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Abstract 

Drug-induced cardiotoxicity has become one of the major reasons leading to drug 

withdrawal in past decades, which is closely related to the blockade of human Ether-a-

go-go-related gene (hERG) potassium channel. Developing reliable hERG predicting 

model and optimizing model can greatly reduce the risk faced in drug discovery. In this 

study, we constructed eight hERG classification models, the best of which shows 

desirable generalization ability on low-similarity clinical compounds, as well as 

advantages in perceiving activity gap caused by small structural changes. Furthermore, 

we developed a hERG optimizer based on fragment grow strategy and explored its 

usage in four cases. After reinforcement learning, our model successfully suggests same 

or similar compounds as chemists’ optimization. Results suggest that our model can 

provide reasonable optimizing direction to reduce hERG toxicity when hERG risk is 

corresponding to lipophilicity, basicity, the number of rotatable bonds and pi-pi 

interactions. Overall, we demonstrate our model as a promising tool for medicinal 

chemists in hERG optimization attempts.  



Introduction 

Cardiotoxicity has become one of the major causes leading to drug failure, accounting 

for 18.8% of withdrawal between 1990 and 20101. The blockade of a cardiac potassium 

channel encoded by human Ether-a-go-go-related gene (hERG) is responsible for the 

drug-induced cardio disorder, which is associated with a prolongation of QT-interval in 

the electrocardiogram (ECG) 2-3. Assessment of potential hERG-related cardiotoxicity 

has become a critical step in the drug discovery pipeline4. Many established 

experimental methods have been developed to measure hERG binding affinity in the 

past such as patch clamp assays, fluorescence-based assays and radioligand binding 

assays5, providing reliable statistics to medicinal chemists. However, it is time-

consuming and expensive to test every candidate in the early stage. Therefore, it is of 

great use to build in silico model for the prediction of hERG risk.  

Apart from hERG predicting, another important question is how to optimize 

compounds when they are found to be hERG channel blockers. It will greatly save the 

labor if the computer can suggest some structures with low hERG risk but high 

similarity to the original structures. Actually, this task is what we called property-

oriented molecule generation. Previous works have proposed various approaches to 

optimize a certain property of a compound. For example, Marcus Olivecrona and co-

workers introduced a SMILES-based model to generate active compounds against the 

dopamine receptor type 2 (DRD2) using Policy Gradient, a reinforcement learning 

method6. Same technique was implemented into the network of Reinforcement 

Learning for Structural Evolution (ReLeaSE) by Mariya Popova and co-workers7. 

Wengong Jin and co-workers8 employed a junction tree based network (JT-VAE) to 

automatic design molecules with specific chemical properties. Its performance was 

demonstrated to be better than other VAE-based methods. Jiaxuan You and co-workers9 

adopted a Graph Convolutional Policy Network (GCPN) to perform goal-directed 

molecule generation, which uses graph information and Proximal Policy Optimization 

(PPO) algorithm. It can obtain 61% improvement compared with JT-VAE in the task of 

optimizing penalized logP. Łukasz Maziarka and co-workers proposed a CycleGAN-



based model that can generate optimized compounds with desired property and high 

structural similarity to the original ones10. It was reported to significantly outperform 

previous results in terms of optimizing penalized LogP of drug-like molecules. Instead 

of using network based on SMILES or molecular graph, Zhenpeng Zhou and co-

workers11 chose to directly modify the molecule by adding or removing atoms and 

bonds, which is called Molecule Deep Q-Networks (MolDQN), another reinforcement 

learning based method. MolDQN can generate better result than JT-VAE and 

comparable result to GCPN. Despite a wide range of options, few methods can specify 

the optimizing region. Sometimes chemists may desire keeping core fragments while 

growing new fragments on specific growing sites. However, approaches such as 

ReLeaSE, JT-VAE and CycleGAN are only suitable for de no vo drug design. Users 

cannot define which fragment to be kept in the output structures. As for GCPN and 

MolDQN, they can start from a given fragment. But as they automatically define 

growing sites, sometimes they might reduce attention on the optimization in specific 

area that chemists care about.  

Herein, we introduce a fragment-growing network that enable users to keep 

particular substructures and optimize a user-defined region. Reinforcement learning is 

applied to increase the network’s ability to generate low-hERG-risk molecules. In order 

to make a reliable reward function, we first construct eight hERG classification models 

using eight machine learning methods. The best model shows desirable performance on 

different datasets and different level of tasks, especially good generalization capability 

on clinical external set and best competence in recognizing the activity difference in 

optimization cases. Then the fragment-growing network is built, which can keep user-

defined substructures in the generated structures. The basic framework is a traditional 

sequence-based generator (Recurrent Neural Network, RNN)12. However, the kept parts, 

which are imprecisely but understandably called “core fragments” in our study, are 

encoded by Gated Graph Neural Networks (GGNN)13 to facilitate fragment grow. The 

combination model of GGNN and RNN shows superior result to naive RNN in terms 

of validity and synthetic accessibility for the generated structures. We also demonstrate 

the application of the model in suggesting potential core fragments to chemists. The 



grow model, assisted by reinforcement learning, is then tested on four cases extracted 

from the literature3. Each case represents a smart strategy to lower hERG binding 

affinity concluded by experienced chemists. The built hERG classification model works 

as a part of reward function for reinforcement learning. By comparing the generated 

molecules with chemists’ final optimized compounds, we demonstrate the potential of 

our model in providing chemists reasonable direction for hERG optimization.  

 

Materials and Methods 

Constructing hERG Classifying Model 

Data Collection and Process. Data from Chembl (https://www.ebi.ac.uk/chembl/, 

Chembl Target ID: Chembl240), PubChem (https://pubchem.ncbi.nlm.nih.gov/, 

UniProt: Q12809) and literatures14-16 was merged. Compounds without IC50 or Ki label 

were removed from the merged collection. All units were standardized to μM. 

Structures were neutralized first. The chiral marker ‘@’ and cis-trans marker ‘\’ ‘/’ in 

the SMILES of those structures were removed as we only used 2D descriptors in this 

work. The SMILES were subsequently normalized using Pipeline Pilot17. Then the data 

was sorted into two classes according to their activity, with IC50 /Ki equal or less than 

10 μM labeled as blockers and IC50 /Ki equal or greater than 30 μM labeled as non-

blockers according to Hongmao Sun’s work18. Compounds with conflicting activity 

labels were abandoned to ensure the optimal data consistency, while compounds with 

the same labels were deduplicated. After that, structures that had entered clinical phases 

were separated as external validation dataset for evaluation. The remaining 9,708 data 

was randomly divided into training set and test set (4:1) to constructing predicting 

model. The information of each dataset can be seen in Table 1.  

 

Table 1. Information of Datasets used for hERG Classification Model 

Training Set Test Set External Validation Set 

Blockers Non-blockers Blockers Non-blockers Blockers Non-blockers 

4885 2881 1254 688 140 107 

https://www.ebi.ac.uk/chembl/
https://pubchem.ncbi.nlm.nih.gov/


Descriptors Calculation and Selection. It has been reported that some physicochemical 

properties of hERG channel blockers including lipophilicity, acidity or basicity, the pi-

pi interaction of aromatic rings and the number of rotatable bonds are related to high 

hERG risk19. Strategies directing at improving these four properties have been 

successfully applied to mitigate hERG binding affinity3, indicating their importance in 

hERG model building. Therefore, related properties should be calculated and selected 

to build hERG toxicity model. The process was conducted as follows: Compounds were 

firstly added hydrogen and optimized in MMFF94 force field using RDKIT package 

(http://www.rdkit.org/, version: 2018.09.1.0). Then 115 2D properties and 1024 

ECFP420 bits calculated by RDKIT, together with two properties calculated by 

Mordred21 (nAcid, nBase) for the training set were incorporated. Among these features, 

MolLogP is corresponding to lipophilicity; NumAromaticRings (NAroR) is related to 

the possibility of forming pi-pi interaction; the number of rotatable bonds is represented 

by NumRotatableBonds (NROT). nAcid and nBase might be related to the acidity or 

basicity, so we also put them into the property pond and further property selection. The 

incorporated 1,141 descriptors were reduced to 169 by low variance filter 

(threshold=0.1) and high correlation filter (threshold=0.9), and they were subsequently 

selected by Non-dominated Sorting Genetic Algorithm-II (NSGA-II)2, which 

distinguished 61 out of 169 features to reach the best five-fold cross-validated Kappa 

of training set (Scheme S1, Figure S1 in Supporting Information). All above-

mentioned special descriptors including MolLogP, nAcid, nBases, NAroR and NROT 

were selected by NSGA-II, demonstrating the algorithm can pick out relatively 

important features for constructing hERG models. The selected descriptors can be 

found in Table S1. 

 

Model Construction. Eight widely used methods were adopted to build hERG 

classification model, including Support Vector Machine (SVM), Random Forest (RF), 

Extremely Randomized Trees (ExtraTree), Adaptive Boosting (Adaboost), Gradient 

Boosted Decision Trees (GBDT), Exterme Gradient Boosting (XGBoost), Light 

Gradient Boosting Machine (LightGBM) and Deep Neural Networks (DNN). Scikit-

http://www.rdkit.org/


learn (https://scikit-learn.org/, version: 0.23.1), XGBoost 

(https://github.com/dmlc/xgboost,  version: 1.1.1), LightGBM 

(https://github.com/microsoft/LightGBM,  version:2.3.1) and pyTorch 

(https://pytorch.org/, version:1.3.1) package were used to build models. Grid search 

was applied to explore the best combination of parameters for highest ten-fold cross 

validated accuracy, while class weight for non-blockers was fixed as the ratio of 

blockers to non-blockers uniformly. The detailed description of other parameters can 

be seen in Supporting Information.  

 

Model Evaluation. The obtained eight models were assessed using a variety of measures, 

which contained Area Under the ROC Curve (AUC), Accuracy (ACC), Balanced 

Accuracy (BAC), Matthews Correlation Coefficient (MCC), Cohen’s Kappa (Kappa), 

F1_Score (F1), precision, recall (sensitivity), specificity (Supporting Information). 

The absolute values of all these metrics range from 0 to 1, with 1 representing the best 

and 0 representing the worst performance. 10-fold metrics of training set, test set and 

extra validation set were calculated to select top models used for further validation.  

   To investigate the selected models’ practicability on correctly predicting new 

structures, we scaled the extra validation set according to their Tanimoto similarity 

/ECFP4 to training set. Six subsets were thus created, with similarity value <0.8, <0.7, 

<0.6, <0.5 and <0.4 respectively. It will be more convincing that if subsets with low 

similarity can also produce a good performance. We believe that structures with 

similarity below 0.4 are new enough compared with the training set. Balanced accuracy 

(BAC) for each subset was displayed for the chosen models. This step generated best 

four models with better generalization ability.  

 

Validation on Optimization Cases. Generally speaking, it is more challenging for a 

model to recognize “activity cliffs”, which means correctly classifying structures with 

huge gap of hERG binding affinity but subtle structural differences. Given that activity 

cliffs usually occur in chemists’ compound optimization cases, herein, we tested our 

best models on seven cases provided by previous literature3. Each case is constituted 

https://scikit-learn.org/
https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://pytorch.org/


by two compounds with different IC50 values, marked by a and b respectively. 

Compounds marked by a refer to the original structures with high hERG risk (<10μM), 

and compounds marked by b are optimized structures with much lower hERG binding 

affinity (>30μM). The original structures in case 1 will be named compound 1a, while 

the optimized will be named compound 1b and so on. The detailed information of these 

cases can be seen in Table 2. All the molecules in these cases do not appear in the 

training set. We compared the predicting accuracy of our four pre-selected models on 

these cases and finally picked the best one.  

 

Table 2. Seven Optimization Cases Extracted from Literature 

Case 

Index 
hERG Channel Blockers ID 

hERG IC50 

(μM) 
hERG Improved ID 

hERG IC50 

(μM) 

Optimization 

Strategy 

1 

 

1a 1.4 

 

1b >33 
Decreasing 

lipophilicity 

2 

 

2a 8.9 

 

2b >30 
Decreasing 

lipophilicity 

3 

 

3a 8.1 

 

3b >198 
Lowering 

basicity 

4 

 

4a 4.19 

 

4b 39 
Magnifying 

rigidity 

5 

 

5a 6.7 

 

5b >80 
Altering pi-pi 

interactions 

6 

 

6a 6.3 

 

6b >100 
No particular 

regularity 



7 

 

7a 4.6 

 

7b 68 
No particular 

regularity 

 

Fragment Grow Network 

Model Overview. The main intention of our model is to optimize compound while keep 

substructures that chemists want to preserve because of activity demand or other 

reasons. Thus, we adopted a ‘fragment grow’ strategy that requires our model to learn 

how to generate target fragments on a given ‘core fragment’ instead of generating brand 

new molecules. In the training stage, we firstly broke a compound into two fragments. 

One fragment is called ‘core fragment’, as we assume that it is what chemists think is 

important and will not be changed. The other is taken as ‘source fragment’, which 

borrows the word ‘source’ from ‘source sequence’ in Natural Language Processing 

(NLP). As shown in Figure 1, The model mainly learns grammatical rules from the 

standardized SMILES of ‘source fragment’ using an encoder-decoder network. On the 

other hand, it also absorbs the graph information of ‘core fragment’ using GGNN to 

give the decoder an extra context. In other words, the model will ‘understand’ the scene, 

which means it can recognize which ‘core fragment’ it is supposed to grow on, which 

growing site it is supposed to start with and the surrounding information of the growing 

site. The two networks allow the model to reasonably grow target fragments based on 

the core fragments. Finally, target fragments are linked with core fragments on the 

growing site, generating the whole structures. Considering the existence of both GGNN 

and RNN network, we brief it as GGNN-RNN model.  



 

Figure 1. Brief Workflow of GGNN-RNN. The network adopts an encoder-decoder 

structure. The encoder involves six steps: ① The compound is broken into two pieces. 

② The SMILES of source fragment is uniformed and processed using one hot method. 

③ The processed information of the source fragment is encoded as a variable C. ④ 

The core fragment is represented as graph, where each node receives and send out 

message along edges that connecting nodes. ⑤ The message of the growing site (the 

node 2) at step t is extracted as h2
(t) ⑥ C and h2

(t) is combined as the total context of 

the decoder. The decoder produces target fragments using the information of the source 

target and the context. Finally, the core fragment is connected with the target fragment 

and generate the whole structure. 

 

Data Preparation. Active kinase inhibitors with IC50 /Ki less than 10μM from Chembl 

database were collected, which belong to a total of 612 kinases target (supporting 

information). Inorganic structures and duplicates were removed. Structures containing 

phosphorus were also removed, as it is less commonly used in drugs. However, users 

can train their own model if needed. Molecular weight was controlled between 100 Da 

and 800 Da, after which 103, 292 cleaned kinase inhibitors were obtained. We broke 

these inhibitors by cutting on one single bond a time (bonds outside the ring but 

connecting with the ring), which generated many fragment pairs for each molecule. The 

larger fragments were used as ‘core fragment’, and the smaller were taken as ‘source 



fragment’, whose molecular weight was limited to no more than 350 Da. Both 

fragments carried a marker ‘*’ to indicate the breaking site/growing site. To reduce the 

computation cost, only three pairs for each molecule were randomly selected and 

trained as our model input.  

Source fragments were standardized using RDKIT, which always puts the growing 

site ‘*’ at the beginning of the SMILES. For example, SMILES 

‘O=C([*])[C@H]1NCCCC1’ will be unified to ‘*C(=O)[C@@H]1CCCCN1’ in 

RDKIT. In this way, we can easily replace ‘*’ with a ‘G’ to tell the generator a sequence 

of fragment is to begin and add an ‘E’ at the end of the standardized SMILES to inform 

the sequence’s ending. The unified and modified sequence was then encoded using 

embedding method. The dictionary contains 39 words, covering the common symbols 

in the SMILES of organic molecules. Four numbers were used to represent special 

symbols, including 0 for ‘pad’, 1 for ‘grow’ (G), 2 for ‘end’ (E) and 39 for ‘unused 

symbols’. Symbols containing two letters like ‘Br’ and ‘Cl’ were counted as single 

words. The overall encoded length for each fragment was set to 102. Fragments with 

longer length were abandoned. The dictionary can be seen as follows: 

{0: 'pad', 1: 'G', 2: 'E', 3: '2', 4: 'F', 5: 'Cl', 6: 'N', 7: '[', 8: '6', 9: 'O', 

10: 'c', 11: ']', 12: '#', 13: '=', 14: '3', 15: ')', 16: '4', 17: '-', 18: 'n',19: 'o', 

20: '5', 21: 'H', 22: '(', 23: 'C',24: '1', 25: 'S', 26: 's', 27: 'Br',28: '@',29:'+', 

30:'/', 31:'\\', 32:'I', 33:'P', 34:'7', 35:'8', 36:'9', 37: 'X', 38:'Y', 39:'unused'} 

 

The graphs of core fragments utilized edges and nodes to indicate atoms and bonds 

separately. Each node was annotated by a total of 13 bits, standing for the presence of 

'C', 'N', 'O', 'S', 'c', 'n', 'o', 's', 'H', 'F', 'I', 'Cl' and 'Br' atom respectively (as structures 

containing phosphorus were removed in our training data, we did not encode it in this 

model). The maximum number of nodes for each graph was confined to 60. There were 

four edge types, accounting for single, double, triple and aromatic bond respectively. 

Another important property for an edge is the direction, determined by the index of its 

begin node and end node. The edge type together with edge direction can help create 

the adjacency matrix which describes the communication between nodes and facilitates 



the process of message traversing in the later stage. Examples and detailed illustration 

can be found in the original paper of GGNN13, which thoroughly explained how to 

represent the edge direction.  

 

Grow Model Pretraining. Model was pretrained before the inference of reinforcement 

learning, which is based on an encoder-decoder network, with two input (core fragment 

and source fragment). The encoder composes of two parts: layers for encoding the 

sequence information of source fragments and layers for encoding the graph 

information of core fragments. The former is made up by an embedding layer with an 

embedding size of 39 and a GRU layer with a hidden size of 128, which generate the 

embedding data and a context. The later is an implementation of the GGNN from 

YujiaLi and RichardZemel13. The structures of the decoder referred to that of MOSES 

on GitHub (https://github.com/molecularsets/moses), which is formed by three stacked 

GRU layers with the hidden size of 512 for each layer. Dropout rate was set to 0.2. The 

embedding data and context C was combined as the input of the decoder, while the 

overall context was used to initialize the hidden state of layers. Adam optimizer with 

different learning rate (0.0005, 0.001, 0.005, 0.01) was employed to train the network. 

Different batch size was explored (64, 128, 256).  

 

Comparison with Medicinal Chemists’ Optimization in Previous Cases. Chemists’ 

optimization strategies includes decreasing lipophilicity, lowering basicity, magnifying 

rigidity and altering pi-pi interactions (Table 2). To assess whether the optimization 

direction by our model was in accordance with the initial intention of the chemists, we 

explored four representative cases (Case 1, 3~5 in Table 2) with our GGNN-RNN 

model, which covers all above-mentioned strategies. The model was further trained by 

reinforcement learning based on the fragment pair of original hERG-risky compound 

in each case, which implements previous-defined hERG-predicting model as reward. 

Then, molecules generated by the trained model were compared with the optimized 

compounds by chemists from the aspect of MolLogP, pKa, NROT and NAroR. In 

addition, we performed molecular docking22-23 using Schrodinger 2009 package24 to 



examine the docking conformation and docking score of optimized molecules in 

comparison with chemists’ optimization. 

Before the trained generator starts to grow, the user has to decide the fragment pair 

first. Considering chemists usually do not desire many variations in their designed 

structures, we aimed to select the best fragment pair that can be used to generate more 

non-blockers while keep the part of original structure (core fragment) as big as possible. 

Here we adopted the idea of NSGA-II to facilitate the selection. Compounds were 

broken into fragment pairs as above mentioned. The generator grew 1,000 structures 

for each fragment pair, which were then put into our hERG toxicity model. The fraction 

of predicted non-blockers for generated structures was calculated and defined as Object 

One for the non-dominated rank. The Object Two was defined as difference in 

molecular weight between core fragment and original compound. The top ranked 

fragment pairs were kept and selected to grow molecules. 

We employed reinforcement learning to escalate the fraction of non-blockers in 

generated molecules. However, in the beginning of reinforcement learning, expert 

training on source fragments was first conducted to raise the similarity of target 

fragments to source fragments. Then, the Policy Gradient7 was applied to optimize the 

parameter of the network. The reward function for each generated molecule is defined 

as the non-blocker probability multiplied by the MACCS25/Tanimoto similarity of the 

target fragment to the source fragment (we brief it as ‘similarity’). However, it is 

influenced by many other factors including physiochemical properties such as the 

number of hydrogen acceptors and donors (HBA and HBD), the number of rotatable 

bonds (NROT) and the fraction of nitrogen and oxygen atoms in heavy atoms (FNO), 

the existence of pan-assay interference compounds alerts, toxic alerts and other self-

defined undesired substructures (Alerts). The SMILES arbitrary target specification 

(SMARTS)26 of Alerts can be seen in supporting information. Parameters for target 

fragments were set as follows: HBA and HBD should no more than 3; NROT should 

no more than 5; parameters for whole generated structures were set as: HBD should be 

no more than 5 according to rule of five; NROT should be no more than 8; FNO should 

be no more than 0.4 according to our previous work27; structures should not contain any 



alerts. Any violations of these rules will force the reward to be 0 regardless of hERG 

prediction results. Another manipulation is that if the similarity is higher than or equal 

to a certain threshold, then similarity value will be changed to 1 and otherwise it will 

be 0. This operation has two meanings: first, totally dissimilar fragments will be 

abandoned; second, once the similarity reach a certain threshold, the reward will only 

depend on the non-blocker probability, which guarantees the model to explore some 

new fragments while keep a certain degree of similarity. We explored different 

thresholds 0.1, 0.2, 0.3, 0.4, 0.5 and adopted best results for each case. The final 

thresholds are: 0.3 for Case 1, 0.5 for Case 3, 0.3 for Case 4 and 0.1 for Case 5. Learning 

rate for reinforcement learning was set as 0.0001. Optimization batch was set to 32, and 

the gamma factor was set to 0.97.  

 

Result and discussion 

Constructing hERG Classification Model 

Classification Model Result. The result of eight hERG classification models can be seen 

in Table 3. In terms of the training set, ERF shows the highest ten-fold cross validated 

ACC (0.883), Kappa (0.745), MCC (0.747), second highest AUC (0.945) and largest 

BAC (0.867), indicating the best overall performance on training set. SVM takes the 

second place with a second largest ACC of 0.875, second largest Kappa and MCC of 

0.732, third largest AUC of 0.937 and same BAC with ERF. The metrics for LightGBM 

are very close to SVM, which ranks the third place among all the methods. RF, XGB 

and DNN are equally competent in terms of ACC (around 0.87), Kappa (around 0.72) 

and MCC (around 0.72). Nevertheless, their AUC and BAC differ more, the AUC of 

which are 0.94, 0.935 and 0.927 respectively and the BAC of which is 0.851, 0.857 and 

0.863 respectively. GBDT and AdaBoost exhibit weaker predicting performance on 

training set with Kappa less than 0.7 and 0.6 respectively.  

 

 

 



Table 3. Result of Eight Classification Methods on Different Datasets 

 

Performance on Training Set(cv=10) 

Method AUC ACC Kappa MCC BAC F1 Precision 
Recall 

Specificity 
(Sensitivity) 

LightGBM 0.937  0.873  0.725  0.726  0.860  0.900  0.890  0.910  0.809  

SVM 0.935  0.875  0.732  0.732  0.867  0.900  0.902  0.898  0.835  

RF 0.940  0.870  0.716  0.719  0.851  0.900  0.874  0.928  0.773  

ERF 0.945  0.883  0.745  0.747  0.867  0.909  0.889  0.931  0.802  

XGB 0.935  0.869  0.719  0.719  0.857  0.897  0.890  0.904  0.811  

GBDT 0.926  0.861  0.699  0.700  0.845  0.892  0.877  0.907  0.783  

AdaBoost 0.781  0.798  0.565  0.565  0.781  0.840  0.835  0.846  0.716  

DNN 0.927  0.868  0.720  0.721  0.863  0.894  0.904  0.885  0.841  

Performance on Test Set 

Method AUC ACC Kappa MCC BAC F1 Precision 
Recall 

Specificity 
(Sensitivity) 

LightGBM 0.942  0.881  0.735  0.736  0.861  0.909  0.892  0.927  0.795  

SVM 0.936  0.869  0.713  0.713  0.857  0.898  0.899  0.897  0.817  

RF 0.941  0.871  0.708  0.713  0.842  0.904  0.870  0.941  0.743  

ERF 0.951  0.882  0.736  0.739  0.859  0.911  0.886  0.938  0.781  

XGB 0.935  0.872  0.717  0.717  0.855  0.902  0.892  0.912  0.798  

GBDT 0.925  0.859  0.687  0.688  0.838  0.893  0.877  0.909  0.767  

AdaBoost 0.797  0.815  0.595  0.595  0.797  0.857  0.854  0.860  0.733  

DNN 0.929  0.863  0.704  0.705  0.857  0.892  0.908  0.876  0.839  

Performance on External Set 

Method AUC ACC Kappa MCC BAC F1 Precision 
Recall 

Specificity 
(Sensitivity) 

LightGBM 0.889  0.838  0.675  0.678  0.842  0.851  0.891  0.814  0.869  

SVM 0.861  0.761  0.526  0.535  0.769  0.770  0.846  0.707  0.832  

RF 0.894  0.838  0.671  0.671  0.836  0.856  0.862  0.850  0.822  

ERF 0.880  0.802  0.601  0.603  0.804  0.818  0.853  0.786  0.822  

XGB 0.876  0.818  0.634  0.638  0.822  0.831  0.874  0.793  0.850  

GBDT 0.874  0.794  0.585  0.589  0.797  0.809  0.850  0.771  0.822  

AdaBoost 0.766  0.765  0.527  0.529  0.766  0.785  0.815  0.757  0.776  

DNN 0.848  0.749  0.503  0.514  0.759  0.756  0.842  0.686  0.832  

 

As for the test set, ERF, SVM, LightGBM, RF, XGB and DNN continue to show 

different degree of superiority over GBDT and AdaBoost in terms of the comprehensive 

indexes AUC, ACC, Kappa, MCC and BAC. Among the six superior methods, ERF 

demonstrates its best overall predicting competence on test set, with an AUC of 0.951, 



ACC of 0.882, Kappa of 0.736, MCC of 0.739 and BAC of 0.859. LightGBM surpasses 

SVM with greater AUC (0.942), ACC (0.881), Kappa (0.735), MCC (0.736) and BAC 

(0.861), which is as robust as ERF. The other four methods (SVM, RF, XGB and DNN) 

are very close to each other, but there is a gap between them and ERF/LightGBM. 

Different from the result of training set and test set where the gap between eight 

methods is relatively small, their predicting ability on clinical external set varies from 

method to method. As shown in Table 3, only four methods can reach an ACC of more 

than 0.8, which are LightGBM, RF, ERF and XGB. Among the four methods 

LightGBM and RF show the best predicting competence on external set with highest 

AUC (0.889 and 0.894 respectively), best ACC (both 0.838), highest Kappa (0.675 and 

0.671 respectively), highest MCC (0.678 and 0.671 respectively) and largest BAC 

(0.842 and 0.836 respectively). SVM and DNN witnesses a significant drop on external 

set, even weaker than GBDT and AdaBoost. According to Table 3, we can conclude 

that RF, ERF, LightGBM and XGB exhibit favorable performance on all the three 

datasets.  

Table 4. BAC on Different External Subsets Scaled by Similarity 

Similaritya Count RF ERF LightGBM XGB 

<0.8 217 0.828  0.801  0.833  0.815  

<0.7 163 0.817  0.787  0.816  0.807  

<0.6 111 0.784  0.757  0.775  0.766  

<0.5 90 0.767  0.746  0.746  0.734  

<0.4 59 0.779  0.729  0.729  0.711  

a Compounds’ similarity to the training set. 

 

Table 4 illustrates the four models’ BAC on different external subsets scaled by 

similarity to the training set. LightGBM shows highest BAC of 0.833 when the 

similarity of external set is less than 0.8, revealing its good generalization ability. RF is 

better than the other three when similarity threshold is set to 0.4~0.7. Especially when 

similarity is less than 0.4, the BAC of RF remains 0.779, compared with 0.729 of ERF, 

LightGBM and 0.711 of XGB. Overall, the four methods do not differ much in this 

experiment and all of them can reach a BAC of more than 0.7 even when the compounds 



are very different from training sets.  

 

Validation on Optimization Cases. RF, ERF, LightGBM and XGB is further evaluated 

on seven optimization cases to investigate their sensitivity to subtle structural difference, 

which can be seen in Table 5. The before-optimization compounds (hERG channel 

blockers) are labeled as 1, and after-optimization compounds (hERG channel non-

blockers) are labeled as 0. Only when the model correctly predicts both the before- and 

after- structures can we name it a successful case. LightGBM successfully classifies 

five cases in total, dominating the first place, which is followed by 4 cases of XGB, 3 

cases of ERF and only 2 cases of RF. The results demonstrate LightGBM may be the 

most suitable model to recognize the hERG binding affinity variations when chemists 

conduct small structural changes on lead compounds.  

 

Table 5. Predicting Result of Literature Compounds 

Case 
Compound 

ID 

True 

Label 

RF Pred 

Label 

ERF Pred 

Label 

LightGBM 

Pred Label 

XGB Pred 

Label 

1 
1a 1 1 1 1 1 

1b 0 0 0 0 0 

2 
2a 1 1 1 1 1 

2b 0 1 1 0 0 

3 
3a 1 0 0 0 0 

3b 0 0 0 0 0 

4 
4a 1 1 1 1 1 

4b 0 1 1 0 1 

5 
5a 1 0 0 1 1 

5b 0 0 0 0 0 

6 
6a 1 1 1 1 1 

6b 0 0 0 0 0 

7 
7a 1 1 1 1 1 

7b 0 1 0 1 1 

Correct Casesa 2 3 5 4 

a The number of correctly predicted cases. The before-optimization compounds are 

labeled as 1 (blockers), and after-optimization compounds are labeled as 0 (non-

blockers). Only when the model correctly predicts both the before- and after- structures 

can we name it a successful case. 



 

Compared with Other Works. Our work is compared with the previous studies in Table 

6. From the table we can see, there is no unified standard on setting the thresholds for 

computational chemists. Thresholds include both single threshold such as 1 μM, 10 μM, 

50% efficacy, 50% inhibition at 10 μM, as well as double threshold such as ‘≤10 

μM, >10 μM’, ‘≤10μM ≥80μM’, ‘<10μM >30μM’. Different thresholds may impose 

different influence on model performance. If the IC50 gap between the defined ‘blocker’ 

and ‘non-blocker’ is large, the model performance will be improved according to 

Chuipu Cai et al28. However, this improvement might suffer from losing some data. So 

we should take both model performance and dataset size into account. According to the 

table, from the perspective of model performance our LightGBM model generates a 

good ACC (0.881), high AUC (0.942), good BAC (0.861), good Kappa (0.735) and 

MCC (0.736) on test set compared with other models. Only three works shows obvious 

advantages over us with high ACC (>0.9) and at least one other better metric (MCC > 

0.8 or AUC > 0.96), which are studies from Chuipu Cai et al. 28, Li-li LIU et al. 29 and 

Yiwei Wang et al. 30 . However, Chuipu Cai and co-workers chose a double threshold 

with large gap ‘≤10μM ≥80μM’, with a dataset of only 4,447 data points, in comparison 

with our 9,708 data points. Similarly, although Li-li LIU et al. 29 and Yiwei Wang et al. 

30 employed almost the same thresholds as us and obtained a quite good result, their 

data size is only 2,644, which is only about one third of ours.  

 

Table 6. Comparison of Our hERG Classfication Model with Previous work. 

Year Author Method Descriptors Threshold Data Size Performance 

2015 
Rodolpho C. Braga 

et al.31  
SVM 

Fingerprints and 

CDK descriptors 
1 μM, 10 μM 5,984 

ACC
train

(CV=5)=0.88 

AUC
train

(CV=5)=0.88 

MCC
train

(CV=5)=0.56 

2016 
Remigijus 

Didziapetris et al.32  
GBM 

Physicochemical 

and topological 

parameters 

≤10 μM >10 μM 6,124 

ACC
test

=0.72-0.75 

AUC
test

=0.80–0.83 

MCC
test

=0.42–0.50 

2017 
Hongmao Sun et 

al.33 
SVM 

Atom-type-based 

molecular descriptor 
 > 50% efficacy 3,024 AUC

train
=0.93 

2018 
Vishal B. 

Siramshetty et al.34 
NN, SVM,RF Fingerprints ≤1 μM ≥10 μM 3,223 

BAC
train

(CV=10)=0.87 

AUC
train

(CV=10)=0.94 



2019 Keiji Ogura et al.2 SVM 

Fingerprint, MOE, 

Pipeline Pilot 

descriptors 

10 μM, 

50% inhibition at 

10 μM 

291,202 

BAC
test

=0.839 

Kappa
test

=0.749 

2019 
Hyang-Mi Lee et 

al.35 
Neural Network 

Fingerprints and 

physicochemical 

descriptors  

<10 μM ≥10 μM 2,130 

ACC
train

(CV=10)=0.910 

AUC
train

(CV=10)=0.764 

MCC
train

(CV=10)=0.368 

2019 Chuipu Cai et al.28 
DNN,GCNN,NB,

SVM,RF 
Mol2vec,MOE(2D) ≤10μM ≥80μM 4,447 

ACC
test

=0.925 

AUC
test

=0.967 

2020 Hyunho Kim et al.36 
Self-attention 

network 
Fingerprints ≤10 μM, >10 μM 11,860 AUC

test
=0.89 

2020 
Jae Yong Ryu et 

al.37  
DNN,GCN 

Moredred 

Descriptors,Graph 
<10μM ≥10 μM 14,440 

ACC
test

=0.812 

MCC
test

=0.641 

2010 
Munikumar R. 

Doddareddy et al.16 
SVM,LDA Fingerprints <10 μM >30μM 2,644 

ACC
train

(CV=5)=0.93 

MCC
train

(CV=5)=0.70 

2014 Li-li LIU et al.29 NBC  
Fingerprints and 4 

molecular properties  
<10μM >30μM 2,644 ACC

test
=0.91 

2020 Yiwei Wang et al.30 Capsule Networks 
Fingerprints, 13 

molecular properties 
<10μM >30μM 2,644 

ACC
test

=0.918 

AUC
test

=0.940 

MCC
test

=0.835 

- Our Model 
SVM,RF,Adaboo

st,DNN 

Fingerprints,descri

ptors 
≤10μM ≥30 μM 9,708 

ACC
test

=0.881 

AUC
test

=0.942 

BACtest=0.861 

MCC
test

=0.736 

Kappa
test

=0.735 

 

Fragment Grow Network 

Grow Model Construction. Different GGNN-RNN models parameterized by different 

batch size and learning rate were constructed. 1000 molecules were generated on core 

fragment ‘[*]C1=CC=C2C(C=CN2)=C1’ and source fragment ‘*Oc1ncnc2c1CCNC2’ 

for each model. The fraction of valid structures is shown in Figure 2. As it suggests, 

model performance is very sensitive to the change of learning rate, varying largely from 

0.001 to 0.96. The best value is 0.001, at which all models can reach equal to or more 

than 0.9 validity, regardless of the batch size. In comparison, variation in batch size 

seems to matter less, but it still generates a difference of 0.33 at learning rate 0.0005. 

Batch size 128 and learning rate 0.001 were chosen to build our model, the validity of 

which is 0.96. 



 

Figure 2. Fraction of Valid Structures Generated by Different GGNN-RNN Models 

 

In order to vertify the addition of GGNN can facilitate the molecule-growing 

process, we compare our GGNN-RNN model with the raw RNN model, which replaces 

the GGNN encoder with a single GRU layer to encode the context information of the 

core fragment. 1000 molecules were generated based on core fragment 

‘[*]C1=CC=C2C(C=CN2)=C1’ and source fragment ‘*Oc1ncnc2c1CCNC2’. The 

proportion of valid SMILES produced by raw GNN-RNN is much higher than the raw 

RNN model, which is only 0.792. Moreover, it has lower average Synthetic 

Accessibility Score (SA Score)38 (a score between 1 (easy to make) and 10 (very 

difficult to make)), which is 2.316, suggesting the structures it generates may be more 

easier to synthesize compared with raw RNN model (2.745). The difference of SA 

Score is significant at 95% confidence level. The reason for these results may be that 

the node level GGNN can extract the information of a particular growing site on core 

fragments, instead of broad information that expresses the whole fragments. Therefore, 

the network can gather more surrounding information of the starting point before 

growing, which may make the link between core fragments and target fragments to be 

more authentic (or more valid). Thus the fraction of valid structures and the synthetic 

accessibility will increase.  

 

 



Choosing Suitable Fragment Pair. Before reinforcement learning starts, it is necessary 

to decide which fragment pair to feed into the model, as cutting on different bonds will 

generate different fragment pairs. In order to search for the most suitable fragment with 

less hERG risk as well as reserve the original structure as much as possible , fragments 

are put into the pretrained GGNN-RNN model and the fraction of non-blockers in the 

output is recorded as a reference for selection. The idea of NSGA-II was employed to 

find the best solution. As we can see from Figure 3, this method successfully offers 

suitable core fragments which are in aggreement with chemists’ final decisions in the 

explored four cases (source fragments are the remaining parts of the structures and thus 

are not displayed). In Case 1, four core fragments are suggested by NSGA-II sorting. 

Model that grows on core fragment 1-1 can generate 94% non-blockers in valid 

SMILES, but 178.66 Da of the molecule has to be cut down. By contrast, fragment 1-3 

only abandons 84.08 Da molecular weight but provides 65.2% chance to obtain a non-

blocker even when reinforcement learning is not performed, which is also promising to 

be a core fragment. Chemists in this case actually chose the fragment 1-3 as core 

fragment for hERG optimization, demonstrating the practicability of our technique. 

Fragment 3-2 in Case 3 and 5-2 in Case 5 can give very high fraction of non-blockers, 

which is 92.4% and 85.7 % respectively. Both of them were taken as core fragments by 

chemists. In Case 4, no fragments are exacly the same as the choice of chemists. 

However, all of them reserve the triazole and piperidine parts, which may give chemists 

some ideas to choose the core fragment. It should be noted that circumstances vary from 

case to case, as drugs usually directing at a special target through special functional 

groups. The method cannot tell which fragment is the best one using unified standards 

but offer chemists with several options. Although it needs some human involvement in 

this step, it greatly reduces the human labor by limiting the scope of selection.  

 



 

 

Figure 3. Comparison of Core Fragments Chosen by Chemists with Our Models’ 

Suggestion. Core fragments selected by chemists are marked by red. Core fragments 

suggested by NSGA-II are marked by black. Blue-colored core fragments are  

recommended core fragments which are the same as chemists’ chocie. Core fragments 

are displayed with their difference in molecular weight (MW) to the original compound 

(DMW) and fraction of non-blockers (FNon-blocker) they generated after being fed into the 

pretrained GGNN-RNN model. 

 

Comparison with Medicinal Chemists’ Optimization. Assuming that chemists have 

chosen red parts as core fragments and the corresponding rest as source fragments in 

Figure 3, the next step is to feed those fragments into the model. We performed about 



80 epochs for each case to improve the hERG property. 1000 molecules were generated 

after the model was trained. Invaild molecules, duplicates and predicted hERG channel 

blockers were removed. Here we will explain the result case by case.  

 

Decreasing lipophilicity. Case 1 is a representative of the strategy of decreasing 

lipophilicity to reduce hERG risk39. 80 epochs of reinforcement learning were 

conducted on core fragment 1-3 and corresponding source fragment. 65 predicted non-

blockers (1-3-1~1-3-65) were obtained after removing duplicates. Their SMILES, 

hERG-channel-blocker probability and docking score to the original target Cathepsin 

C39 can be seen in Table S2. According to the result of One-Sample T-Test using SPSS, 

we found the mean cLogP (2.151) of the 65 non-duplicated generated molecules is 

significantly lower than the original structure 1a (2.706) at 95% confidence level, 

demonstrating our optimzation direction is consistent with chemists’ experience. After 

checking the structures one by one, we find that structure 1-3-27 is most similar to 

chemists’ optimization, both of which have a free primary amino and a heterocyclic to 

lower the lipophilicity of the whole molecule (Figure 4A). Furthermore, 1-3-27 can be 

well accommodated in the binding site of its original target Cathepsin C protein and 

keep the key interactions as 1b according to the covalent docking result (Figure 4B), 

which suggests our method can perform reasonable hERG optimization by lowering 

cLogP while reserving the binding mode.  

 



 

 

Figure 4. Conformation Comparison of Chemists’ and Our Model’s Optimization in 

Case 1. A, structures, cLogP and predicted hERG channel blocking probability (hERG 

Prob; higher score means higher blocking possibility) of original compound and 

optimized results. B, covalent docking conformations of compound 1b (left) and 

structure 1-3-27 (right) to Cathepsin C (PDB code: 4CDD). For ligands, carbon atoms 

are colored in green, nitrogen atoms in blue, oxygen atoms in red, sulfur atoms in yellow. 

Yellow dash line stands for hydrogen bond. 

 

Lowering basicity. Lowering basicity is the optimization strategy employed by 

chemists in Case 340. Thus, we utilize pKa to anlayze the result. After 80 runs of training 

on core fragment 3-2 and corresponding source fragment as well as molecule clean, 80 

potential non-blockers were attained. Their SMILES, pKa, hERG-channel blocker 

probability and docking score to the original target DNA-PK are recorded in Table S3. 



The average pKa (14.097) of the generated molecules is significantly lower than the 

original structure 3a (15.178) at 95% confidence level, according to the One-Sample T-

Test result, revealing that same optimzation direction can be found in our optimization 

and chemists’ optimizations. More importantly, the model successfully reproduces the 

optimized structure 3b given by chemists (Figure 5, 3-2-76), which demonstrates that 

our model is an useful to tool for medicinal chemists to reduce hERG risk.  

 

Figure 5. Structures, pKa and predicted hERG channel blocking probability (hERG 

Prob; higher score means higher blocking possibility) of original compound and 

optimized results. 

 

Magnifying rigidity. Flexible linkers allow compounds to adopt better conformations 

in hERG channel3, 41. Therefore, rigidification has been proposed a reliable approach to 

reduce hERG risk. We conducted reinforcement learning on core 4-0 and its 

corresponding source fragment, which is actually the fragment pair derived from 

chemists’ choice (as in this case, we do not generate exactly the same fragment pair). 

56 non-redundant non-blockers were obtained, the SMILES, NROT, hERG-channel 

blocker probability and docking score to the original target acidic mammalian chitinase 

(AMCase)42 can be found in Table S4. Their average NROT is 3.411, sigificantly 

smaller than 4a (7) at 95% confidence level. Most structures produced by our model 

abandon the chlorobenzene ring and directly introduce a saturated heterocycle to the 

growing sites, as 4-0-9 in Figure 6A. The loss of the aromatic ring may help attenuate 

the hERG channel binding affinity, because it may be an important motif that occupies 

the highly favorable hydrophobic pocket41 in the hERG channel. In addition, it is also 



next to PHE656, which is a frequently binded residue of many hERG channel blockers43 

(Figure S2). Thus, the hERG bingding affinity of 4-0-9 is expected to drop, as it 

abandons the aromatic ring. However, the binding affinity to the original target AMCase 

suffers from a drop. Take 4-0-9 as an example (Figure 6B), the loss of chlorobenzene 

results in the loss of pi-pi interactions with TYR267 and larger docking score (-7.741 

of 4-0-9 versus -9.273 of 4b). Nevertheless, our model does recommend structures with 

greater rigidity and suggest a morpholine, which was also adopted by chemists. Overall, 

the case shows that hERG optimization may still need some human involvement, but 

our model can act as a good advicer and bring chemists some reasonable motifs to 

consider.  

 

Figure 6. Conformation Comparison of Chemists’ and Our Model’s Optimization. A, 

structures, NROT and predicted hERG channel blocking probability (hERG Prob; 

higher score means higher blocking possibility) of original compound and optimized 

results. B, docking conformations of compound 4b (left) and structure 4-0-9 (right) to 

AMCase (PDB code: 3RM4). For ligands, carbon atoms are colored in green, nitrogen 

atoms in blue, oxygen atoms in red, sulfur atoms in yellow. Yellow dash line stands for 

hydrogen bond. Blue dash line stands for pi-pi interactions. 



Altering pi-pi interactions. Case 5 illustrates the strategy of decreasing aromaticity to 

reducing hERG binding affinity44. Reinforcement learning were carried out on core 

fragment 5-2 and its corresponding source fragment. Detailed information for 38 non-

dupliated potential non-blockers can be seen in Table S5. Most structures abandon the 

aromatic pyridine rings and introduce non-aromatic rings after reinforcement learning, 

which agrees with the chemists’ optimization strategy. The most similar structure to 5b 

is 5-2-10, which replaces the pyridine with a cyclohexane (Figure 7A). Their docking 

conformation is also similar, despite that the docking score of 5-2-10 is larger than 5b, 

which might be caused by the weaker hydrogen bond between ‘O’ on VAL690 and ‘NH’ 

on ligand (Figure 7B). In this case, our model also recommends reasonable 

optimization direction for chemists. 

 

 

 

Figure 7. Conformation Comparison of Chemists’ and Our Model’s Optimization. A, 



structures, NAroR and predicted hERG channel blocking probability (hERG Prob; 

higher score means higher blocking possibility) of original compound and optimized 

results. B, docking conformations of compound 5b (left) and structure 5-2-10 (right) to 

TYK2 (PDB code: 6NZP). For ligands, carbon atoms are colored in green, nitrogen 

atoms in blue, oxygen atoms in red, sulfur atoms in yellow. Yellow dash line stands for 

hydrogen bond.  

 

 

Conclusion 

Assessing and reducing hERG-related cardiotoxicity is a critical step in the early stage 

of drug discovery. In this paper, we first built eight hERG classification models based 

on 9,708 molecules. The selected LightGBM model shows with good generalization 

ability on clinical external sets, which can reach a BAC of 0.729 even when the 

similarity of compounds to the training set is less than 0.4. Moreover, it correctly 

predicts five out of seven optimization cases provide by a previous study, demonstrating 

its ability to identify ‘activity cliffs’ caused by small structural changes. Then we 

propose a fragment-growing framework termed as GGNN-RNN to reduce hERG 

binding affinity while keep particular fragments. Our model can grow more valid 

structures with better synthetic accessibility than naive RNN. Comparison with 

chemists’ optimization in previous cases shows that our model can provide reliable 

optimizing directions including lowering lipophilicity, decreasing basicity and altering 

pi-pi interactions after being trained by reinforcement learning, which successfully 

reproduces or generates similar compounds as chemists’ optimization. The hERG 

classification model and the GGNN-RNN model can work as a useful tool for chemists 

to evaluate and improve hERG property in the drug discovery pipeline. 
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ABBREVIATIONS USED 

hERG   Human Ether-a-go-go-related Gene 

GGNN    Gated Graph Neural Networks 

RNN    Recurrent Neural Network 

NAroR   NumAromaticRings 

NROT    NumRotatableBonds 

NSGA-II   Non-dominated Sorting Genetic Algorithm-II  

SVM    Support Vector Machine 

RF     Random Forest 

ExtraTree   Extremely Randomized Trees 

Adaboost   Adaptive Boosting 

GBDT    Gradient Boosted Decision Trees 

XGBoost   Exterme Gradient Boosting 

LightGBM   Light Gradient Boosting Machine 



DNN    Deep Neural Networks 

AUC    Area Under the ROC Curve 

ACC    Accuracy 

BAC    Balanced Accuracy 

MCC    Matthews Correlation Coefficient 

Kappa    Cohen’s Kappa 

F1    F1_Score 

NLP   Natural Language Processing 

HBA    The number of hydrogen acceptors 

HBD    The number of hydrogen donors 

NROT    The number of rotatable bonds  

FNO    The fraction of nitrogen and oxygen atoms in heavy atoms 

MW    Molecular weight 

Alerts  Pan-assay interference compounds alerts, toxic alerts and other self-

defined undesired substructures 

SAR   Structure-activity relationship 
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