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Abstract

Signaling bias is a feature of many G–protein coupled receptor (GPCR) modulating

drugs with clinical implications. Whether it is therapeutically advantageous for a drug

to be G Protein biased or β-Arrestin (β-Arr) biased, depends on the context of the

signaling pathway. Here, we explored GPCR ligands that exhibit biased signaling to

gain insights into scaffolds and pharmacophores that leads to bias. More specifically,

we used BiasDB, a database containing information about GPCR biased ligands and

all ligands which show a (β-Arr) / G protein bias or a G protein / β-Arr bias are

considered for the study. Four machine learning models were trained on these ligands

to classify them. The features which were most important for training the models were

analyzed. Two of these features (number of secondary amines and number of aromatic

amines) were more prevalent in β-Arr biased ligands. After training a Random Forest

model on HierS scaffolds, we found five scaffolds which demonstrated G protein or

β-Arr bias. We also conducted t-SNE clustering, observing correspondence between
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unsupervised and supervised machine learning methods. To increase the applicability

of our work, we developed a web implementation of our models which can predict bias

based on a user-provided SMILES patterns. Our web implementation is available at:

drugdiscovery.utep.edu/biasnet.

Introduction

G–protein coupled receptors (GPCRs) represent the largest category of druggable targets

for FDA approved drugs—approximately 34 percent of all drugs.1,2 GPCRs are signal trans-

ducing proteins that relay information from the extracellular environment of a cell to the

cytosol. Upon binding to a drug molecule, GPCRs undergo a conformational change leading

an associated G protein to exchange GDP for GTP. Once this exchange occurs, G proteins

are activated and propagate the signaling cascade, ultimately resulting in a cellular response.

G proteins are composed of three subunits: Gα, Gβ, and Gγ. Among these subunits,

Gα—the subunit most often responsible for eliciting the cellular/drug response—is catego-

rized into one of four families: Gs, Gi/o, Gq/11 or G12/13.3 Each of these four families

activates a specific set of second messengers. For example, Gs stimulates the production

of cAMP. In addition to activating G proteins, a GPCR may also activate β-Arr.4 The

preferential activation of either the G protein, β-Arr is termed biased signaling.

In spite of the extensive druggability of GPCRs there remains much to be learned about

GPCR signaling—both among known and potential GPCR ligands. Signaling bias, a phe-

nomenon first described in 1995, is feature with the potential of influencing the discovery

and approval of novel pharmaceutical agents.5 Because drug molecules targeting a specific

signaling pathway minimize the risk of side effects, developing biased drugs is in the public

interest. In light of this need, many studies have been conducted to characterize cases of

GPCR signaling bias.

BiasDB is a manually curated, database of such studies.6 BiasDB features 654 cases of

biased signaling organized into 4 bias categories: G protein, G protein selective, Extracellular

2



Signal-Regulated Kinases (ERK), and β-Arrestin (β-Arr). In addition to compiling known

cases of signaling bias, BiasDB also provides a preliminary analysis of the chemical features

that tend to make a molecule biased. Knowing these general features can provide a good

starting point for drug discovery scientists to develop biased molecules; however, a more

detailed Structure Activity Relationship (SAR) is needed.

Knowing this, our research objective was twofold. First, we used BiasDB to train ma-

chine learning models to classify an unknown molecule as a G protein biased ligand or β-arr

biased ligand to observe if there were global patterns of bias found for many receptor types.

To this end we used Random Forrest (RF), Multi-layer Perception (MLP), XGBoost (XGB),

and Directed Message Passing Neural Network (DMPNN). We then validated our four mod-

els and compared their performance. Next, we determined the ten most important RDKit

features to understand how the machine learning models were best able to classify the lig-

ands. We noticed two molecular fragments—the number of secondary amines, and number

of nitrogens—were a part of these features. Knowing this, we compared these fragments for

G protein biased ligands and β-arr biased ligands. We then provided examples of biased and

unbiased ligands to show how these features may explain the SAR of the biased molecules.

Finally, we retrained a RF model using chemical scaffolds generated by the HierS method.7

Using these scaffolds as features, we determined which scaffolds are most important for

classifying ligands. Five scaffolds which show a bias for either β-arrestin or G proteins are

presented here. We conclude with a discussion of these scaffolds as they relate to three biased

drugs.

Results and Discussion

Machine learning test metrics for each of our four models are shown in Figure 1. Receiver

Operator Characteristic Area Under the Curve (ROC AUC) is a popular metric by machine

learning models are often evaluated. For each of our models the ROC AUC was above

0.8, which is generally considered excellent.8 The performance of our models for each of
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the remaining metrics is as follows. All of our models scored an accuracy above 0.8. The

F1 score, which takes into account recall and precision, for all of our models was above

0.7. Sensitivity for our models was greater than 0.7 and for two of our models (MLP and

DMPNN) this number was 0.8. The specificity of our models was above 0.8 and for two of

our models (XGB and RF) this number was above 0.9. Lastly, the cohen kappa values for

each of our models was above 0.6 except for DMPNN which had a value of 0.599. McNemar

Test results (Table 1) show there is no statistically significant difference between our four

models (all pairwise p-values are >0.05). Based on these results, we conclude our models

were able to distinguish β-arr biased ligands from G protein biased ligands in our training

set. Additionally, we observe there was no statistically significant difference between our

models’ abilities to distinguish G protein biased ligands from β-arr biased ligands.

Table 1: Pairwise McNemar Test p-values

MLP XGB RF DMPNN
MLP NA 1 1 0.727
XGB 1 NA 1 0.774
RF 1 1 NA 0.754
DMPNN 0.727 0.774 0.754 NA

From our models, we determined the number of secondary amines was the most important

fragment in determining bias. Ligands in BiasDB had anywhere from 0 to 14 secondary

amines. Figure 2 shows β-arr biased ligands tend to have more secondary amines than G

protein biased ligands. Chi-Squared test (p-value <0.01) also demonstrate that there is a

statistically significant difference between the number of β-arr biased secondary amines and

G protein biased secondary amines. These statistics suggests increased secondary amines

are connected to β-arrestin bias relative to G protein bias in the BiasDB database.

To make sense of these data, we chose to consider the two molecules in Figure 3. Both

molecules are ethanolamines and agonists for the β-2 receptor and presumably have a sim-

ilar mechanism of action. The molecule on the left (isoproterenol) contains only one sec-

ondary amine while the molecule on the right (BI-167107) contains two secondary amines.The
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Figure 1: Scatter plot showing the performances of the RF, XGB, MLP, and DMPNN

Figure 2: Violin Plot Comparing RDKit Fragments for G protein biased ligands and β-arr
biased ligands

molecule on the left is unbiased while the molecule on the right is β-arrestin biased.

Previous docking studies have demonstrated isoproterenol forms hydrogen bonds between

the para hydroxyl oxygen and SER 204 on Transmembrane 5 (TM5).9 Additionally the com-

pound forms a salt bridge between its only nitrogen atom and ASP 113 on Transmembrane

3 (TM3).
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(a) Isoproterenol (b) BI-167107

Figure 3: Molecular Docking Simulations to the β-2 Adrenergic Receptor

We performed docking studies to compare the binding of isoproterenol and BI-1607107

to the β-2 Adrenergic Receptor. These results are shown in Figure 3. Like in the study by

Weiss and colleagues, the para-hydroxyl group on isoproterenol appears in close proximity

to serine 203 and serine 204 (Figure 3a). BI-1607107 shows a similar proximity to serine 203

and serine 204 with a secondary ring-member amine (Figure 3b). This proximity leads us to

believe BI-1607107 has the capacity to form a hydrogen bonds to a serine residue in TM5

like isoproterenol.

An important difference to note is that the ring nitrogen in BI-167107 is a less potent

hydrogen bond donor than isoproterenol. We believe the stronger interaction of isoproterenol

with TM5 might account for the balanced bias demonstrated by isoproterenol. By the same

reasoning, the weaker interactions between BI-167107 might explain β-arrestin bias. In either

case, crystal structure experiments elucidating the role of serine 203, serine 204, and serine

207 are needed to confirm our hypothesis about β-arrestin bias.

The number of aromatic amines was the second most important fragment in training

our models. The number of aromatic nitrogen atoms for G protein biased ligands and β-arr

biased ligands ranged from 0 to 4. A table of total counts for our β-arr biased ligands and G
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protein biased ligands is shown in Table 4. Figure 2 shows β-arr biased ligands tend to have

more aromatic nitrogen atoms than G protein biased ligands. Chi-square testing (p-value <

0.01) also demonstrate that there is a statistically significant difference between the number

of β-arr biased ligand and G protein biased ligand aromatic nitrogen atoms.

We explored two compounds to get a sense of how aromatic nitrogens atoms could influ-

ence bias. Figure 4 shows the unbiased reference compound, quinpirole, and a biased com-

pound 5-Hydroxy-8-(4-methylpiperazin-1-yl)-4H-1,4-benzoxazin-3-one for the D2 receptor.

The former compound has an immidazole ring and no aromatic amines. The latter com-

pound has a phenol ring with an aromatic amine at a para position to the phenol hydroxyl.

We suspect the adjacent position of the amine and the aromatic ring in 5-Hydroxy-8-(4-

methylpiperazin-1-yl)-4H-1,4-benzoxazin-3-one is important to determining bias.

(a) Quinpirole (b) 5-Hydroxy-8-(4-methylpiperazin-1-yl)-4H-1,4-
benzoxazin-3-one

Figure 4: Molecular Docking Simulations to the D2 Receptor

Previous mutagenesis studies suggest Transmembrane 3 (TM3) is key to determining

functional selectivity for the D2 receptor.10 Work by Peterson and colleagues showed muta-

tions on TM3 proximal to the GPCR/G Protein interface resulted in β-arrestin bias while

mutations distal to the same interface resulted in G-Protein selectivity. Although a complete
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characterization of how these mutations leads to bias is not discussed, we believe increasing

binding between interactions between ligands and TM3 result in greater bias. Indeed, func-

tional selectivity studies on the D2 receptor show Asp 3.32 forms salt-bridge interactions

between the residue and ligands with an ionizable nitrogen.11 These interactions are thought

to be important to maintaining G Protein bias.

Based on this logic, interactions which serve to distance ligands from TM3—particularly

those that prevent binding to ASP 3.32—may explain β-arrestin bias. We performed docking

studies to show the difference in binding for quinpirole and 5-Hydroxy-8-(4-methylpiperazin-

1-yl)-4H-1,4-benzoxazin-3-one against the D2 receptor. The results are shown in Figure

4. Quinpirole is shown with its aromatic moiety facing toward ASP 114 (on TM3). The

aromatic nitrogen is oriented in such a way to suggest hydrogen bonding is possible between

the ligand and ASP 114. We believe this conformation is consistent with G Protein bias at

the D2 receptor.

The biased compound 5-Hydroxy-8-(4-methylpiperazin-1-yl)-4H-1,4-benzoxazin-3-one, does

not exhibit the same hydrogen bond as quinpirole. Instead, the molecule is oriented in such a

way that its tertiary amine forms hydrogen bonds with THR 412. Additionally, the aromatic

ring itself appears to form π-π interactions with TRP 413. Together the aromatic ring and

the tertiary amine on 5-Hydroxy-8-(4-methylpiperazin-1-yl)-4H-1,4-benzoxazin-3-one orient

the aromatic amine away from ASP 114 and distance the molecule from TM3.

Because this aromatic amine is the only ionizable atom, on 5-Hydroxy-8-(4-methylpiperazin-

1-yl)-4H-1,4-benzoxazin-3-one the molecule has no other atom with which to from a salt

bridge, or hydrogen bond with ASP 114.

Because aromatic amines are, by definition, adjacent to aromatic moieties, the potential of

these amines to form hydrogen bonds, ion-ion interactions, or ion-dipole interactions can be

limited by the adjacent aromatic moieties. We suspect that in BiasDB such effects account for

the β-arrestin bias exhibited by many molecules. Moreover, we believe our machine learning

models detected aromatic amines as an important fragment because similar patterns may be
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observed with other molecules.

In addition to considering molecular features, our goal was also to utilize machine learning

models trained on scaffolds. The top five scaffolds found in our models are discussed here.

Figure 5: Biased Scaffolds

Scaffold 1 is the molecule pyridine. There are 123 cases of bias on BiasDB with the

pyridine substructure. Of these cases, 79 are G protein biased and only 13 are β-Arrestin

bias. Scaffold 1 is overwhelmingly present in cases of G protein bias.

Scaffold 1 exhibits a considerable degree of receptor diversity. The pyridine structure is

found in G protein bias cases involving 10 different receptors (5-HT1, 5-HT2, CB2, CXCR3,

D1, D2, Ghrelin, LH, Kappa, and Mu receptor).

Scaffold 1 is a sub-scaffold of scaffold two. Unsurprisingly, scaffold 2 is also heavily repre-

sented in G protein bias cases. However, scaffold 2 has less receptor diversity than scaffold 1.

In fact, scaffold 2 represented only 5HT1 and D1 ligands. This seems to suggest that certain

structural features of pyridine help contribute to general G protein bias. However, structural

features of pyridine bonded with piperazine (scaffold 2) contribute to more specific instances

of bias.

Two of the most salient features of pyridine are the basic nitrogen which acts as a hydrogen

bond acceptor and the aromatic ring which confers planar molecular geometry to the scaffold.

The planar conformation and nitrogen lone pair might are important for binding to many

classes of G protein receptors may account for bias. We explore examples in the literature

which support this idea.

The D1 receptor natively binds catecholamines. However, there exists examples of

pyridine-containing non-catecholamines binding to the D1 receptor.12 These molecules con-
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tain scaffold 1 fused to an imidizole. Together these features impart the fused ring system

with a planar shape that allows the molecule to fit into the binding pocket of D1. The

nitrogen on the imidizole interacts with SER 188. The hydrocarbon skeleton of the ring

system interacts with LEU 190. In both these interaction the "slender" molecular geometry

characteristic of scaffold 1 is necessary for bias.

Scaffold 1 was also present for both Kappa and Mu opioid receptors. In fact, other studies

have already developed scaffolds for Kappa and Mu receptors using pyridine as a sub-scaffold

in their larger super-scaffold structures.13,14 These super scaffolds are termed triazole analogs

and 2-Pyridyl Spirocyclic core molecules. For both of these super-scaffolds the pyrimidine

structure was not modified in any way scaffold 1 necessary for G protein selectivity.

We finish our discussion of scaffold 1 by addressing a lack of information on the SAR of

pyridine for the remaining receptors. Even thought there does not currently exist literature

tying scaffold 1 to G protein bias for A2B, CB2, CXCR3, Ghrelin, and LH receptors there

remains the possibility that such a bias does exist. More work on the SAR underlying signal-

ing bias for these receptors needs to be done to confirm if pyridine does play an important

role in general G protein biased signaling.

Scaffold 2, 1-(2-Pyridinyl)piperazine, is a super-scaffold containing pyridine (scaffold 1).

There are 17 cases of bias on BiasDB with the scaffold 2 substructure. Of these cases, 1

case is an ERK bias and 16 cases are G protein bias. Taken together these numbers suggest

Scaffold 2 strongly promotes G protein bias.

Unsurprisingly scaffold 2 exhibits less receptor diversity than than scaffold 1. The larger

size of scaffold 2 limits a ligands ability to bind to different binding pockets. Indeed, the

only receptors targeted by scaffold 2 are D2 and 5-HT1.

In the case of the 5-HT1 receptor, a basic amine appears to play a crucial role for agonist

activity.15 For scaffold 2, this amine is the aromatic nitrogen. This nitrogen binds to ASP 116

in the 5HT1A receptor.16 The position of this basic nitrogen is critical for 5HT1A agonism.

Because of this, it is logical to consider whether the piperazine attached to the pyridine
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is necessary to maintaining an optimal interaction with ASP 116. The correct position of

these two sub scaffolds might be critical for maintaining agonism. This idea is supported

by the fact that there were no alterations to the 1-(2-Pyridinyl)piperazine backbone for all

compounds in the work done by Stroth et al.15 Although there is no specific mention of how

piperazine interacts with a particular region of the 5HT1A receptor in the work done by

Stroth et al., the fact that all of the Stroth scaffolds retain an unchanged piperazine moiety

suggest it is crucial for biased activity.

Next, we consider the D2 receptor. G protein biased D2 ligands contain scaffold 2.

Unlike the case for the 5HT1A receptor, the literature provides evidence that the basic

nitrogen of the piperazine ring together with the aromatic character of the pyridine form a

scaffold necessary for biased signaling. Modifying structures adjacent to this scaffold leads

to enhanced or diminished biased signaling.17 However, the scaffold 2 structure must be left

intact for proper signaling.

Scaffold 3 is an ergot alkaloid-like molecule. There are 8 cases of bias on BiasDB with

scaffold 3. Of these, 7 cases are associated with Beta-Arrestin bias and 1 case is associated

with G protein selectivity.

Scaffold 3 exhibits a minimal degree of receptor diversity. The scaffold is present in

molecules that bind to the 5HT2B and D2 receptors.

The main structural features of this scaffold are a two-ring aromatic moiety and a two

ring non-aromatic moiety. Both of these "sides" contain a nitrogen atom which is capable

of either donating or accepting a hydrogen bond. The literature does not elaborate on the

role the nitrogen atoms have in the binding of G proteins.

In the case of the 5HT2B receptor the crucial portion of the molecule responsible for bias

is the benzene ring. This ring interacts with LEU 209 on the Extracellular Loop 2 (EL2) motif

to prevent ligand egress after binding via hydrophobic interactions.18 Prolonged interaction

with the 5HT1B receptor is followed by enhanced β-arrestin recruitment leading to β-arrestin

bias. Similarly for the D2 receptor prolonged interaction of the hydrophobic regions of a
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ligand with ILE 184 leads to enhanced β-arrestin bias.19 Based on this information, the

most important portion for bias of scaffold 3 is the benzene ring.

Scaffold 4 is a five member two-nitrogen heterocycle with one double bond. There are

8 cases of bias on BiasDB with scaffold 4. Of these, 4 cases are associated with Beta-

Arrestin bias and the remaining cases are associated with G protein selectivity or ERK bias.

There are no cases of G protein bias relative to β-arrestin bias, so we have reason to believe

our scaffold is associated with beta-arrestin bias. Scaffold 4 exhibits a minimal degree of

receptor diversity on BiasDB. The scaffold is present in molecules that bind to the 1A and

2C adrenoceptors.

Clonodine, moxonidine, and oxymetozaline showed a degree of bias toward β-Arrestin.20

All four of these molecules contained scaffold 4. The work by Kurko et al. demonstrated

clonidine, moxonidine, and oxymetazoline had bias factors of 4.28, 3.92, 1.26, respectively .

Even though there was no work done to correlate the structural features of scaffold 4 with

bias, we suspect the scaffold plays an important role in influencing bias because this moiety

was found in all three of these drug molecules. More work needs to be done to elucidate the

like between scaffold 4 and β-arr bias.

Scaffold 5 is a right-hand side bicyclic aromatic moiety. There are 5 cases of bias on

BiasDB with this structure. Of these cases, 4 are β-Arrestin bias and only one G protein

bias. The scaffold is inordinately existing in cases of β-Arrestin. The literature focuses on

the D2-R receptor in vitro and in vivo, giving a holistic approach of these effects.21 After

synthesizing variations of the bicyclic aromatic moiety, they still exhibited β-arr bias to

varying degrees.

Our reference scaffold, as presented in the literature, differs from molecule 1 which lacks

the double bond and 30 which has extra nitrogen in the ring. The Ki value for our scaffold

stands at 7.3 nM with a higher inhibition constant in comparison to 1 with 3.9 nM and 30

with 3.4 nM. Under the β-arrestin assay, we have that to reach EC 50; our scaffold molecule

needs 6.3 nM compared to 1 and 30 with 4.0 nM and 3.2 nM, respectively. Nevertheless,
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when looking at E Max, it has 79% compared to 1 and 30 that have 62% and 73%. In

retrospect, our scaffold has a higher bias for β-arr.

In the cAMP assay scaffold 5 has a high EC50 and low EMax compared to molecules

1 and 30, which further confirms the β-arr bias. It can be inferred that the double bond

plays a key role in its bias. The literature further states "Importantly, we observed that

subtle structural changes could result in substantial changes in functional selectivity" (Chen

et al.,2012)

To explore our results further, we performed an unsupervised machine learning technique,

t-stochastic neighbor embedding (t-SNE). We observed similarities between the scaffolds

found using t-SNE and those found using supervised learning. In particular we consider

three clusters. Cluster 1 (enclosed by a red box in Figure 6) identifies 15 G-protein selective

EP2 agonists. These ligands represented in Figure 7 share three features that form a com-

mon structural backbone. The SAR of these compounds has previously been described by

researchers synthesizing novel EP2 selective agonists.22 The first feature is a thiazole ring

which is important for EP2 receptor subtype selectivity.23 The second is feature is a middle

bicyclic moiety which allows the molecules to mimic endogenous prostacyclins. The third

feature is a terminal ω chain which contributes to bias.

Importantly, we note these ligands do not contain secondary amines or aromatic amines—

consistent with the idea that G protein biased ligands tend to have less of these moities than

β-arr biased compounds.

Cluster 2 (enclosed by a yellow box in Figure 6) identifies G-protein selective κ opioid

receptor agonists. Cluster 2 contains 14 ligands represented in Figure 8. These ligands share

a common central triazole which forms a scaffold attached to three different aromatic rings.

One of these rings is a 4-pyridyl ring and the remaining two are variable aromatic rings. The

SAR of these compounds has previously been described by researchers investigating biased

κ opioid receptor agonists.13,24? To alter bias, the non-pyridyl rings are exchanged but the

core triazole ring is left intact.
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The core triazole contains neither aromatic amines, nor secondary amines consistent with

the idea that G Protein biased ligands have less of these fragments.

Cluster 3 (enclosed by a blue box in Figure 6) identifies β-arr biased D2 receptor ago-

nists. Cluster 3 contains 17 ligands, 16 of which are represented in Figure 9. Aripiprazole is

excluded from this grouping because it is an unbiased reference compound by which biased

compounds are compared. The SAR of these compounds has previously been character-

ized.21,25–27 Each of these ligands can be divided into four regions: a "left-hand side (LHS)

phenyl ring," "middle cyclic amino moiety," "central linker," and "right-hand side (RHS) bi-

cyclic aromatic moiety."21 The regions we will discuss are the RHS bicyclic aromatic moiety

and the middle cyclic amino moiety.

The RHS bicyclic aromatic moiety contains one secondary amine. Our machine learning

models associate a greater number of secondary amines to β-arr bias. Indeed, all of the

compounds in cluster 3 share this secondary amine. Interestingly, the work done by Chen

and colleagues found one compound with two secondary amines in the RHS bicyclic aromatic

moiety.21 This compound showed an increased in beta arrestin bias relative to aripiprazole,

supporting the connection between number of secondary amines and bias.
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Figure 6: t-SNE clustering. Cluster 1 (red), Cluster 2 (yellow), Cluster 3 (blue).
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Figure 7: t-SNE Cluster 1
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Figure 8: t-SNE Cluster 2
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Figure 9: t-SNE Cluster 3
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To end our discussion of scaffolds, we chose to illustrate how bias can have clinically

significant effect. Here we consider commercially available medications or drugs undergoing

clinical trials.

Oliceridine is a G protein biased drug molecule containing scaffold 1 currently undergo-

ing clinical trials. Oliceridine is a µ-opiod receptor agonist intended to treat severe acute

pain. β-arrestin activity for µ-opiod receptors is associated with increased gastrointestinal

dysfunction, respiratory dysfunction and decreased efficacy.28 Because Oliceridine shows a

marked G protein bias, researchers suspect Oliceridine might have a better safety profile

than commercially-available drugs like morphine. Despite this optimism, other researchers

suggest the enhanced safety profile of Oliceridine might be attributed to a lower intrinsic

activity for the drug.29 In any case, more research is needed to determine whether Oliceridine

is a suitable alternative for current opiod drugs.

Lisuride is a β-arr biased drug containing scaffold 3. Lisuride binds to D2 receptors and is

indicated for Parkinson’s Disease. Standard treatments for Parkinson’s include the drug L-

Dopa which activate dopamine receptors in the body. L-Dopa is associated with side effects

such as dyskenisia which are thought to be caused by receptor super-sensitivity.30 Lisuride

bypasses such side effects because its β-arr action mitigates this receptor super-sensitivity.

For this reason, lisuride is often prescribed before L-Dopa.

Clonidine is a β-arr biased drug containing scaffold 4. Clonidine binds to the α2 adren-

ergic receptor and is indicated for for high blood pressure. Work has been conducted for a

related groups of anti-hypertensive and cardio-protective drugs targeting the β1 adrenergic

receptors. This work links β-arr activation to "therapeutically advantageous" activity.31 Al-

though clonidine works through a different receptor and overall mechanism of action, there is

reason to believe β-arr bias for clonidine could also be a desirable characteristic for the drug.

For clonidine, β-arr bias is liked to increased endocytosis of the α2 adrenergic receptor.32

This β-arr directed effect presumably leads to desensitization of the ligand which results in

decreased drug side effects.
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Figure 10: Biased Drug Molecules

Conclusions

In summary, our work was geared toward determining if there are global patterns of bias

among ligands present in the recently available database BiasDB. BiasDB contains cases

of bias for many different receptor types and many different ligand types all with different

SARs. Our machine learning models accurately picked up on these global patterns and

correctly categorized ligands as G protein biased ligands or β-arr biased ligands therefore we

had reason to believe there likely exists chemical scaffolds which can be used to make these

judgments by observation. Moreover such scaffolds can serve as inspiration for future drug

development. We employed a machine learning model to find such scaffolds and described

the chemistry underlying the some potential examples of structures responsible for global

bias. We ended with a discussion of three drug molecules which bear these scaffolds to gain

an appreciation for why biased signaling is important.

Methods

Machine Learning

The main data set was divided into training (80%) and test (20%) sets using stratified sam-

pling method, which ensures the equal distribution of different classes into both the sets.

Four different machine learning (ML) algorithms namely, Random Forest, Extreme Gradi-

ent Boosting, Multilayer Perceptron (MLP), and Direct Message Passing Neural Network
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(DMPNN) were used for model training. Firstly, all ML algorithms with their default settings

were trained with 19 different fingerprints (see Molecular features) and the best models from

each classifier (RF, XGB, MLP, and DMPNN) were further tuned based on hyperparmeter

optimization. For classical models, we used Hyperopt (Ref) where each model was tuned

based on grid search method with default 3 fold cross validation. In order to compare the

model performances between the models trained with manually computed molecular finger-

prints and models trained on graph based neural networks that learns by operating on graph

structure of the molecule, we retrained the models using Chemprop D-MPNN. The DMPNN

model was also trained with 3-fold cross-validation. It was optimized using various model

hyperparameters such as: hidden size of the neural network layers, model’s depth, numberof

feed forward network layers, and dropout probability. Among all the optimized models, the

outperforming model based on test set F1 score was used for web implementation. Four

aforementioned ML algorithms are summarized as follows.

Random Forest: Random forest is a supervised learning algorithm used for both classifi-

cation and regression problems. It comprised of multiple decision trees with the technique

called bootstrap aggregation (also known as bagging) and gets prediction from each tree

outputting the best solution by means of voting. The model was tuned with mainly three

hyperparameters (n_estimators, min_samples_split, and max_features) to get the opti-

mized model.

XGBoost: It is also a decision-tree-based ensemble algorithm that uses gradient boosting

framework designed for speed and performance. The training of the model can be paral-

lelized/distributed across the clusters. The output of the model is obtained by summing

up a sequence of decision trees, called boosting. Each new tree corrects errors which were

made by previously trained decision tree. The best model was achieved tuning three different

hyperparameters (n_estimators, learning_rate, and colsample_bytree).

Multi–layer Perceptron: Multi-layer Perceptron (MLP) is a feedforward artificial neural

network (ANN) capable of mapping the input data into appropriate outputs. ANNs are the
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brain-inspired systems comprised of artificial neurons commonly known as nodes. A MLP

consists of input layer, hidden layers, and output layer and each layer is fully connected to

the following layer. Each neuron is applied to an activation function except for the input

layer. We used a rectified linear unit (ReLU) as an activation function and ‘adam’ as a solver

or weight optimization.

Direct Message Passing Neural Network (D–MPNN) The Direct Message Passing

Neural Network (D-MPNN)33 is a graph based neural network built on framework of MPNN

by Glimer et. al.34 An MPNN is a unified framework to generalize several graph convolution

neural network methods. The input to MPNN is an undirected graph G with node features

xv and bond features evw, where v and w are the node indices. The framework consists of

two phases: message passing phase and readout phase. The message passing phase gathers

the structural information of the graph and readout phase uses that information of the graph

to make predictions. The D–MPNN differs with MPNN in terms of message passing through

the network. DMPNN updates the information of the directed bonds where as MPNN up-

dates the information of atoms. We compared the results obtained from the D–MPNN and

traditional machine learning model Random forest (RF) using publicly available GitHub

repository “Chemprop”.33

Machine Learning Model Comparison

Our Machine learning models were evaluated by Receiver Operation Characteristic Area

Under the Curve (ROC AUC), Accuracy, F1 Score, Recall, Precision, Sensitivity, Specificity,

and Cohen Kappa values. Additionally, a pair-wise McNemar test was conducted to compare

the performance of each machine model against all the other models.

Molecular Docking

All molecular docking experiments were performed using AutoDock Vina version 1.1.2.35

The β-2 Adrenergic Receptor (entry 6KR8) and Dopamine 2 Receptor (entry 6CM4) were
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both obtained from the Protein Data Bank.

Scaffold Selection

All queried G protein biased ligands and β-arr biased ligands were introduced into the hscaf

web app available at http://pasilla.health.unm.edu/tomcat/hscaf/hscaf. After processing,

740 scaffolds were generated. These scaffolds were used to develop a RF model for the G

protein biased ligands and β-arr biased ligands.

Following model development, importance scores were calculated using the permutation

feature importance module found in Scikit-learn. Scaffolds with a score greater than 0.005

were chosen for screening. Selection based on importance score resulted in 10 scaffolds. Out

of these, scaffolds were cross-checked against BiasDB to ensure that the scaffolds represented

primarily one type of bias. Five scaffolds fit this criteria.
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