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ABSTRACT: Controlling the selectivity in hydroamination reaction is an extremely challenging yet highly desirable task for the 

selective diversification of amines. In this manuscript, a selective formal anti-Markovnikov hydroamination of allyl alcohols is pre-

sented. It enables the versatile synthesis of valuable γ-amino alcohol building blocks. A phosphine-free Earth’s abundant manga-

nese(I) complex catalyzed the reaction under hydrogen borrowing conditions. A vast range of aliphatic, aromatic amines, drug mol-

ecules, and natural product derivatives underwent successful hydroamination with primary and secondary allylic alcohols with ex-

cellent functional group tolerance (57 examples). The catalysis could be performed on a gram scale and have been applied for the 

synthesis of drug molecules. The mechanistic studies revealed the metal-ligand bifunctionality as well as hemilability of the ligand 

backbone as the key design principle for the success of this catalysis. 

Hydroamination of unsaturated C-C bonds offers the ho-

mologation of valuable amine building blocks to higher con-

geners.1 However, the core issues of concern lie in the selec-

tive formation of either Markovnikov or anti-Markovnikov 

adducts. In this regard, hydroamination of terminal alkene 

mostly delivers Markovnikov products thanks to innate stereo-

electronics of the reacting alkene and amine substrates.1a-c, 2 

The anti-Markovnikov hydroamination, on the other hand, is 

highly challenging and mostly driven either by modulating the 

substrates and catalytic conditions or by multi-step formal 

synthesis.1c, 2a-h, 3 In particular, the anti-Markovnikov hydroam-

inations of readily available allyl alcohols, which allowed the 

synthesis of γ-amino alcohols, are rare.4 

γ-Amino alcohols are versatile synthetic intermediates for 

many pharmaceuticals and bioactive molecules (some of them 

are exemplified in Scheme 1a).5 Traditional procedures for 

their synthesis include hydroamination of α,β-unsaturated car-

bonyl compounds followed by hydrogenation, reduction of 

preformed β-amino carbonyls,6 and C-H amination of allylic 

and benzylic structural motifs.7 However, most of the multi-

step synthesis required stoichiometric hydride transfer agents 

and suffered from poor atom economy and copious waste gen-

eration.8 

The development of methodology exigencies the sustainable 

and greener way of developing the synthetic strategy to valua-

ble commercial feedstocks. The hydrogen borrowing (BH) 

catalysis, which cascades the dehydrogenation and rehydro-

genation processes, adds considerable interest since it is atom 

efficient and environmentally amicable.9 In this context, the 

anti-Markovnikov functionalizations of allylic alcohols lead-

ing to γ-functionalized alcohols via BH catalysis have attained 

enormous attention (Scheme 1b). Williams et al.10 and Rodri-

guez et al.11 had independently developed such a reaction us-

ing carbon nucleophiles. The anti-Markovnikov hydroamina-

tion of allyl alcohols was pioneered by Oe employing a ruthe-

nium catalyst.12 Subsequently, Wang et al. reported an alkyl 

phosphine-based iron catalyst for the anti-Markovnikov amino 

functionalization of allylic alcohols.13 Recently, Xing14 and 

Wang15 group independently reported asymmetric hydroami-

nation of arylvinyl alcohols utilizing ruthenium catalysts. 

While preparing this manuscript, Beller et al. reported alkyl 

phosphine-based manganese catalyzed formal hydroamination 

of allyl alcohols using pyrophoric sodium triethylborohydride 

as catalyst activator.16 Although the developed methods are 

promising, most of them used noble metals as catalysts, exter-

nal additive as a catalyst activator, and offered limited scope. 

On the other hand, the modern era of organometallic synthesis 

demands the development of catalysts based on Earth’s abun-

dant transition metals due to easy accessibility, low cost, and 

less toxicity.17 Moreover, the reported protocols used phos-

phine-based ligands, which are comparatively expensive and 

prone to undergo degradation under aerial condition such that 

the beneficial effect of the cheap metal catalysts is often for-

feited. Hence, a combination of 3d-transition metal, and a 

readily available bench-stable ligand, is highly appreciable at 

present for the anti-Markovnikov hydroamination of allylic 

alcohols for the synthesis of valuable γ-amino alcohols. 

Recently, we18 and others19 have established the proficiency 

of phosphine-free manganese(I) catalysts to carry out waste-

free hydrogen transfer reactions.20 Manganese is the third most 

abundant transition metal in the Earth’s crust, less toxic, and 

omnipresent in several biological processes. Not long ago, in 

addition to protonation/deprotonation metal-ligand bifunction-

ality, we have exhibited the hemilability of a soft sulfur donor 

side-arm, which (de)coordinates on-demand, as a crucial de-

sign principle for the Mn(I)-catalyzed synthesis of (n+1)-

membered cycloalkanes,18f β-branched carbonyl 

compounds,18d and primary and secondary amines (Scheme 

1c).18g Presently, we become interested in developing phos-

phine-ligand free Mn-catalyst for the anti-Markovnikov hy-

droamination of allyl alcohols to synthesize valuable γ-amino 

alcohols via BH catalysis (Scheme 1d). Notably, the catalyst is 



 

needed to be highly chemoselective for catalyzing anti-

Markovnikov hydroamination reaction, avoiding competing 

reduction of C = X (X = C, N) bonds,21 allylic substitution,5s, 22 

and allylic isomerization.23 

Scheme 1. a) Drug Molecules Prepared from γ-Amino Al-

cohols. b) Metal Catalyzed Homogeneous Anti-

Markovnikov Hydroamination of Allyl Alcohol. 

 

Pursuing this aim, herein, we report a phosphine-free Mn(I)-

catalyst Mn1 bearing a soft sulfur donor side-arm in the ligand 

backbone for the highly regioselective synthesis of γ-amino 

alcohols.18g Encouragingly, the catalyst operated at low load-

ing, tolerated a large variety of amines and allylic alcohol sub-

strates, and can be applied for the diversification of bioactive 

molecules and for the synthesis of drug molecules. The bene-

ficial role of the soft sulfur donor in the ligand’s side-arm has 

been outlined by equating the activities of Mn1 with its oxy-

gen analog and via control experiments. To the best of our 

knowledge, phosphine-free base metal complexes for the for-

mal anti-Markovnikov hydroamination of allyl alcohols have 

not been developed thus far. 

Hydroamination of feedstock allyl alcohol (1a) with N-

methyl aniline (2a) was chosen as the model reaction (Table 

1). Pleasingly, the phosphine-free Mn(I)-catalyst Mn1, having 

a thiomethoxy side-arm,18g at a 2 mol% loading, efficiently 

catalyze the reaction when the reaction was performed in tolu-

ene (0.25 M) at 100 oC in the presence of a mild base K2CO3 

(entry 1). The desired γ-amino alcohol product 3aa was ob-

tained in 92% yield with exclusive anti-Markovnikov selectiv-

ity. When the reaction was performed with the Mn(I)-complex 

Mn2, having a thiophene side-arm,18f 78% yield of 3aa was 

noticed (entry 2). On the other hand, more rigid hydrazone-

ligand derived Mn(I)-complex Mn3, which efficiently cata-

lyzed the C-alkylations of nitriles,18b fail to catalyze the hy-

droamination reaction (entry 3), indicating the need for the 

flexible NNS-ligand framework. Among the solvents tested, 

cyclohexane did not alter the reaction outcome (entry 4). 

However, polar solvents hampered the reaction (entry 5). The 

K2CO3 loading could be reduced to 70 mol% without affecting 

the yield (entry 6). Further reduction gave inferior results (en-

try 7). Lower yields of the product were also noticed when 

other bases were used (entry 8). The control experiments 

demonstrated that the product did not formed in the absence of 

Mn1 or K2CO3 (entry 9). Further details of the reaction opti-

mizations are tabulated in Tables S1-S4. 

Table 1. Key Reaction Pptimization.a 

 
aReaction conditions: 1a (0.4 mmol), 2a (0.1 mmol), Mn1 (2 

mol%), K2CO3 (0.1 mmol), Toluene (0.25 M), 100 oC, 12 h. 

Yields were determined by 1H NMR using 1,3,5-

trimethoxybenzene as internal standard. Isolated yields in the 

parenthesis. 

We then set to explore the scope of the anti-Markovnikov 

hydroamination reaction (Table 2). We were pleased to find 

that a vast range of aromatic (2a-s), and aliphatic amines (2t-

zg) underwent smooth hydroamination reaction with both pri-

mary (1a-e) and secondary allylic alcohols (1f-o) while toler-

ating several functional groups. Notably, in all cases, the γ-

amino alcohols 3 were isolated in exclusive selectivities. The 

N-alkyl anilines (2a-f) exhibited higher reactivity over anilines 

(2g-p) due to their higher nucleophilicity from alkyl substitu-

ent presence on nitrogen. The same is also evident from the 

effect of substituents at the aryl ring of the amine substrates. 

An electron-donating methoxy group at the p-position leads to 

the 98% yield of the γ-amino alcohol 3ab. Moderately elec-

tronic biased halogen substituents furnished the products 3ac-

3ae in moderate to good yields. In comparison, strongly elec-

tron-withdrawing trifluoromethyl substituents at the p-position 

displayed poor reactivity and yielded 47% of 3af. On the other 

hand, the reaction was not affected by the sterics of the aryl 

substituents as the alkyl substituents present at the o-, m-, and 

p-position of the aniline substrates 2h-k reacted at equal effi-

ciencies. The halogens functionalized anilines 2m-p were also  



 

Table 2. Scope for the manganese catalyzed hydroamination of allyl alcohols 1 with amines 2.a 

 
aReaction conditions: 1 (0.25 mmol), 2 (1 mmol), Mn1 (2 mol%), K2CO3 (70 mol%), PhMe (1 mL), 100 oC, 12 h. Isolated yields. 

bK2CO3 (100 mol%). cReaction time 24 h. d1a (5.37 mmol, 1 g). eMn1 (4 mol%), K2CO3 (100 mol%). fToluene : 2-PrOH (1:3). 

responded equally, furnishing the desired products in moder-

ate yields. Notably, the halogen substituents, including the p-

iodo group, were completely retained under these mild con-

ditions, thus providing a handle for further derivatizations. 

Pleasingly, partially reduced heterocyclic arylamines 2q,r 

reacted smoothly under these conditions delivering the prod-

ucts in high 97% and 98% yields, respectively. Even double 

hydroamination of 2s could be performed, and the product 

3as was isolated in 90% yield after 24 h. 

To further expand the scope of this reaction, a large varie-

ty of aliphatic amines were reacted with allyl alcohol. Ali-

phatic, acyclic amines (2t,u), and cyclic amines like pyrroli-

dine (2v), piperidine (2w), morpholine (2x), and thiomorpho-

line (2y) lead to complete conversion to γ-amino alcohols. 

However, due to the volatility, the isolated yields for pyrroli-

dine and piperidine amino alcohol derivatives (3av, 3aw) 

were found to be moderate. Interestingly the piperazine de-

rivatives (2z-zd) possessing more than one nitrogen atom, 

which are important building units in several bioactive mole-

cules, were well-tolerated without decreasing the reaction 

efficiency as the desired products 3az-3azd were isolated in 

high 86–96% yields. The reaction of 2zb with 1a could also 

be performed on a gram scale without significantly affecting 

the reaction outcome. Piperazines bearing heterocyclic moie-

ties like pyridine (2ze) and pyrimidine (2zf) rings were also 

tolerated furnishing the desired products in 91% and 87% 

yields, respectively. 1-Phenylisoquinoline (2zg) also under-

went a smooth hydroamination reaction delivering the prod-

uct 3azg in 82% yield. 

The excellency of the developed methodology induced us 

to further extend the scope for primary and secondary allyl 

alcohols. Primary allylic alcohols bearing alkyl substituent at 

the β- (1b) and γ- (1d-e) positions furnished the γ-amino 

alcohols 3bx-3ex in 65–93% yields. The homoallylic alco-

hol, but-3-en-1-ol (1c), underwent exclusive hydroamination 

at the γ-position. Notably, a terminal alkene group in the 

allyl alcohol partner 2e was retained under these hydrogen 

transfer conditions. 

Secondary allylic alcohols 2f-o could also be utilized as 

the coupling partners under the optimized reaction conditions 

in Table 1 using toluene and 2-propanol (1:3) as the solvent. 

The latter is used as an additional hydrogen source that al-

lowed the selective formation of γ-amino alcohol. The alkyl 

secondary allylic alcohols (1f-h) with different alkyl chains 

resulted in high 90-95% yields of the γ-amino alcohol prod-

ucts. Similarly, the aryl secondary allylic alcohols (1i-m) 

with different electronic substituents reacted smoothly, and 

the desired γ-amino alcohols were isolated in 87–95% yields.  



 

Scheme 2. Synthetic Application of Manganese catalyzed Anti-Markovnikov Hydroamination Reaction. (a-c) Diversification 

of Natural Products and Drug Molecules. (d-g) Synthesis of Drug Molecules.a 

 
aReaction conditions: A: (i) N-Boc piperazine, DMAP, DCC, CH2Cl2, r.t. (ii) TFA, CH2Cl2, r.t.; B: Vinyl magnesium bromide, THF, 0 

oC to r.t.; Mn1: Table 1, entry 6. 

Again, the halogen functional groups were retained under 

these conditions. Additionally, heteroaromatic furan (2n) and 

thiophene (2o) containing secondary allylic alcohols were 

also hydroaminated in excellent 95% and 92% yields, re-

spectively. 

To further explore the applicability of the BH methodolo-

gy, we carried out functionalization of naturally occurring 

alkaloid, cytisine 2zh that deliver the diversified product 

3azh in 88% isolated yield (Scheme 2a). The derivatives of 

the anti-inflammatory drugs naproxen (4a)24 and ibuprofen 

(4b),25 and the natural products like undec-10-enoic acid 

(4c), linoleic acid (4d), and lithocholic acid (4e) could effi-

ciently be diversified, furnishing the γ-amino alcohols 5a-e 

in 75-91% yields (Scheme 2b). Additionally, the allyl alco-

hols, synthesized from the monoterpenoid citronellal (6a) 

and the commercially used fragrant helional (6b), could also 

be functionalized under the manganese catalyzed hydroami-

nation conditions and the products 7a,b were isolated in high 

yields, and moderate diastereoselectivities (Scheme 2c). Ad-

ditionally, cytisine 2zh could be hydroaminated with the 

allyl alcohol derived from helional (6b), yielding the conju-

gate 7c in moderate 50% yield. 

To further demonstrate the synthetic utility of the devel-

oped anti-Markovnikov hydroamination reaction, we have 

synthesized the amino alcohols 3az and 3azd, which could 

be applied for the formal synthesis of anti-psychotic drug 

trifluoperazine (9)26 and anti-hypertensive drug urapidil 

(11),27 respectively (Scheme 2d,e). Besides, the precursor 3it 

of, the antidepressant drug fluoxetine (13)28 could also be 

synthesized in excellent 95% yield (Scheme 2f). Additional-

ly, to further showcase the synthetic utility of the developed 

protocol, we have performed the total synthesis of the tricy-

clic antidepressant desipramine 1629 (Scheme 2g). Thus, the 

precursor 3at, synthesized in 90% yield under the manganese 

catalysis, was converted to the chloro derivative 14 in 87% 

yield. Then after treatment with iminodibenzyl and deben-

zylation delivered the antidepressant drug molecule desipra-

mine 16 in 61% combined yields over two steps. 

 

 



 

Scheme 3. Mechanistic Studies: a) Control Experiments to Probe Bifunctionality and Hemilability of the Ligand Frame-

work, b) Exogenous Ligand Effect, c) Deuterium Labeling Studies, d) Determination of Kinetic Isotope Effect, e) Probing 

the Formation of β-Amino Ketone Intermediate, and f) Plausible Reaction Mechanism. 

 

The working hypothesis for the formal anti-Markovnikov 

hydroamination reaction is outlined in Scheme 1d and 

Scheme 3. A set of mechanical and kinetic experiments were 

then performed to probe the BH catalysis and to delineate the 

salient feature in the ligand design (Scheme 3). It is antici-

pated from the concept of metal-ligand bifunctionality that 

the base-mediated dehydrobromination to ease the alcohol 

activation will be hampered by substituting the N-H proton 

by N-Me functionality.18f Supportively, the use of the Mn(I)-

complex Mn4, having an N-Me group in the ligand back-

bone, as a catalyst resulted in a trace amount of product for-

mation (Scheme 3a). The beneficial role of the sulfur 

sidearm in catalyzing the reaction was then probed. We re-

cently set forth the hemilabile co-ordination of sulfur 

sidearm towards catalyzing the CC-bond formation,18f and 

transfer hydrogenation reactions.18g Along this direction, 

when the catalysis was performed with Mn5, where the sul-

fur atom in the ligand backbone is replaced with a weakly 

polarizable oxygen atom, lacking hemilabile co-ordination to 

the Mn(I)-center, a lower yield of 3aa was noticed (Scheme 

3a). The inhibition by an external strong field ligand, such as 

triphenylphosphine (37% yield of 3aa) and tricyclohex-

ylphosphine (16% yield of 3aa) further supports the hemila-

bile co-ordination of thiomethoxy sidearm (Scheme 3b). 

The deuterium labeling experiment with α-deuterated allyl 

alcohol 1i-d in toluene resulted in 68% yield of the corre-

sponding γ-amino alcohol 3ix-d (Scheme 3c). The 92% deu-

terium incorporation at the α-position of the alcohol product 

indicates the occurrence of a BH cascade in which the deu-

teration takes place at the carbonyl carbon of β-amino ketone 

intermediate by the Mn-D species formed by the dehydro-

genation of 1i-d. By measuring the yield of 3ix at a different 

time interval, an initial rate (kH = 1.03 × 10–3 M/min) for the 

reaction of 1i with 2x is determined (see SI for details). The 

α-deuterated allyl alcohol 1i-d reacted slowly (kD = 3.00 × 

10–4 M/min). From the ratio, a primary kinetic isotope effect, 

KIE kH/kD = 3.43 is obtained, which suggests that the alcohol 

dehydrogenation might be the rate-determining step (Scheme 

3d). The formation of β-amino ketone intermediate 17ix is 

also supported by the HRMS analysis of the crude reaction 

mixture where a m/z for [17ix + H]+ is noticed (Scheme 3e). 

Based on the above experimental findings and previous 

literature,13-14,18,20 a plausible mechanism is proposed 

(Scheme 3f). The base mediated dehydrobromination of 

Mn1 generates the amido complex I, which activates allyl 

alcohol 1 to produce the intermediate II.18f, 18g The hemilabile 

sulfur arm then facilitates the alcohol dehydrogenation from 

II in a rate-limiting-step, as supported by the KIE study, to 

liberate the hydride complex III and the α,β-unsaturated 

carbonyl compound 18. The latter condensed with the amine 

2, generating an iminium ion intermediate 19, which under-

goes aza-Michael addition of another amine molecule. The 

hydrolysis of the formed intermediate 20 liberates the β-

amino ketone 17, which undergoes hydrogenation with III to 

afford the desired γ-amino alcohol 3 and closes the catalytic 

cycle. 

In conclusion, we have demonstrated an efficient synthesis 

of γ-amino alcohols via selective anti-Markovnikov hy-

droamination of allyl alcohols. The atom-economic reaction 

was catalyzed by a phosphine-free manganese(I)-complex, 

and the reaction tolerates various functional groups and het-

erocyclic moieties. The derivatives of natural products like 

linoleic acid, lithocholic acid, and citronellal, the drug mole-

cules cytisine, ibuprofen and naproxen, and commercial fra-

grant helional could be diversified in good to excellent 

yields. Besides, the reaction could also be performed on a 

gram scale. The precursors was applied for the formal syn-

thesis of drug molecules trifluoperazine, urapidil, fluoxetine, 

and for the total synthesis of the antidepressant drug 

desipramine. The deuterium labeling and the kinetic studies 

provide evidence about the alcohol oxidation to be the rate-

determining one. The mechanical experiments revealed both 

M-L bifunctionality and the hemilability of the thiomethoxy 



 

sidearm to be the salient factors operating to the success of 

this waste-free hydrogen transfer catalysis. 
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