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1 Abstract
In recent years, individual and collective human intelligence, defined as the knowledge, skills, 
reasoning and intuition of individuals and groups, have been used in combination with computer 
algorithms to solve complex scientific problems. Such approach was successfully used in different 
research fields such as: structural biology, comparative genomics, macromolecular crystallography and 
RNA design. Herein we describe an attempt to use a similar approach in small-molecule drug 
discovery, specifically to drive search strategies of de novo drug design. This is assessed with a case 
study that consists of a series of public experiments in which participants had to explore the huge 
chemical space in silico to find desired molecules (e.g. drug candidates). The objectives of this case 
study are: assess human intelligence in chemical space exploration problems; compare the performance
of individual and collective human intelligence; and contrast human and artificial intelligence 
achievements in de novo drug design. To our knowledge this is the first time that human intelligence is 
being evaluated for such a task in drug discovery and, of similar importance, compared to the 
performance of artificial intelligence (e.g. machine learning, genetic algorithms), giving first insights 
towards their differences and uniqueness.

Keywords: collective intelligence, chemical space exploration, de novo drug design, artificial 
intelligence.

2 Introduction
In the last decade, different citizen science initiatives have been promoted to solve complex scientific 
problems using crowdsourcing and gamification.1–3 To achieve its objectives, these initiatives make use 
of individual and collective human intelligence, defined as the knowledge, skills, reasoning and 
intuition of individuals and groups. Probably the most known projects of this type, developed as on-line
video games, are: FoldIt, Phylo, CrowdPhase, Udock and EteRNA. FoldIt predicts protein structures4–

7 and deals with de novo protein design;8 Phylo9 answers multiple sequence alignment questions of 
comparative genomics; CrowdPhase10,11 addresses ab initio phasing issues of macromolecular 
crystallography; Udock12,13 tackles protein-protein docking puzzles and EteRNA14,15 solves in vitro 
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RNA design problems. The commonality of these approaches is that they address complex problems 
with many degrees of freedom where artificial intelligence struggles to find optimal solutions between 
the huge number of possible ones.

In the field of small-molecule drug discovery a problem of this type is represented by the drug design 
process. Actually, designing an ideal drug corresponds to finding an optimal molecule in the chemical 
space. This is an extremely hard task for two reasons. First, finding an optimal molecule is a complex 
multi-objective optimization problem with many degrees of freedom. Second, the chemical space is 
huge and finding a specific molecule therein is a needle-in-a-haystack problem.

An optimal drug should not only have the capacity to properly interact with its biological target but 
should also be able to travel from the administration site to the organ, tissue and cells where the target 
is located and then safely leave the body, once it did its job. This journey into the human body is 
controlled by the pharmacokinetics (i.e. ADME) and the toxicity (T) profile of compounds, involving 
many different properties. To each molecular structure modification corresponds a change in each of 
the ADMET properties and often improving one property may lead to worsening another. For this 
reason drug design is an inherent multi-objective optimization problem that needs to be addressed by 
proper strategies.16–18

The Chemical Space, defined as that abstract entity containing the sum of all drug-like small-
molecules, is awfully large. A rigorous method to estimate its extent doesn't exist. The probably most 
cited size is 1060 different molecules, whereas the real number should be somewhere between 1023 and 
10180.19–25 What extent of the chemical space has already been explored? To date: 108 molecules have 
been already synthesized;a,b 1011 molecules constitute the largest systematic enumeration of all the 
synthetically accessible molecules up to 17 atoms;26 and 1013 synthetically accessible molecules can be 
virtually screened.27 Although reaching such amounts constitutes certainly a great achievement, this is 
almost insignificant in respect to the total number of possible molecules.

An efficacious way to explore and exploit the chemical space without the need of enumerating huge 
amounts of molecules is using de novo molecular designers. These are in silico techniques that create 
molecules from scratch, optimizing certain previously defined requirements (i.e. molecular 
properties).28 Any de novo designer is composed of three elements: a scoring strategy, the method with 
which molecules are evaluated; an assembly strategy, the approach with which molecules are built; and 
a search strategy, the technique with which molecules are searched in the chemical space.29 Many de 
novo systems have been designed, implemented and tested since almost three decades. They use 
different scoring strategies (i.e. structure-based,30–32 ligand-based;33,34 both coupled with single- and 
multi-objective optimization approaches35,36), assembly strategies (e.g. atom/bond-based, fragment-
based, reaction-based) and search strategies (e.g. Machine Learning,37–42 Genetic Algorithms33,43–45). 

a As 27/11/2020 PubChem contains 110,507,961compounds. https://www.ncbi.nlm.nih.gov/pccompound?term=all
%5Bfilt%5D&cmd=search
b As 27/11/2020 CAS registry contains more than 171 million unique organic and inorganic chemical substances 
(https://www.cas.org/support/documentation/chemical-substances)
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Although several of these methods have shown promising results, their validation has not been 
consistent. To solve this problem a suite of benchmarking models for de novo molecular design has 
been recently proposed.46

The three constitutional elements of de novo designers (i.e. search, assembly and scoring strategies) are
not specific of the in silico approach but are general characteristics of the molecule design process. 
Actually, the same components are part of the classical design-make-test optimization cycles used by 
medicinal chemists in drug discovery with which initial hit molecules are optimized to leads. Indeed de
novo designers carry out virtual design-make-test cycles in silico.

Until today only timid attempts have been made to address drug design using crowdsourcing. Recently 
some trials were done by integrating many experts in order to: enhance chemical libraries through the 
“wisdom of crowds”,47 model molecular complexity from a crowdsourced medicinal chemist 
perspective48 and predict solubility in place of machines.49 All such activities are related to scoring 
strategies of de novo drug design but no endeavor has been made (as far as we know) to deal with the 
other two elements: the assembly and the search strategies.

Herein we describe an attempt to use individual and collective human intelligence as search strategies 
of de novo drug design and quantify their performance. To our knowledge this is the first time that 
artificial intelligence (e.g. machine learning, genetic algorithms) is substituted by human intelligence in
an in silico, de novo drug design process.

The case study consisted of a series of public experiments addressed to the scientific community where 
each participant was asked to explore the chemical space both individually and collectively. The search 
started from scratch, meaning a single carbon atom, which could be extended and modified to nearly 
any molecular structure. The final goal was to design molecules that maximize a single-value scoring 
function. Since this is also the goal of de novo drug designers, results obtained by humans were then 
compared with those obtained by machines.

The final objectives of this case study were:

1. Assess human intelligence in chemical space exploration problems

2. Compare individual vs collective human intelligence performance in molecule design

3. Contrast human intelligence with artificial intelligence results obtained in de novo drug design

3 Human chemical space exploration
“Can humans find the most desirable molecule in the abyss of chemical space? Can a person find the 
molecule by her-/himself? Is collaboration amongst humans making the search for a hidden molecule 
more effective?”. These were the questions to motivate the scientific community to participate in the 
case study described in this publication to solve chemical needle-in-a-haystack problems.c

c http://molomics.com/explore
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3.1 Experiment settings & circumstances

The case study consisted of a series of public experiments where each participant should find a 
specific, predefined target molecule in the chemical space. This was supposed to be done by designing 
molecules from scratch, following a molecular score that indicates how close is the solution. 
Participants were invited to engage in two experiments: an individual design and a collective design 
experiment. In the first one they searched the target molecule individually by competing with other 
participants, while in the second one they did it collectively by collaborating amongst each other.

The scientific community was invited to take part in this case study through social networks (i.e. 
Twitter, LinkedIn) and personal invitations. An ad hoc application was developed to carry out this case 
study. Before being invited to the experiments, participants were asked to create an account on our 
application and undertake simple learning steps in the Sandbox, the application area where one can 
learn how to draw, save and access molecules. Participants that fulfilled the Sandbox requirements 
were consecutively invited to an individual and a collective design experiment. The beginning of an 
experiment was scheduled only once at least 10 participants were available. At least 24 hours before the
experiment started, the participants were notified by an e-mail system which is described further below.
Different experiments could be launched and run at the same time. The duration of each experiment 
was set to the first occurring event, being either the discovery of the target molecule or a time limit of 
two weeks. None of the participants was involved simultaneously in the two experiments associated to 
them.

Collective but also individual design experiments were run with groups of people for two main reasons.
First, the settings of the two experiment types were supposed to be maintained as similar as possible. 
Second, in this way participants had access to the experiment common ranking that worked as a 
motivation factor to drive the molecular search.

From a practical point of view, the main difference between an individual and a collective design 
experiments is that while in the former a participant has only access to the molecules generated by 
her/himself, in the latter she/he has access at any moment to all the molecules generated by all the 
participants of the experiment, dynamically.

3.2 The target molecules

In order to assess the human capacity of exploring the chemical space but also compare it to that of 
automated de novo methods, five benchmarks were selected from a recently published benchmark 
suite46 for de novo drug design. As explained in section 3.5, these benchmarks are based on five target 
molecules of five different complexity levels. For each of these complexity levels, one individual and 
one collective design experiment were planned, resulting in a total of 10 experiments.

Nevertheless, using the target molecules of the five selected benchmarks with humans may bring to 
potential disputes. First, participants of the experiments may be aware of such benchmarks and the 
target molecules used therein. Second, using exactly the same target molecule for one individual and 
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one collective design experiment may be questionable, as participants of the first may be in contact 
with participants of the second and could reveal the identity of the target molecules ahead of time. 
Third, as the target molecules of such benchmarks are approved drugs, they may be known by 
participants. If even just one of these three circumstances were to occur, it would bias the case study 
and its analysis. To avoid this possibility while ensuring the validity of the comparison with the 
benchmarks, 10 complexity-equivalent molecules were selected from ChEMBL database50–54 between 
compounds that didn't reach clinical phases. In this way, meaning selecting real (i.e. non-virtual) 
molecules typical of the biological active pre-clinical space, the necessity of choosing a pharmacology-
relevant molecule was balanced with that of choosing a relatively unknown one.

To ensure the complexity equivalence between the chosen molecules and those used in original 
benchmarks, the following parameters were set to be the same: number of heavy atoms, number of 
aliphatic and aromatic rings, molecular fingerprints cardinality (i.e. the number of bits with a non-zero 
count in the molecular fingerprints) and the number of molecular fingerprints (i.e. the sum of all the 
individual fingerprints count). In this way, both a size- and complexity-equivalence were warranted. 
Target molecule complexity level is defined on the basis of their fingerprints cardinality which is 
probably the best single parameter for such a purpose.

The original benchmark molecules and complexity-equivalent ones are shown in Table 1.
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Complexity
level

Complexity features Benchmark target
molecule

Individual
experiments target

molecule

Collective experiments
target molecule

L1 # heavy atoms: 17
# aliphatic rings: 0
# aromatic rings: 1
cardinality: 33
# fingerprints: 45

Albuterol
T8
(CHEMBL460262) T9

(CHEMBL1159712)

L2 # heavy atoms: 26
# aliphatic rings: 0
# aromatic rings: 3
cardinality: 41
# fingerprints: 71

Celecoxxib
T13
(CHEMBL1566732) T32

(CHEMBL461573)

L3 # heavy atoms: 30
# aliphatic rings: 2
# aromatic rings: 2
cardinality: 51
# fingerprints: 85

Thiothixene
T15
(CHEMBL1352527) T14

(CHEMBL1259158)

L4 # heavy atoms: 30
# aliphatic rings: 2
# aromatic rings: 2
cardinality: 53
# fingerprints: 87

Aripiprazole
T19
(CHEMBL370628) T20

(CHEMBL554907)
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Complexity
level

Complexity features Benchmark target
molecule

Individual
experiments target

molecule

Collective experiments
target molecule

L5 # heavy atoms: 31
# aliphatic rings: 2
# aromatic rings: 2
cardinality: 54
# fingerprints: 86

Troglitazone
T45
(CHEMBL2098358) T44

(CHEMBL1529981)

Table 1: Target molecules of the selected benchmarks and their corresponding complexity-equivalent target molecules used 
in this case study. For each complexity level, the common complexity features of the target molecules are reported. 
“Cardinality” is the number of bits with a non-zero count in the fingerprints of target molecules, while “# fingerprints” is 
the sum of all individual counts.

3.3 Molecular score

Every molecule designed in the system by participants was associated to a single-value molecular 
score. In all the experiments this score corresponded to the Tanimoto's similarity55 towards its target 
molecule, linearly normalized in the 0-1000 range. The similarity was calculated using 1024-hashed, 
count-based, diameter-4, extended connectivity fingerprints (i.e. ECFC4_102456) as implemented in 
CDK57–60 (version 1.5.13). It has to be noted that such information was not shared with participants. The
only two things they knew about the molecular score were its range and the fact that the higher the 
score, the closer the target molecule. The same molecular score but not normalized in the 0-1000 range 
was used for de novo design benchmarks comparison.

3.4 Experiment data, scoring and analysis

Each molecule created in the system may have been drawn starting from scratch or from another 
molecule already in the system. For each created molecule, the following information was stored inter 
alia: its structure, its score, its creator, its date and time of creation and the molecule from which it 
derived (if any). With this information it was possible to calculate different parameters to do a complete
analysis of the experiments.

• Maximum score reached. The principal parameter used for the analysis is the maximum score 

reached in an experiment, represented by the top-1 molecular score calculated as explained in 
section 3.3. The maximum score reached is a measure of the efficacy achieved in an 
experiment.

• Number of generated molecules. An interesting parameter for evaluating the efficiency 

reached in experiments is the number of generated molecules. This corresponds to the number 
of unique molecules that are generated (and hence tested) to reach the final results. Uniqueness 
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of molecules is calculated on basis of InChIKey, the hashed code derived from the standard 
InChI,61 the IUPAC International Chemical Identifier.

• Time played. Another interesting parameter to evaluate the efficiency achieved in experiments 

is the time played, that is the total time spent by participants in designing molecules. Time 
played is computed considering the sum of the time frames between all the molecules designed 
by a participant. To avoid accounting for idle times, frames greater than one minute were 
omitted.

• Scaffold/molecule ratio. It is a parameter that can give information about how focused the 

molecular search is. This is the ratio between the number of unique molecules and unique 
scaffolds generated during one experiment. Scaffolds were defined according to Murko's 
definition62 as calculated by RDKit.d

• Number of molecule evolution steps. Molecule design activity carried out by participants is 

divided into design sessions that correspond to different periods where molecules are designed. 
A design session includes all the molecules that are generated starting from scratch or from a 
certain molecule already in the system. The number of molecule evolution steps corresponds to 
the number of different design sessions needed for a certain molecule to be created. This is a 
particularly important and useful parameter for eventually found target molecules.

• Collaboration degree. It is defined as the percentage of experiment participants that are 

involved in the creation of a certain molecule. It is a particularly important and useful parameter
for eventually found target molecules.

• Leader changes. It is the number of times a new leader was recorded during an experiment, 

representing the events when a new participant overtakes the current highest score and search 
front.

3.5 Comparison with automated   de novo   designers

In order to compare molecule design driven by human intelligence with that guided by artificial 
intelligence (i.e. de novo designers), this case study was oriented on GuacaMol,46 a recently published 
benchmark suite for de novo molecular design. There, two types of benchmarks are proposed: the 
distribution-learning benchmarks that assess the capacity of a method to reproduce the distribution of a 
certain molecule set and the goal-directed benchmarks that evaluate the ability to generate individual 
molecules with predefined features (i.e. molecules can be scored individually). The use of GuacaMol 
goal-directed benchmarks allows to compare the molecular search strategy of humans with that of some
recent de novo designers considered state-of-the-art in the field. These systems represent a variety of 
searching methods as: genetic algorithms (GA),63 Long-Short Term Memory recurrent neural networks 
(LSTM)64 and Monte Carlo Tree Search (MCTS)65 applied to two molecular representations: graph-

d RDKit: Open-source cheminformatics. http:// www.rdkit.org.
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based and SMILES-based.66,67 In total the following five baseline models are considered in GuacaMol 
for goal-directed benchmark: smiles_ga,68 graph_ga,45 graph_mcts,45 smiles_lstm41 and 
best_of_dataset. Where: the first four are named after the used molecular representation and the used 
searching algorithm type, while the fifth is a database virtual screening. This last represents the 
minimal score and only de novo search strategies that score higher have an advantage over simple 
virtual screening.

The first five goal-directed benchmarks of GuacaMol were selected, consisting of the three rediscovery
and the two similarity benchmarks reported in Table 2.

Benchmark name Benchmark type Scoring function Scoring

Celecoxxib rediscovery Rediscovery sim(Celecoxxib, ECFC4) Top-1

Troglitazone rediscovery Rediscovery sim(Troglitazone, ECFC4) Top-1

Thiothixene rediscovery Rediscovery sim(Thiothixene, ECFC4) Top-1

Aripiprazole similarity Similarity Thresholded(0.75) 
sim(Aripiprazole, ECFC4)

Top-1, top-10, top-100

Albuterol similarity Similarity Thresholded(0.75) 
sim(Albuterol, ECFC4)

Top-1, top-10, top-100

Table 2: Benchmarks selected from GuacaMol.46 “Scoring” refers to the number of top molecules considered in the score 
calculation.

The aim of a rediscovery benchmark is to evaluate the rediscovery (i.e. re-design) of a single target 
molecule of interest, while that of a similarity benchmark is to evaluate the generation of many 
molecules that are closely related to a single target molecule. The scoring function used in the first case
is the Tanimoto's similarity55 to the target molecule calculated using ECFC4 fingerprints, while the 
second one uses the same scoring function adjusted with a 0.75-threshold modifier. As described in the 
original publication,46 such modifier assigns a full score (i.e. 1.0) to values above a given threshold t (in
this cases 0.75) while values smaller than t decrease linearly to zero. Finally, rediscovery benchmarks 
base their score on the top-1 molecule generated during the design, while similarity ones on the top-1, 
top-10, top-100 molecules and their average.

3.6 The application

In order to exploit human molecular search strategy and especially to trigger a fruitful collaboration 
between participants, the following requirements had to be fulfilled by the application:

• Easy to access. To maximize the access avoiding installation and configuration problems that 

participants can face, the software was implemented as a web-application accessible by the 
most common Internet browsers (i.e. Mozilla Firefox, Google Chrome, Apple Safari and 
Microsoft Edge). This also enabled the possibility for the application to be used in several 
devices maximizing its potential use.

• Easy to use. The application was designed for easy and quick usage. Several different features 
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had been implemented to achieve this. They will be mentioned below in the application 
components description.

• Real-time responsiveness. To take full advantage of the human chemical search strategy, it's 

essential that participants receive a real-time feedback upon their actions. This means that for 
any modification they propose on a molecular structure they can receive an instantaneous 
feedback on that modification. In this way their molecular hypothesis can be quickly checked 
and their reasoning and intuition are combined in a single agile process. Such process is an 
instantaneous surrogate of classical design-make-test cycles carried out by medicinal chemists 
during the drug discovery hit to lead phase but not hindered by long synthesis and testing times.

• Collaborative. Different collaborative mechanisms were implemented in the application in 

order to trigger productive cooperation between participants. They will be mentioned below in 
the application components description.

The application is composed by the four components described below:

• Chemical space explorer. Probably the most important component, it was used by participants 

to create, modify and evaluate molecules. It is constituted by two sub-components: a first-of-its-
kind molecular drawer and a molecular evaluator.
The molecular drawer was designed to maximize its ease of use and the speed with which 
molecules can be created. For this reason it is equipped with: an automatic 2D structure 
optimizer, so that molecules are always nicely shown in the way how a chemist would depict 
them; a structural change prompter, suggesting which modifications can be applied to a 
molecular structure and where; an automatic aromatizer that allows to aromatize rings with a 
single click.
The molecular drawer is coupled with a molecular evaluator that gives real-time feedback for 
any modification applied to the molecular structure. The feedback is given by showing the 
current molecular score and by adding a point in a 2D plot representing the genesis history of 
the current molecule. Such 2D plot expresses the molecular score surface of the visited 
chemical space. Additionally, specific molecule pairs of the 2D plot can be compared so that 
effects produced by modification of functional groups can be easily analyzed.

• Molecular browser. Any molecule drawn by any participant is saved and stored on the system 

back-end, even those that were not meant to be drawn. For example, if for evolving a certain 
molecule A into another molecule B a participant has to pass through five other intermediate 
molecules, all of these are evaluated and saved by the system. In this way, similarly to what 
happens with synthesis chemistry, where the bioactivity is often tested also for intermediate 
reaction compounds, intermediate in silico molecules are also scored. The molecular browser 
allows any participant to scan any molecule she/he (in the individual design experiments) or 
she/he & the team (in the collective design experiments) have created. Upon browsing, 
molecules can be selected to be modified and evolved. Molecules can be browsed in different 
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ways (e.g. by score range, by creator).
A special mechanism was implemented to summarize at a glance the best molecules generated 
at any time by all the users of a collective experiment. A reduced set of five molecules defined 
as “human collective best set” is highlighted. This corresponds to the molecule set that 
maximizes at once the molecular score and the structural diversity. This was achieved with the 
score erosion algorithm69 as implemented in KNIME70 v.4.1.1.

• Notification system. The application is provided with a user-specific notification system, 

similar to that used in social networks, to update the participants on the progress of the 
experiments. There are two levels of notifications: instantaneous in app notifications and e-mail
notifications. The first is thought to inform participants while they are connected to the 
application, while the second informs them with a daily e-mail when there are unread 
notifications. Examples of notified events are: change in the experiment leader, change in 
participants ranking position, etc.

• Dashboard. By accessing the application, a dashboard page summarizes at a glance the 

progress of the experiment. The dashboard shows the following global- and logged-user 
statistics: the best score achieved, the number of generated unique molecules and the total time 
played. The participants ranking based on the best score achieved is shown. This is thought to 
act as a motivation factor for participant engagement. All the data reported in the dashboard are 
dynamically updated in real-time.

Example screenshots of the application are reported in Figure 1.

3.7    Technical implementation

The web-application developed for the case study is divided in two parts: front-end and back-end.

The front-end was developed using Angulare for pages and navigation, while the chemical space 

e https://angular.io/
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explorer was developed using Phaser,f a javascript framework used to develop video games.

The back-end was developed in Java using a reactive approach through Vert.x tool-kit.g The 
communication between front-end and back-end was implemented using websocket protocol.h This 
technical choice made it possible to meet the real-time responsive requirements.

Data was stored in a clustered instance of MongoDB,i a NoSQL database, giving a low latency and 
high throughput solution to manage the large amount of data generated by the application.

The whole application was packaged in a Docker containerj and installed in the AWS cloudk. Through 
this distributed environment every participant could reach the application in an efficient way.

3.8 The application as a   de novo   designer

The application used in this case study can be seen as a human-driven de novo designer. While its 
scoring and assembly strategy are guided by machines, its search strategy is driven by humans.

The scoring strategy of a de novo designer is the component responsible to evaluate the generated 
molecules and to guide the search in the chemical space. Although potentially any kind of scoring 
function able to relate a molecular structure to a numerical value can be associated with the system 
described herein, the one used in this case study is a molecular similarity. Molecular similarity was 
chosen as it is a surrogate for machine learning models and it can be used to find unique, specific and 
predefined molecules in the chemical space (i.e. constituting a predetermined solution to the problem), 
as also proposed by GuacaMol.46

The assembly strategy of a de novo designer determines how molecules are built. Generally speaking, 
an assembly strategy tries to achieve a balance between two desirable but contrasting features. On one 
side it would be desirable that the assembly strategy would be as free as possible so that any molecule 
in the chemical space can potentially be created so that the optimal molecules can be found. On the 
other side, the more freedom is given to the assembly strategy, the more probable that proposed 
molecules are synthetically not accessible or chemically not stable. In this second case, although the in 
silico score of such molecules is good, they are completely useless. As this case study wants to assess 
the efficacy & efficiency of human intelligence in reaching target molecules in the chemical space, the 
assembly strategy freedom associated to this de novo designer is almost absolute. In fact, the 
application allows to generate and modify molecules on an atom/bond level through a molecular 
drawer so that potentially any molecule of the chemical space can be reached. The only applied 
restriction is that only valency-correct molecules can be drawn starting from the following heavy atom 
types: C, N, O, S, F, Cl, Br.

f https://phaser.io/
g https://vertx.io/
h https://en.wikipedia.org/wiki/WebSocket
i https://www.mongodb.com/
j https://www.docker.com/
k https://aws.amazon.com/
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The search strategy of a de novo designer is the component that, considering the score of the already 
generated molecules, leads the chemical space search towards the most promising and productive areas.
In the here described application the search strategy cannot be properly outlined  a priori as it is 
completely defined by human knowledge, skills, reasoning and intuition.

4 Results and discussion

4.1 Participation

After the scientific community was called to engage in the case study as described in section 3.1, the 
participation results reported in Table 3 were obtained. A total of 118 participants completed the sign up
process; 91 of them accessed the Sandbox, where they could learn the basics of the application; 71 
completed the Sandbox requirements and were invited to the experiments; 46 took finally part in the 
experiments and 31 of them resulted to be very active, drawing more than 100 molecules each.

Event Participants

Sign up process completion 118

Sandbox access 91

Sandbox completion 71

Participation in challenges 46

High activity in challenges
(> 100 drawn molecules)

31

Table 3: Participation results.

Only 46 participants of the initial 118 who signed up (i.e. 39%) engaged in the experiments but 71 out 
of 91 (78%) who accessed the Sandbox could correctly complete its requirements. This means that loss 
of participants in relation to the difficulty of using the application (i.e. 20) represents only 28% of all 
drop outs, highlighting the ease of participating in the case study. The choice to demand the completion
of the Sandbox requirements before letting  the participants to access the challenges allowed them to 
learn the basics of the application and practice with it without tampering with the data generated in the 
experiments.

Each of the 71 participants that completed the Sandbox requirements was invited to one individual and 
one collective experiment. The average invitation was 12 participants per experiment while the average
engagement was 7.

4.2 Finding the target molecules

In total, 10 different experiments were conducted to assess human search strategy in chemical space 
exploration: five individual and five collective. Results are reported in Table 4.
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Complexity
level

Individual design Collective design

Target molecule Best molecule
achieved

Target molecule Best molecule
achieved

L1

T8 Score = 1000 T9 Score = 1000

L2

T13 Score = 722 T32 Score = 1000

L3

T15 Score = 605 T14 Score = 1000

L4

T19 Score = 931 T20 Score = 1000
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Complexity
level

Individual design Collective design

Target molecule Best molecule
achieved

Target molecule Best molecule
achieved

L5

T45

Score = 802

T44 Score = 1000

Table 4: Target and best (i.e. most similar) molecules designed by participants in individual and collective experiments.

The first very important result is that in several experiments participants were able to find the target 
molecule (i.e. score = 1000), that is one specific, predefined molecule among the almost infinite 
possibilities in the huge chemical space. As far as we know, this is the first time that such a study, 
quantifying molecule search strategy of humans, is conducted. This result is particularly important 
considering the following circumstances:

1. Participants searched the chemical space from scratch by drawing molecules starting from a 
simple carbon atom.

2. As molecules are drawn and manipulated on an atom/bond level, participants had absolute 
freedom to potentially reach any molecule of the chemical space.

3. Participants searched the chemical space simply by following a single-value molecular score 
indicating how close they were to the target molecule. They didn't receive any additional hint or
information and had to build their own logic behind it.

Target molecules of five different complexity levels were searched. In individual design experiments, 
participants could only find the most simple target molecule (i.e. T8). Anyway, in the cases of the two 
most complex targets (i.e. T19 & T45), they got close and reached scores of 931 and 802, 
corresponding to a Tanimoto's molecular similarity of 0.931 and 0.802, respectively. In contrast, in 
collective design experiments participants could find the target molecule in all the cases.

4.3 Individual vs collective molecule design

Experiment results are reported in Table 5.
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Target
complex.

level

Individual design Collective design

Target
mol.

Time
played

Generated
unique

molecules

Scaffold/
molecule

ratio

Leader
changes

Max
scorel

Target
mol.

Time
played

Generated
unique

molecules

Scaffold/
molecule

ratio

Leader
changes

Max
scorel

L1 T8 6H 24m 2,402 0.184 6 1,000 T9 2H 45m 1,343 0.186 6 1,000

L2 T13 16H 13m 6,821 0.429 11 722 T32 7H 10m 2,936 0.266 11 1,000

L3 T15 9H 53m 4,544 0.325 9 605 T14 9H 19m 3,708 0.246 9 1,000

L4 T19 27H 42m 11,660 0.384 7 931 T20 7H 34m 2,856 0.384 15 1,000

L5 T45 11H 31m 5,971 0.381 3 802 T44 19H 40m 7,842 0.404 13 1,000

Table 5: Results obtained by participants in the individual & collective search for specific, predefined target molecules in 
the chemical space. Target molecules are classified by complexity level. The number of generated unique molecules is 
reported together with the scaffold/molecule ratio. Leader changes represent the number of times a new leader was 
recorded during an experiment. The max score is the highest score obtained in an experiment (max = 1,000).

The following observations can be made on the basis of the results:

1. Collective design seems more efficacious than individual design. While in the five individual
design experiments the target molecule was found only in the simplest case, all the five 
collective design experiments were successful. This suggests a higher efficacy of collective 
molecule design in respect to individual one.

2. Collective design seems more efficient than individual design. Collective design succeeded 
in finding the target molecule not only by generating (and hence testing) less molecules but also
by needing less playing time. There is just one case where the collective design generated more 
molecules and took more playing time than the individual one: the experiment targeting the 
most complex target molecule (i.e. complexity level L5). Nevertheless, as the individual search 
could not find the target molecule, it cannot be concluded that in this case individual design was
more efficient.

3. Collective search is at least as broad as the individual one. One concern about collective 
design may be that, given a certain number of molecules, it generates less scaffolds in respect to
the individual design. This may happen as at any moment in time all participants may center 
their search around the best molecule (or currently few best molecules) so that fewer scaffolds 
are generated. This hypothesis seems to be incorrect as it only holds up in two out of five cases, 
which can be seen on basis of the scaffold-molecule ratio reported in Table 5.

4. Designing complexity. Interestingly, the number of molecules needed by collective design to 
reach the target molecule does not correlate with its computationally estimated complexity. 
Similarly, in case of individual experiments the maximum score achieved does not inversely 
correlate with the target complexity metrics as it could be expected. This may indicate that the 
designing complexity experienced by humans differs from the one computationally defined.

l This is the molecular score visible by the participants in the application. It is different from the scores calculated for 
the de novo design benchmarks comparison.
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5. Collaboration. The collaboration degree of target molecules achieved in collective design 
experiments ranges from 50% to 100%. In two of the four experiments where collective design 
was more efficacious than individual design, more leader changes are observed. Interestingly, 
the difference is particularly large in case of the two most complex targets (i.e. 15 vs 7 and 13 
vs 3 for collective vs individual experiments with target molecule complexity level L4 and L5, 
respectively). It can be hypothesized that leader changes in collective design is beneficial for 
reaching the objective.

In the five successful collective design experiments the molecule evolution steps ranged from 9 to 29 
while the collaboration degree ranged from 50% to 100%. As the possibility to collaborate is the only 
settings difference between the individual and collective experiments, the high collaboration degree in 
the creation of the target molecules may be the cause for the higher efficacy achieved in the collective 
experiments.

To illustrate such features, the genesis of target molecule T20 is reported in Figure 2.
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Figure 2: Genesis of target molecule T20. The target molecule is created (i.e. rediscovered) in 
20 evolution steps through the collective design efforts of seven out of eight participants of this 
experiment. The individual contributions to the target molecule creation are represented by 
different colors. Some intermediate generated molecules are also shown.



Target molecule T20 was generated in 20 evolution steps through the collective work of seven out of 
the eight participants of this experiment. While the general trend of molecule evolution is positive, 
meaning the score of the resulting molecule in each design session is higher than the starting molecule, 
there are evolution steps in the genesis of target T20 where the score remains equal (steps 10, 11 and 
14) or even decreases (steps 8 and 15). The transit through molecules with scores lower than the
experiment maximum may represent the exit mechanism from local maxima.

To better understand the differences between individual and collective design, experiments related to 
complexity-level-L4 target molecules (i.e. T19 & T20) are compared.

The top-score achieved by each user along the whole molecule design activity of L4-complexity targets
experiments is represented in Figure 4.

A first consideration is that it seems easier for participants to rise the molecule score from 0 to around 
550, than from around 550 to 1000. This may reflect a general feature of the chemical space search: it 
is more difficult to design an optimal molecule than a sub-optimal one.

Two main differences emerge from the comparison of the two plots reported in Figure 3:

• While in the individual design experiment all the participants started the design activity from 

molecules with a score close to 0, in the collective design one all but the first started exploring 
the chemical space from already designed molecules with higher scores.

• While the number of leader changes in the individual challenge is limited (i.e. 7), in the 

collective challenge it is significantly higher (i.e. 15) as everybody can start from the highest 
scoring molecule.

To understand the structural diversity of the molecules generated during a design experiment, their 
distribution in the chemical space can be examined. For such a purpose, molecules are first 
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Figure 3: Molecule best scores (y-axis) achieved by participants during individual (left) and collective (right) design 
experiments of L4-complexity-level target molecule. Molecule creation order (x-axis) is the order in which the best 
molecules (i.e. user-based top-1 molecules) are generated.



characterized using the same descriptors with which the molecular score was calculated (i.e. 1024-
hashed ECFC4 fingerprints) and then plotted in Figure 4 using t-SNE (i.e. t-distributed stochastic 
neighbor embedding).71

The following observations can be made about the chemical space plots:

• While in the individual design experiment it seems that specific participants explored specific, 

focused parts of the chemical space, in the collective design one the molecules generated by 
each user are more spread in the chemical space.

• In the individual design experiment only one participant came close to the target molecule, 

while in the collective design one at least four of them.

4.4 Comparison with automated   de novo   designers

As described in section 3.5 this study was designed to compare the search strategy of human with 
automated de novo designers. 

The results of both individual and collective human design activity for the five selected benchmarks are
reported in Figure 5 and Table 6 together with those of the state-of-the-art in silico methods published 
in the original benchmark article.
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Figure 4: Chemical space explored by each participant during an individual (left) and a collective (right) design 
experiment. Molecules are described by 1024-hashed ECFC4 fingerprints and represented using a t-SNE visualization. 
The molecules generated by each participant are represented by a different color. The target molecule is represented in 
yellow.



Final score
Top-1 score

(Top-10 score)
(Top-100 score)

Complexity
level

Benchmark
type

Human
individual

Human
collective

smiles_lstm graph_ga smiles_ga graph_mcts best_of_chembl

L2 Rediscovery
0.72
0.72

1.0
1.0

1.0
1.0

1.0
1.0

0.732
0.732

0.355
0.355

0.505
0.505

L3 Rediscovery
0.61
0.61

1.0
1.0

1.0
1.0

1.0
1.0

0.598
0.598

0.311
0.311

0.456
0.456

L5 Rediscovery
0.80
0.80

1.0
1.0

1.0
1.0

1.0
1.0

0.515
0.515

0.311
0.311

0.419
0.419

L1 Similarity

0.99
1.0
1.0
0.96

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

0.907
1.0
1.0

0.72

0.749
0.80

0.758
0.689

0.719
0.765
0.726
0.664

L4 Similarity

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

0.834
0.856
0.838
0.807

0.380
0.428
0.376
0.335

0.595
0.609
0.601
0.576

Table 6: Comparison of human individual and collective design experiments with in silico de novo designers reported in the
GuacaMol publication.46 Benchmark scores are explained in section 3.5. The final score is equivalent to the top-1 score in 
rediscovery benchmarks and to the average of top-1, top-10 and top-100 scores in the similarity ones.
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Figure 5: Comparison of human individual and collective design experiments with in silico de 
novo designers reported in the GuacaMol publication.46 Benchmark scores are explained in 
section 3.5.



Human collective design performed optimally along all the five tested benchmarks. This is also the 
case for the two best in silico systems (i.e. smiles_lstm41 and graph_ga45). Human individual design 
performed more poorly than collective design but still fairly well. Actually, in case of the similarity 
benchmarks, it achieved almost the optimal scores (i.e. 1.0 and 0.99 in experiments with targets of L4 
and L1 complexity level, respectively), while in the case of the rediscovery benchmarks it performed 
worse than the two best in silico systems, but better than two out of the three other approaches.

In the cases where the benchmark maximum score of 1.0 is not reached, the relation between the 
complexity of the target molecules and the achieved efficacy is analyzed. Here, efficacy is determined 
by how close the final achieved score is to the maximum (i.e. 1.0). Interestingly, in silico methods 
correlate inversely with the estimated complexity levels of the target molecules while this is not true for
human individual design. More specifically, this occurs in rediscovery benchmarks (L2, L3 and L5) 
where smiles_ga =0.732, 0.598, 0.515, graph_mcts =0.355, 0.311, 0.311 and human_individual = 0.72, 
0.61, 0.80, respectively . This also occurs in similarity benchmarks (L1 and L4) where smiles_ga = 
0.907, 0.834; graph_mcts = 0.749, 0.380; human_individual 0.99, 1.0, respectively. While for in silico 
methods the molecular design difficulty seems to correlate with the computationally estimated 
complexity of target molecules, this does not hold up for human design activity.

4.5 Human vs machine learning pace

A possible measure for the learning pace of the search strategy is the number of times the molecular 
scoring function has been accessed for finding a particular target molecule. The higher the number, the 
slower the learning pace. In case of human-driven de novo design described herein, this is the number 
of moves carried out by participants to reach the target molecule. This corresponds to all the (non-
unique) molecules generated in the experiments. This number is larger than the number of generated 
unique molecules reported in Table 5, because it also considers repetitions. In other words, if the same 
molecule has been drawn five times, it will count as five scoring function calls.

The number of scoring function calls carried out by individual and collective human intelligence are 
reported in Table 7 together with those of Long-Short Term Memory recurrent neural networks 
(lstm_smiles)41, reportedm in GuacaMol46 publication. Human individual design results are only 
reported for the experiment where participants reached the target molecule.

m This is the only method for which a reliable number of scoring function calls is reported in the original publication 
(private communication with authors).
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Number of scoring function calls to reach the target molecule

Complexity level lstm_smiles Human individual Human collective

L1 132,838 3,614 1,956

L2 132,846 -n 4,271

L3 138,209 -n 5,404

L4 139,221 -n 4,591

L5 140,339 -n 12,118

Table 7: Number of scoring function calls needed to reach the target molecules of five different complexity levels. Human 
individual design results are only reported for the experiment where participants reached the target molecule.

It can be seen that the number of scoring function calls carried out by humans (in both the individual 
and collective design mode) are more than one order of magnitude lower than those of the artificial 
neural network. These results suggest that humans have a larger learning pace in respect to the 
considered AI method. The learning pace is related with the efficiency.

Interestingly, while the number of scoring function calls needed by artificial intelligence (i.e. 
lstm_smiles) to reach the target molecule correlates with its complexity level, this does not occur with 
human intelligence. This observation was also done for efficacy as described above.

5 Conclusions
In the last decade individual and collective human intelligence were used in combination with 
computer algorithms to solve complex scientific problems. These are problems with many degrees of 
freedom where computational algorithms alone struggle to find the best solution. This approach was 
successfully used in different research fields as comparative genomics, structural biology, 
macromolecular crystallography and RNA design. Here we described an attempt to use a similar 
approach in small-molecule drug design. More specifically we assessed the human search strategy in 
chemical space exploration problems where specific, predetermined molecules had to be found 
between the 1060 possibilities. Finally, results were compared to those obtained by different in silico de 
novo designers assessed in a recently published benchmark suite. This allows, for the first time, to 
compare human intelligence with artificial intelligence in de novo drug design.

From the results, the following conclusions can be drawn:

1. The search strategy linked to human intelligence can be successfully used in chemical space 
exploration in silico. Indeed, it is able to find unique, predefined target molecules, having a 
molecular complexity equivalent to that of approved drugs, between the huge amount of 
possibilities. This supports the usage of human search capability coupled to in silico molecule 
evaluation systems in drug design.

2. Collective human molecular design seems to be both more efficacious and more efficient than 

n Target molecule not reached.
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individual molecular design. This supports the development of collaborative drug design tools 
that allow to create synergies between different players of this field and reach better drugs.

3. Compared to artificial intelligence systems, the search efficacy of human collective intelligence 
is at least as good as the best artificial intelligence approaches. In contrast, human individual 
intelligence ranks average. Considering the search efficiency, it seems that human intelligence 
may be better than artificial intelligence due to a higher learning pace.

Additionally, some results suggest that human intelligence perceives molecular complexity differently 
than artificial intelligence. This fact would support a combined use of the two in order to reach better 
drugs. In our group we are currently working on an hybrid de novo designer where human and artificial
intelligences are integrated in a unique system.
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