to the benchmark AIMD simulation. To quantify the disagreement between experiment and

the modeled structure, we calculated the R-factor50 (see SI Equation 2 for details) of both

AIMD and GAP MD generated results. The GAP MD generated structure showed lower

disagreement with respect to experiments at both short (∼ 4.0%) and medium range (∼

1.2%) compared to that generated from AIMD (Table 1).

In addition to improved predictive accuracy relative to AIMD, GAP MD also exhibits

dramatically improved computational scalability, facilitating the simulation of extended spa-

tiotemporal scales. Benchmarking simulations were performed to quantify the speedup asso-

ciated with GAP MD relative to conventional AIMD. Using two compute nodes a 216 atom

LiCl box produced timings of ∼0.029 seconds/MD timestep and ∼549 seconds/MD timestep

for GAP MD and AIMD, respectively. This constitutes a ∼19,000x speedup of GAP MD

relative to AIMD, with the additional feature that GAP MD will scale linearly with system

size whereas AIMD will scale at best cubically.51

Provided the significantly improved S(Q)/PDF prediction capability, as well as enhanced

computational efficiency, GAP MD was also applied to model the structure of molten LiCl

at 1000 K, 1100 K, and 1200 K. The temperature-dependent partial PDF of each atomic
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Table 1: R-factor50 showing disagreement between experiment and simulations computed
using SI Equation 2. Larger R-factor corresponds to more disagreement.

Range (Å) Method RX (%)

2 < r ≤ 5 AIMD 8.31
GAP 3.97

5 < r ≤ 14 AIMD 1.98
GAP 1.22
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Figure 3: Temperature dependent variation of the total PDF of molten LiCl from 900 K to
1200 K obtained from GAP MD simulations. Curves are shifted vertically for clarity. Inset:
zoomed unshifted first peak of PDF.

pair is shown in Figure 3. As expected, the peak intensity for all atomic pairs decreases

with increasing temperature, indicating increasing structural disorder. Concomitant with

the change in peak intensity are changes in the PDF peak positions, with the distance

between like-charged atomic pairs (i.e., Li+-Li+, 3.52 to 3.55 Å and Cl−-Cl−, 3.68 to 3.71

Å) increasing with increasing temperature, and the distance between oppositely charged

atomic pairs (i.e., Li+-Cl−, 2.30 to 2.29 Å) decreasing. The shorter average bond length

9



between Li-Cl pairs is a result of increased binding affinity with increasing temperature (see

SI Table 4). This behavior has also been observed in the alkaline chlorides NaCl21 and

KCl.52 In addition to bond length variation, the coordination number between the Li and

Cl pairs also decreases from 4.52 to 4.27 as temperature is increased from 900 K to 1200 K

(see SI Table 5). These trends agree with previous reports using the reverse Monte Carlo

method.53,54

The coordination number of Li-Cl pairs obtained in this study is smaller than that ob-

tained using the RMC method,53 and more importantly is smaller than that of NaCl pairs

at similar temperatures,21 in contrast to previous work.54 The facts that Li is a smaller

cation and that the first coordination shell of LiCl is smaller than that of NaCl could lead

to the smaller coordination number of Li-Cl pairs compared to that of Na-Cl. Note that the

coordination number is a statistical average of neighbouring atoms that fall into the first

coordination shell (i.e., from origin to the first minimum on the gαβ plot): atomic configu-

rations with coordination numbers equal to 4, 5, or 6 co-exist within the melt. The bond

angle distribution function of Cl-Li-Cl shows a broad peak near 90◦ (see SI Figure 5) for all

temperatures simulated, indicating that the majority of the structures in molten LiCl retain

the octahedral symmetry of the face centered cubic (FCC) crystal structure of its solid phase,

which agrees with that reported by Mcgreevy et al.53

GAP MD simulations across the 900 K–1200 K range were also analyzed to assess the

ability of GAP MD to reproduce the experimentally determined temperature-dependent den-

sities of LiCl reported by Janz.41 The structural prediction accuracy demonstrated in the

previous sections manifests in excellent agreement between GAP MD and the experimentally

determined densities, with the maximum difference observed over the temperature range be-

ing 1.7%. The consistent overprediction of the GAP MD density relative to the experimental

density is consistent with previous works observing that PBE+D3 generally overestimates

lattice properties.55

Next, we use the improved computational efficiency of GAP MD relative to AIMD to
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Figure 4: Comparison of temperature-dependent physical properties obtained from GAP MD
simulations and experiments.41,56–58 a) Density, b) self-diffusion coefficients for Li+ , Cl−.
(Dotted lines are the linear fit between the log scale diffusion coefficient and the reciprocal
of temperature) and c) ionic conductivities.

examine the dynamical properties of molten LiCl. First we examine the diffusion constants of

Li+ and Cl−, which are important in nuclear fuel reprocessing,59 in which Li metal chemically

reduces UO2 to its metal form via the electrochemical reduction of Li+, the reaction of which

is usually diffusion-limited. The self-diffusion coefficient of Li+ and Cl− are computed by

fitting the slope of the mean squared displacement vs. time and using the Einstein relation

(SI Equation 5). The simulated self-diffusion coefficients are compared with the available

experimental data56,57 in Figure 4b). The simulated GAP MD self-diffusion coefficient agrees

well with experimental values and shows an Arrhenius relationship with the temperature.

The activation energy for the self-diffusion of Li+ and Cl− is calculated as EA = 4.95 kcal/mol

and EA = 5.82 kcal/mol respectively, in line with the experimental results.57

Lastly, we compute the ionic conductivity of molten LiCl using the GAP MD trajec-

tories at multiple temperature points. Applications such as liquid metal batteries12 and

pyroprocessing of spent nuclear fuel59,60 can benefit from the accurate prediction of the ionic

conductivity of LiCl. The ionic conductivity of LiCl is calculated via the Green-Kubo rela-

tion (SI Equation 7), which incorporates all ionic correlations in the melt to provide a more

realistic estimation of ionic conductivity.61 The predicted ionic conductivity of LiCl resulting

from GAP MD simulations ranges from 6.67 S/cm to 7.47 S/cm over the temperature range

900 K to 1200 K, and is in good agreement with the values reported by Janz.58 The accurate

prediction of conductivities, in particular, make the approach promising for modeling devices
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for thermo or electrochemical energy storage with molten salts.

Many avenues exist for the future improvement of the GAPMD parametrization workflow

described in this work. The automated parametrization process does not require generation

of expensive AIMD datasets, and the most important configurations are directly sampled

from straightforward RIM melt simulations. The active learning identifies that only < 600

single point DFT calculations are required for parametrizing the melt configuration space for

fitting the LiCl potential. While PBE+D3-derived forces represent a considerable improve-

ment on those predicted by the RIM model, higher accuracy electronic structure methods are

available for parametrization.62 While historically the computational cost of advanced hybrid

or meta-GGA DFT inhibits their high-throughput use for force-field parametrization, the

use of active learning here presents an avenue for their incorporation into the parametriza-

tion of MLPs, as the number of required configurations is dramatically reduced relative to

random configurational sampling. Further, the sampling strategy proposed in this study can

be expanded to account for more complex scenarios traversing thermodynamic configuration

and composition space such as modeling mixtures of molten salt melts .

We have developed an automated workflow for the parametrization of molten salt MLP

and applied it to examine the structural and dynamical properties of molten LiCl. Parametrized

GAP MD MLPs provide significant increases in the spatiotemporal scales of molten salt

simulations, here allowing for 1024 atom simulations over ∼10 ns timescales; this is in stark

contrast to typical AIMD simulations using ∼200 atoms for 10s of picoseconds and repre-

sents a conservative four order of magnitude speedup that will improve further for larger

systems. The increased system sizes, improved sampling, and near-DFT accuracy of GAP

MD leads to excellent agreement with experimental characterizations of densities, structure

factors, pair distribution functions, self-diffusion constants, and ionic conductivities for the

case of molten LiCl studied here. The developed workflow is extensible to any molten salt

chemistry and provides hope for the in silico screening of molten salt structure and dynamics

in experimentally inaccessible regions of chemical and thermodynamic space.
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RIM Configuration Generation

A 64 atom LiCl box (32 Li+, 32 Cl−) is randomly packed at the experimental density and

used for BMHTF RIM simulations.16,17 Simulations are performed using LAMMPS.40 The

initial structure is melted at 3000 K and then equilibrated to a target temperature of 1800 K.

Equilibrations are performed in an NVT ensemble using the Nose-Hoover thermostat.42,43

Our goal is sample configurations at an elevated temperature ( � melting temperature) so
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as to gain a diverse sampling of melted configurations. Two different simulations are used for

sampling at 1800 K: a) simulations at the fixed experimental density b) simulations using a

deformation of the cubic box over a density interval that corresponds to ± 40% of reference

experimental density. Both of the samplings are performed over 12.5 ns with an NVT

ensemble and a time step of 0.5 fs. From each of the independent runs 50,000 configurations

are drawn and passed to the active learning algorithm for clustering and selection.

DFT

Dispersion-corrected DFT single point calculations are performed using the Vienna Ab initio

Simulation Package.63 The Perdew–Burke–Ernzerhof exchange-correlation functional with

the “D3" dispersion correction and projector-augmented wave method are employed.33–35,64

A large plane wave cutoff of 700 eV with an electronic convergence criterion of 10−5 eV is

used. A Γ-centered 1× 1× 1 k-mesh is used for reciprocal sampling.

Active learning

The pseudocode for the clustering based active learning,28 described below, bears overlap

with the previous work of Sivaraman et al.:39

Initialization: trajectory, distance measure, target accuracy.

1. Configurations of the input trajectory are featurized by using distance matrices.

2. Perform unsupervised clustering based on HDBSCAN algorithm to obtain uncorrelated

clusters. The distance measure of root mean square deivation of atomic positions is

used.

3. Training and test configurations are sequentially drawn from the clustering performed

on large pool of RIM simulation configuration.

4. Perform single point DFT configuration
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5. Perform hyperparameter tuning using Bayesian optimization (BO) as implemented

in the GPyOpt library65 to get the best GAP model for a chosen set of training

configurations as validated against independent test configurations.

6. Draw more samples from the clustered configurations if the GAP target accuracy of <

5 meV/atom has not been achieved and repeat [3-5].

7. Exit if the target accuracy is achieved. For the accuracy we use Mean Absolute Error

in GAP predicted energy with respect to DFT in the unit of meV/atom.

The number of training configurations drawn at each iteration depends on the outcome of

unsupervised clustering, and hence adjusts automatically with the input chemical system of

interest.28 A target accuracy of 5 meV/atom was achieved after four data iterations with fewer

than 600 training configurations (Table 2). Validation on independent test configurations

is shown in Figure 1b). The detailed code implementation, including the list of SOAP

hyperparameters used for Bayesian optimization, range of Bayesian optimization parameter

search, clustering criterion, and usage notes are available elsewhere.28

Table 2: Data iteration

Iteration Number of configurations
1 152
2 107
3 142
4 183

Total 584

GAP fitting

The total energy in a GAP model is expanded as a sum of two body (2B) and many body

(MB) terms of local atomic energies (ε) as follows:.38

E = δ(2B)Σi<jε
(2B)(rij) + δ(MB)Σqε

(MB)(q) (1)
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The first term describes the pair-wise atomic distance used in the squared exponential

kernel. The second term is the rotationally invariant power spectrum vector q that enters

the SOAP kernel. The δs are the scaling parameters for the linear combination. The GAP

methodology is described elsewhere.38 The machine learning fit is performed using sparse

Gaussian process regression as implemented in the GAP code.36 The hyperparameters are

further discussed in the next subsection.

GAP hyperparamters

Table 3: GAP training Parameters

Parameter SOAP Two body
Cutoff radius (Å) 6.7 6.7
Smooth cutoff transition (Å) 1.0 1.0
sparse method cur points uniform
Sparse points 500 100
(nmax,lmax) (5,5) -
Kernel exponent 4 -
GAP Version 1548461341

R-factor

R-factor gives the quantitative disagreement between the experiments and simulation using

the relation:50

RX =

(
Σi[Texp(ri)− Tmodel(ri)]2

ΣiT 2
exp(ri)

) 1
2

, (2)

where Texp(r) and Tmodel(r) are the total correlation function (T (r) = rπρr+D(r)) from

experiments and simulations respectively.
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Binding affinities of cation-anion pairs

Binding affinities between two species are computed from the pair PDF (gij(r)) using the

relation:66

∆F (r) = −kBT log(gij(r)), (3)

where kB is the Boltzmann constant, and T is the temperature.

Table 4: Binding affinity

Temperature (K) Li-Cl (Kcal/mol)
900 K -3.31
1000 K -3.82
1100 K -4.36
1200 K -4.96

Coordination number

Coordination numbers of atomic pairs in molten LiCl at various temperatures are calculated

by integrating the partial PDF, gαβ, over the radius r to the first minimum, rmin, as defined

in

Nαβ = 4πρβ

∫ rmin

0

gαβ(r)r2dr, (4)

with results listed in Table 5

Table 5: Coordination numbers

Temperature Li-Li Li-Cl Cl-Cl
900 K 13.12 4.52 12.92
1000 K 12.74 4.46 12.64
1100 K 12.37 4.39 12.33
1200 K 11.95 4.27 11.95

17



Self-diffusion coefficient

The self-diffusion coefficient, D, is computed by fitting the slope of mean square displacement

vs. time given by Einstein’s relation,1

Dα =
1

6
lim
t→∞

∂

∂t
〈[ri,α(t)− ri,α(0)]2〉, (5)

where ri,α is the ith ion of species α = Li+, Cl−.

Ionic conductivity

The Nernst-Einstein relation can be used to estimate the ionic conductivity of a 1:1 sym-

metric electrolyte at low concentration using the self-diffusion coefficients:67

σN−E = q2ρβ(DLi+ +DCl−), (6)

where β is the inverse temperature, q is the ionic charge and ρ is the number density.

However, the Nernst-Einstein relation shown in Equation 6 does not account for cross

correlation between ions.61 The Green-Kubo relation computed using the current autocorre-

lation function includes the cross-correlation terms, thereby allowing computation of higher

accuracy ionic conductivity.68,69

σG−C =
β

3V

∫ t=∞

t=0

〈J(0) · J(t)〉dt, (7)

where V is the volume, j(t) = ΣN
i=1qi · vi(t) is the current with the qi being the ionic charge

and vi(t) velocity at time t. The benchmark of the code implementation is discussed else-

where.21
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Angle distribution function

The angular distribution functions of the Cl-Li-Cl bonds in molten LiCl at various temper-

atures are obtained from the trajectory of the simulated cell and are displayed in Figure 5.

0 20 40 60 80 100 120 140 160 180
Cl-Li-Cl Angle (  )

AD
F

900K
1000K
1100K
1200K

Figure 5: Angle distribution function computed from GAP MD simulations
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