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ABSTRACT 

Engineering a biomedical device as a low-cost, non-invasive, detection, and diagnostic platform for 

surveillance of infections in humans, and animals. The system embraces the IoT “digital by design” 

metaphor by incorporating elements of connectivity, data sharing and (secure) information arbitrage. 

Using an array of aptamers to bind viral targets may help in detection, diagnostics, and potentially 

prevention in case of SARS-CoV-2. The ADD tool may become part of a broader platform approach. 
 

 

1. ADD for SARS-CoV-2 

The scale of mortality and morbidity due to SARS-CoV-2 evokes us to explore unconventional 

approaches to mitigate the risks presented by pandemics. Scientists may be less aware of the discovery of 

aptamers thirty years ago but the “fit” of aptamers with respect to the molecular biology of the current 

problem makes it worthwhile to propose new tools. Innovation may arise from the combination of  

chemistry and molecular biology with sensor engineering and opportunity for data dissemination1 to 

benefit public health2 by integrating the principle3 of internet of things4 (IoT5 as a design metaphor). 
 

 
 

Table 1: Is the eight6 year interval between SARS, MERS and COVID-19 just an unrelated coincidence? 

> 40 million 
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2. Aptamers for Detection and Diagnostics (ADD) 

Single stranded (ss) DNA aptamers (ssRNA7 are equally useful8 but susceptible to degradation 

by ribonuclease) bind with specificity to SARS-CoV-29 proteins (Nucleocapsid, Spike, Nsp1). 

Aptamers are conjugated with carbon or cadmium quantum (QT) nano-dots. If there are viruses (1, 10, 

100, 1000) in a sample (sputum, saliva) at a detectable level, then it triggers QT.DNA (QTD) conjugated 

complex to transmit optical property change (EIS or electrochemical impedance spectroscopy is another 

option for signal transduction). An optical signal transduction mechanism may offer low cost data 

acquisition, enabling billions of people to use ADD (detection tool) at home or anywhere (AHA). The 

end-user must have access to the "QTD" conjugate (distributed by health departments in hamlets, towns 

and cities). QTD (product) may be a slurry in a tube labeled as "CoV-2-DETECTION & DIAGNOSIS” 

(C2DD). It remains to be investigated if inclusion of endo-b-N-acetylglucosaminidases (ENGases10) in 

the slurry may be necessary to expose the binding sites by partially removing the N-glycan coat if the 

viral Spike protein is the target (Figure 20).  Imagine C2DD as a tube of lip balm or similar form factor. 

For supply chain and logistics, it will reduce operational cost of distribution if C2DD may be shipped as 

a tamper-proof sterile vial without the need for cold supply chain or special storage to extend shelf-life.  

 

First, the end-user uses her smartphone holo-lens "QTD" app (may not be limited to Microsoft, 

others who can/may develop are Apple, Google, Baidu, Tencent) to take an image of the C2DD vial/tube 

without sample (no virus). Priming (tuning) step is critical to establish a baseline for signal transduction 

and app-embedded data analytics engine to set the system to "without virus" ground state to obtain an 

optical "ground zero" (baseline will be different for EIS). Open question for instrumentation is the need 

for UV activation (for traditional nanodots) to record the shift (valence electron transfer). Can the app 

be configured to perform the activation and record the photoluminescence change? Using visible light to 

activate and coupling activation/quenching with the app needs innovative chemical/device engineering.  

Second, the end-user spits (or adds a small volume saliva or sputum using a swab/spoon) in the 

test tube (vial). There is room for controversy in this step but it is the easiest non-invasive procedure. 

Third, end-user uses her smartphone holo-lens "QTD" app to record optical change (as soon as 

possible after adding saliva/sputum). Perhaps similar to bar code or EPC or QR code scanning. 

Fourth, end-user uses her smartphone holo-lens "QTD" app to record optical changes every 5 

minutes for 30 min (from the time of adding the sample). There will be questions about ENGase activity, 

binding kinetics of the aptamer, signal to noise ratio ([filtering algorithms (Kalman11 filter), error 

correction], activation/quenching issues, damping of signals due to interference from host proteins, 

salinity and pH of mucus-mucin/saliva/sputum sample (any or all could jeopardize binding and signal).  
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3. ADD Digital Data Design 

Baseline versus change over time will appear as a plot in the app (analytics, Figure 1, uses basic 

machine learning (ML) tools, for example, SVM or support vector machine). Fool-proof visualization by 

generating a "traffic signal" visual [green oval (NO virus detected); red oval (virus detected); yellow oval 

(inconclusive/ambiguous)]. Data gathered by the smartphone app (if enabled by user) to be transmitted 

to national centers of epidemiology (eg CDC in USA, ECDC in EU) and local hospitals (the choice will 

be user-dependent). Allowing collection of anonymized data may be one alternative (without recording 

IPv6/IPv4 addresses) but pros/cons to be considered for the greater good, public safety and privacy12. 

This app is a "frontline" detection tool which may be used everyday or each week, At Home or 

Anywhere (AHA), by individual users. The "C2DD" vial has no therapeutic value. Positive results (red 

oval - virus detected) may have to be re-confirmed using lab tests (PCR, mAbs) in a clinic or hospital. 

C2DD PRODUCT and associated SERVICE "QTD" app if combined, are data-informed tools. It does not 

offer or guarantee further testing or treatment. Distribution and pricing of the hypothetical C2DD 

product and proposed pay-per-use (PAPPU13) service for QTD will be debated by corporations. Free 

distribution of C2DD and a micro-payment model (pay-per-use) for the "QTD" app is advocated. 

Users may hide or selectively control data/information sharing as well as access to surveillance 

data (data from daily screening for infection by the infectious agent in question). Secure sharing of 

surveillance data by users (citizen science) is recommended to generate a robust and representative 

status of the community or infected demographics in the region in terms of molecular epidemiology.  

In general, data from molecular epidemiology is critical for resource-constrained healthcare 

supply chains to optimize planning (humanitarian logistics), allocate human resources (medical 

professionals) and organize transportation of materials to the geographic areas where assistance 

is needed, the most. 

Citizen science14 efforts are germane for the efficacy of healthcare systems in case of widespread 

infections (epidemics/pandemics). The tools which makes citizen science possible and effective may be 

viewed as global public goods. Similar systems for animal surveillance (farms, cattle, poultry, meat) are 

necessary to reduce infection in domestic animals (pets) and from crippling the food supply chain.  

Components of the ADD system (QTD, C2DD) including mobile data collection, information 

arbitrage and public health applications are not limited to SARS-CoV-2 but is a platform approach 

which includes digital design elements illustrated15 in Figure 1. Citizen science supported public health 

may immensely benefit from detection of viruses, bacteria, fungi, prions or any infections agent as long 

as an aptamer (oligonucleotide based on the idea16 of an “anti-sense” approach17) may bind a small 

molecule or a macromolecule (peptides or proteins) with sufficient specificity, sensitivity and selectivity 

to generate credible data which may be distributed in real-time to inform and initiate subsequent steps.   
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Figure 1: ADD system also includes data acquisition, analytics and data distribution which includes 

elements of the concept referred to as internet of things (IoT) which is a “digital18 by design” metaphor. 

Cartoon shows the potential path of raw data from the hypothetical binding between a sensor and a 

target19 molecule. Raw data from signal transduction due to binding activity is transmitted and acquired 

at the “edge” by the smartphone. The raw data is “processed” using tools either at the edge (embedded 

operations in the smartphone) or data may be uploaded to the cloud. Post-cloud computing analytics is 

returned to the edge device for display within an ADD application portal on the smartphone. The choice 

between edge versus cloud computing is a function of infrastructure (availability of wireless bandwidth, 

at the edge). The user may observe a difference in the time that it takes to process the data and display 

information (delayed visualization due to latency, function of bandwidth and speed).   
 

 

Data scoring and processing is recommended due to variability of systems. ADD proposes the 

use of aptamers but other alternative arrays (see section 6) which may use the general approach (above) 

may “weigh” the information based on probability of false positive / false negative outcomes from tests20 

(separate from false positives / false negatives in machine learning21 models). Assigning weighted risk to 

data and running other analytics can be performed on the mobile device (smartphone) or in the cloud, 

depending on access to and quality of telecommunications infrastructure. Cloud computing could add 

latency22 between upload and display of information or prediction, depending on availability, reliability 

and connectivity to the internet. Several regions of the world still lack sufficient access to the internet23. 
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Scoring, processing and assigning risk within the analytical engine may benefit from machine 

learning (ML) tools to create a set of models or rules, to be described by and agreed on by experts. The 

system may scan and screen the image or data from the holo lens app (optical signal) to compare with 

these models or rules. Assigning an “image risk score” (IRS) may influence the presentation of the raw 

data where the “traffic signal” “red” may be provided with a sub-text containing a confidence score or 

include a qualitative comment (likely presence of virus) associated with a Likert-type24 indicator/scale. 

In any procedure, enabling the IRS to influence the raw data must be stringently controlled. 

Models or rules must be agreed by global experts whose credibility may be above question. Hence, these 

models and rules must stay outside the realm of testing services or labs or groups that are involved with 

creating systems, for example, ADD. It is preferable if model scoring (assigning risk score to an upload) 

runs on a platform which is not influenced by the local operator or the mobile user. The smartphone 

uploading the data may use a “tool” that applies the IRS engine residing in a secure infrastructure in a 

public cloud (FDA, NIH, NSF, CDC, ECDC) using appreciable level of cybersecurity (eg. Microsoft 

Azure, Amazon AWS). The smartphone must have the permission and physical availability to wireless 

internet or mobile data network to remotely access analytical tools in the cloud, such as, the IRS engine. 

One alternative is to install (and update) the data scoring models/rules (IRS engine) in the ODS 

(operational data store, see Figure 1). The ‘message broker’ receives uploads and sends them to the ODS, 

which serves “hot” data to the app. ODS database is tuned for rapid reads, and serves requests made by 

the mobile app (only recent uploads and metadata about those uploads, including “risk scores”). 

Risk scores are generated from models which are trained from historical data relevant to the test 

in question (using aptamer or antibody or other molecules, for example, hACE2). There must be access 

to sufficient statistical data from each type of test to create a credible risk score. If the model is based on 

bad data (garbage in), the risk score and IRS engine will spew bad information (garbage out). The 

model’s responsibility to assign “risk score” impacts the “traffic signal” and could alter the outcome. 

Model training25 requires vast quantities of historical data, curated and pooled across multiple users who 

used the test and verified their outcome. If the binding was positive it must be corroborated by PCR26 or 

another test with even higher specificity to confirm the result from the binding test using ADD tool. 

Model-building is an iterative exercise that requires lab data from testing to be evaluated by 

credible scientists before data scientists can use it (curate?) to train ML models, which are error prone27. 

In model scoring, a model (in the IRS engine) is called to act on the uploaded (input) data. This analysis 

generates a prediction, displayed on the smartphone as information or recommendation for the user. 

The outcome the user views depends on the design choices made in ML model28 training. It is absolutely 

central that model scoring requires “features” (characteristics germane to model/analysis). Creating 

features29 is the task of a team of specialists (scientists collaborating with data experts). Harvesting 
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feature vectors and data relevant to the feature is the task of feature extractors. It may be provided by 

humans or we may use automated30 feature31 selection/extraction32 to generate features from raw data. 

 

4. Beyond ADD  

Scientific and engineering challenges to design ADD must embrace trans-disciplinary activities. 

But, no new physics is necessary. ADD may be available to billions, as a low-cost mobile AHA (at-home) 

product linked to IoT-type service app. The user experience is related to the service, not the product. The 

convergence of hardware and software with science and engineering as well as analytics and machine 

learning to meaningfully ascend the DIKW pyramid (data, information, knowledge, wisdom) is key to 

creating any detection platform where other tools and devices may upload data using open data APIs 

and standards-compliant data interoperability (DDS33) tools to aggregate or explore cumulative 

analytics, integrated with other systems, for example, geographic information systems34 or GIS. 

In the broader spectrum, ADD is an embryonic element of a potential global health surveillance 

platform (GSP) which may be pivotal as an early warning signal for humans and animal farms. Lessons 

from tsunami detection are sorely missing from public health policy discussions. Implementation of 

GSPs are neither a part of any local public health strategy nor on the agenda of precision population 

health management organizations (CDC, ECDC, WHO).  

An important element of the global health surveillance platform (GSP) may include data from 

non-invasive profiling, referred to as “pay-per-pee” healthcare, which may be instrumental in molecular 

profiling for longitudinal studies on health and wellness35. GSPs may try not to dwell on genomics36 

(DNA) and expression37 (RNA38) in imprecision39 medicine but include proteomics because gene 

expression is insufficient unless the functions are implemented by proteins. Aptamers40 in proteomic 

profiling (GWAS41, metabolomics) and other applications42 including ADD may benefit from synergistic 

integration to help predict status of health (collected papers43 provide select applications of aptamer).  

Genomics is a “snapshot” (static structure of the infrastructure) and transcriptomics (RNA, 

GTEx) is an indicator of expression, which is data, but data may not (always) contain information. 

Proteins bind44 in a myriad of ways45 and translates data to usable information to maintain standard 

dynamic operating procedures (physiology, homeostasis, metabolomics).  

Proteomics is a “time series” but its analysis over time may be interrupted due to feasibility and 

logistics of implementing programs like pay-per-pee healthcare, not to mention the complexity involved 

in extracting sense, often cryptic, from thousands of protein profiles, over time. Static protein profiles 

using NMR and mass spec46 tools only capture snapshots. Can proteomics make sense47 of a cytokine 

storm as markers of counter-anti-inflammatory response48 even before the infectious agent is detected? 

Perhaps it is utopian to expect proteomic profiling as a daily practice in healthcare and home-health. 
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Figure 2: (Top) Pay-per-pee healthcare may provide time 

series data for precision medicine. (Left) “Collection of 

saliva samples by patients themselves negates the need for 

direct interaction between health care workers and 

patients. This interaction is a source of major testing 

bottlenecks and presents a risk of nosocomial infection. 

Collection of saliva samples by patients themselves also 

alleviates demands for supplies of swabs and personal 

protective equipment. Given the growing need for testing, 

our findings49 provide support for the potential of saliva 

specimens in the diagnosis of SARS-CoV-2 infection.” 
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5. Prevention follows Detection and Diagnostics  
 

If viewed50 as non-classical antibodies51 then the role of aptamers vastly exceeds that of 

detection. It spills over into prevention, perhaps as an alt-vaccine, albeit non-immunogenic. Identifying 

aptamers that can detect viral proteins in saliva implies that the aptamers may also bind the same protein 

(albeit with altered kinetics52) if administered topically (nasal spray, throat spray, soft-mist inhaler). 

Protecting the naso-pharyngeal area by saturating it with aptamers which binds (irreversibly?) to 

proteins from respiratory viruses (SARS) may be a preventative measure. Asymptomatic53, pausi-

symptomatic and COVID-19 patients clearly expressing symptoms associated with SARS-CoV-2 may 

continue application of the aptamer cocktail to reduce the spread of infection by disabling (?) nascent 

virions. Aptamers preventing the spike protein (S1 RBD) of SARS virion from attaching to the ACE-254 

viral receptor protein of uninfected cells may slow down the infection and development of COVID-19. 

It follows that aptamers can also bind to any or all viral proteins not only in the extracellular 

space but also inside the cell. Delivering a portfolio of functional aptamers inside the cytosol must face 

the challenges posed by bio-availability and toxicity due to the potential for perturbing functions of 

essential55 cellular proteins. Creating aptamers as alt-vaccines for any infecting organism (virus, bacteria, 

fungi, prion) which uses a protein in its lifecycle may be an (~30 year) old idea. Will the use of aptamers 

gain greater prominence in global public health practices, as a low-cost global public goods tool to 

contain the current and future epidemics and/or pandemics, worldwide, in humans and animals?  

Single stranded RNA or ssDNA aptamers are not linear “tapes” but 3-dimensional shapes as 

illustrated by the discovery of tRNA56 by Paul Zamecnik, Mary Louise Stephenson and colleagues at 

MGH, HMS. Publication of the discovery of tRNA by Zamecnik in 1958 catalyzed an array of milestones 

including the discovery of mRNA by Brenner57 and Gros58 as well as the lac operon model of feedback 

inhibition by Jacob and Monod59, all three published in 1961. The role of proteins in regulation60 

emerged as central to physiology and metabolism. In transcription, translation and replication61 the 

binding between proteins and nucleic acids acted as a “switch” (mechanism of action). The notion62 of 

aptamers63 germinated64 in 1990 but it drew on knowledge from binding between oligonucleotides and 

proteins. Aptamers may be 20-6065 oligonucleotides or more. Binding specificity66 of an enriched pool 

may be orders of magnitude different (Kd) between a nearest neighbor or an analog. Sequential steps67 

are necessary from a starting sample (for example, 9×1014 ssDNA oligonucleotides) to arrive at an 

enriched pool of aptamers (19 ssDNA aptamers). The process has evolved68 in complexity69 and unique 

structures may be involved70 in conferring specificity. In many applications71 of aptamers72 the debate 

also involves issues pertaining to trust and doubts73 due to the constant demand for increasing accuracy 

and precision with respect to sensitivity, selectivity and specificity, in detection and diagnostics. 
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Current and future74 application75 of aptamers include chemistry76, chemotherapy77, food78 

safety, diagnostics79, antibodies80, alt-vaccines81, imaging82 and different83 types84 of biosensors85. ADD as 

a detection tool for SARS-CoV-2 proposes aptamer-based sensors (aptasensors) to detect SARS-CoV-2 

proteins. When an aptamer binds with the target, the signal (data) will be transduced and captured by a 

mobile device. Analytical tools will process data and display information on smartphones (Fig 1). Data 

dissemination will follow according to user preferences, to inform public health authorities or hospitals.  

Optimism for aptamers as detection tools86 extend to SARS-CoV-2 due to the detection of 

SARS-CoV (etiologic agent of 2008 SARS epidemic) C-terminal of N (nucleocapsid) protein at a 

concentration as low as 2 picograms/mL using a RNA87 aptamer in a nanoarray. Tests using saliva88 may 

be unsuitable for RNA89 aptamers due to presence of ribonuclease90 (RNase). DNA aptamers previously 

shown to bind to the N protein of SARS-CoV (Kd 4.93±0.3nM91) also92 binds to the N protein of SARS-

CoV-2. The N protein93 of SARS-CoV-2 shares 91% sequence homology with the N protein94 of SARS-

CoV but is less similar (16% - 38%) with N protein from the other 5 known human coronaviruses. Thus, 

detection95 of N protein in saliva using an aptamer-based ADD aptasensor is possible. Aptamer-based 

technologies96 directed toward SARS-CoV-2 Spike protein are gaining97 momentum98. Blocking99 the S 

protein from attaching to hACE-2 may perturb viral entry and prevent100 the spread of infection. 

Aptamers created against the S1 RBD101 may block binding to hACE-2 (internally) or serve as a detection 

tool (external ADD aptasensor) to test saliva/sputum for SARS-CoV-2. Other102 SARS-CoV-2 targets103 

including Nsp1104 may be less accessible in saliva because they are synthesized after viral entry. But, 

during the burst cycle, when new virions are released, viral proteins inside the host cell may be exposed. 

The targets are not limited to external viral proteins (spike, nucleocapsid, envelope proteins; Figure 4). 

Signal transduction and data acquisition follows detection. In addition to EIS (electrochemical 

impedance spectroscopy105) signals, optical signals are preferred because data acquisition using cameras 

and apps in smartphones are feasible in locations where resources may be limiting. Protein106 

detection107 by conjugating aptamers with quantum dots108 is a tried109 and true110 process111 which may 

be the optical signal (data) for this system. Changes in optical characteristics due to binding may be 

captured by cameras on mobile phones or HoloLens112 app in smartphones may scan the saliva sample 

(think barcode or QR113 code scan). Cameras (sensors) associated with the holo-lens (Kinect114) can scan 

the “field” and collects data to create a digital geometry115 (digital model, 3D image). For ADD, 

HoloLens tools required for holographic functions116 may be unnecessary, for example, accelerometer 

(speed of movement), gyroscope (tilt, orientation) and magnetometer (compass). Optical data captured 

from saliva containing testing vials will be analyzed (machine learning tools; see Figure 1) followed by 

visualization of information on the mobile device and (secure) information arbitrage, if authorized. 
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6. Alternative Arrays 

 

Figure 3: Multiplexed117 Detection Tool for SARS-CoV-2. Upper panel presents potential recognition 

and detection  chemistries. The data (fusion, middle panel) will be analyzed and assay results displayed 

(bottom). The data and information will be displayed on a mobile device (see cartoon in Figure 1). Three 

distinct binding targets for SARS-CoV-2 spike protein RBD are presented in sections A, B (ADD) and C.           

In (A) RBD-antibody (SARS-CoV-2 strain specificity) is functionalized with EDC-NHS chemistry to 

metal (gold, Au) nanoparticles (or may be attached/adsorped on laser inscribed graphene, LIG).             

In (B) single-stranded DNA aptamers with thiol linker is adsorbed to metallized LIG (ADD aptasensor).       

In (C) histidine-tagged human ACE2 is adsorbed to metallized LIG. (D) Binding elicits signal (EIS, 

impedance spectroscopy) which is transduced to a mobile device. Data acquisition is followed by “hot” 

data upload to embedded tiny database (tinyDB118) in the device (ODS in Figure 1). Analytics may be 

executed on the device (embedded logic, machine learning tools) or uploaded to cloud server. The data 

fusion (model scoring) step may be necessary to make sense of the data, in combination, to provide not 

only raw data (results from A, B and C) but information, extracted from data and processed according to 

a simple SNAPS119 paradigm to convey the meaning of the outcome, to inform the non-expert end-user. 
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Interpretation of data may be necessary due to the caveats of target binding and recognition. The 

specificity of the antibody used in the tool may not bind or bind with lower affinity (Kd) with viral target 

protein (Spike protein) due to mutations in the epitope which generated the immunoglobulin (IgG). 

Lack of binding or lower affinity of binding can interfere with signal generation and failure to log signal 

over noise. Thus, individuals carrying SARS-CoV-2 may fail to test positive (false negative) if the viral 

variant possesses mutations preventing the antibody (A) to bind with the mutated Spike protein. Other 

factors (temperature, pH, salinity) may also interfere with signal (see “model scoring” in Appendix).  

In (B), binding with the aptamer is highly specific but it depends on precisely which 

oligonucleotide (sequence of the ssDNA from an enriched pool) binds to which part of the Spike 

protein. For ADD, one aptamer may bind to the RBD (receptor binding domain) of the SARS-CoV-2 

Spike protein. The length of the RBD (primary sequence) used in screening and enriching for the 

aptamer(s) may influence the shape (structure) of the RBD during selection phase. The complementarity 

of the shape of the RBD and the secondary/tertiary structure of the ssDNA complex is key to the binding 

specificity and affinity. If the test sample contains the whole Spike protein (includes RBD) as well as 

fragments (peptides with different lengths of amino acid sequence) which may or may not contain the 

RBD then the binding to the aptamer may fluctuate (widely) because the primary sequence of the protein 

may influence the secondary and tertiary structural outcome. The latter may change the configuration of 

the RBD in a given fragment and prevent binding to the aptamer, generating a false negative. If a sample 

contains other proteins and peptides, it is possible that the 3D configuration of an arbitrary protein or 

protein fragment could mimic or compete, albeit partially, with the RBD, and elicit a signal by binding 

with the aptamer, even if the binding is ephemeral due to reduced affinity (false positive result). 

Binding of the Spike protein RBD to the immobilized hACE2 protein target (C) is probably the 

weakest link in this tripartite approach. Presence of mutations, dynamic or modified configuration and 

the effect of the environment (temperature, pH, salinity) may perturb binding and corrupt the signal.  

Error correction and data curation may be necessary to prevent data corruption (false negative, 

false positive, limit of detection) to improve the information and recommendation for end-users. If the 

confidence in the raw data from each element is high, then the data may be responsibly combined (after 

data scoring, image risk score) to display the information with an assigned degree of  confidence which 

may be more than the sum of the parts (positive, negative, false positive, false negative). The strategy 

from data acquisition and display vs information and recommendation must reduce risk, optimize level 

of precision and accuracy to maximize the value of the information for the user and/or the community. 

Of greater concern is the accumulation of errors, which when aggregated (time series data from ADD 

used as a surveillance tool), may generate spurious results with respect to the status of the population.  
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7. Array of Targets  

 The ADD approach for detection of infectious agents is based on targets identified from the 
biology and/or lifecycle of the organism and its interaction with the host (humans, animals). The RBD 
(receptor binding domain) of the Spike protein from SARS-CoV-2 and the human ACE2 cellular 
receptor (in bats, rats, pangolins and related animals in the phylogenetic tree; reviewed in reference 9) 
are under intense scrutiny. But, exploring the biology of SARS-CoV-2 reveals other equally potent 
targets. Developing drugs, antibodies and aptamers may benefit from a brief review of the viral biology. 
For SARS-CoV-2 detection alone, there are at least two other external proteins which may serve as 
targets for binding to aptamers, the M protein and the E protein in addition to S protein (Figure 4). 

 

Figure 4: ssRNA genome of SARS-CoV-2 is longer compared to other RNA viruses (HIV, Influenza, 
Zika, Ebola; see Figure 16). It is encased in a nucleocapsid core (N protein120) and resides inside the 
virus. External surface of the virus is studded with S (spike), M (membrane) and E (envelope) proteins.  

 

 The receptor binding domain (RBD) of the Spike protein appears to make the first contact with 
the human cellular receptor ACE2 (angiotensin converting enzyme 2). Disrupting this event is the Holy 
Grail for preventing the virus from entering the cell. The mechanism by which Spike protein facilitates 
viral entry is not merely due to the recognition (between RBD and ACE2) but a cascade of events that 
begins after successful binding. The events that follow result in fusion of the viral envelope with the cell 
membrane, thereby allowing the viral genetic material (+ssRNA) to be delivered inside the cell in order 
to create progeny viruses. Fusion is mediated by the fusion machinery and fusion peptide sub-segments of 
Spike S2 protein which includes a step resembling a “jack-in-the-box” toy121. These segments of the 
Spike protein are better conserved and occupy a distinctly different part of the Spike protein (Figure 5).  
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Figure 5: Sequence conservation122 of sarbecovirus S glycoproteins plotted on the SARS-CoV-2 Spike 
protein structure [viewed from the side (A) and top (B)]. The receptor binding domain (RBD S1) is 
separate from the region of the Spike S2 protein necessary to initiate viral entry. The latter is better 
conserved (fusion machinery, fusion peptide) and perhaps better targets for ADD aptasensors.  
 
 
 The better conserved segment of the Spike protein may offer valuable epitopes123 and potential 
binding sites for aptamers (unless glycan moieties interfere). In addition to the RBD (which appears to 
be more variable), the conserved portions of the S2 subunit responsible for fusion (fusion machinery, 
fusion peptide) are likely targets for aptamer binding. It remains to be seen if reagents (monoclonal 
antibodies, aptamers) aimed at the fusion specific domain of the S protein can disrupt viral entry and 
serve as tools for detection as well as prevention. 
  
 Interfering124 with the human cellular proteins ACE2 and TMPRSS2 (which are viral targets) to 
prevent viral binding may not be prudent. Reagents directed against proteases, usually non-specific, may 
perturb physiological functions essential for homeostasis. The events which follow after the viral Spike 
protein docks with the human ACE2 protein are illustrated (Fig 6 copied from Scientific American125). 
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Figure 6: Cascade of events126 leading to viral entry into host lung cell identifies the “jack-in-the-box” 
mechanism as a pivotal tool used by the fusion machinery of the Spike protein to deliver the viral RNA 
inside the host cell. Selectively disabling the fusion machinery of the Spike protein is an attractive target 
for aptamers and other reagents. If available, the latter may not only detect and diagnose but prevent 
infection, even if virus particles may have already reached the human apical surface127 area. Superior 
region of the lungs are more vulnerable to infection due to higher number of hACE2 receptors. The 
number of hACE2 decreases from superior to inferior. Lower part of the lungs have less ACE2 and 
TMPRSS2 proteins, corroborated by the observation that these genes are expressed at a higher level in 
upper nasal epithelial tissue compared with bronchial and small airway epithelial brushings128. 
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 The +ssRNA of SARS-CoV-2 (positive strand serves as mRNA) generates at least 27 or more 
viral proteins by creatively manipulating the host translational machinery. Theoretically, any or all viral 
proteins could serve as targets for anti-viral129 strategies. Virus-encoded proteases130 are distinct131 from 
cellular proteases and may serve as good132 targets. The viral protease133 3-chymotrypsin-like protease134 
or 3CLpro135 aka Mpro  is encoded by Nsp5 and appears136 to cleave (see “scissors” in Figure 7) essential 
viral proteins from “polyproteins” generated from translation of open reading frame (ORF) 1a and 1b 
(Fig 7). Papain-like protease137 PLpro (ORF 1a, Nsp3138), cleaves139 proteinaceous post-translational (ref 
131) modifications on host proteins to evade host anti-viral immune responses. Nsp1140 suppresses host 
translation by cleaving cell mRNAs141 and competes142 with mRNAs for binding to human 40S ribosomal 
mRNA channel143 (as well as 43S, 80S subunits). Type 1144 interferon145 (IFN-1) response146 is modulated 
by Nsp1, Nsp 6 and Nsp13, which interferes indirectly with IFN-1 by suppressing the phosphorylation 
and/or nuclear translocation of other cellular molecules147 involved in catalyzing the IFN-1 response.  
 

 
 

Figure 7: (Top) SARS-CoV-2 genome148 encodes nonstructural proteins (nsp), structural and accessory 
proteins. Nsps are encoded by ORF1a & ORF1b generating pp1a (nsps 1-11) or pp1ab (nsps 12-16). The 
structural and accessory proteins are synthesized by translation of their respective sub-genomic mRNAs. 
(Bottom) Translational repression (Kamitani et al) and binding to 40S ribosome (Thoms et al) by Nsp1. 
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Figure 8: The positive sense (+ss) RNA genome is translated by the host translation machinery to make 
polyproteins that are co-translationally cleaved by proteases (PLpro/Nsp3 and 3CLpro/Nsp5) encoded 
in the polyprotein to generate components of RdRp or RNA dependent RNA polymerase (Hartenian 
and Nandakumar et al). The RdRp complex uses the genome as a template to generate negative sense 
subgenome and genome length RNAs, which are in turn used as templates for synthesis of positive sense 
full length progeny genomes and subgenomic mRNAs. Each and/or any protein factor in this complex 
may be a target for anti-viral reagents, for example, aptamers, antibodies, small molecules and inhibitors. 

 

The conundrum and complexity presented by an abundance of anti-viral targets, a variety of 
strategies and potentially many cell types susceptible to infection, adds to the pharmaceutical dilemma 
where the problems of bio-availability, cross-reactivity and toxicity may force a solution to extinction. 
Viral proteins are distinct but structural homologies and overlapping functional issues are non-trivial.  

 

 

Figure 9: Identification of 
ACE2 receptors on many 
other cells (humans). The 
SARS-CoV-2 virus is not 
only a respiratory virus or 
results only in pneumonia. It 
is causing systemic diseases 
presenting a vast array of 
symptoms and acuity.   
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 The medical chaos due to our lack of understanding of the biological minutiae of SARS-CoV-2 is 
not completely without a silver lining, albeit bleak. The ray of “hope” emanates from ExoN (Figure 8) 
the protein produced from Nsp14 segment of ORF1b (see Figure 7). It appears that SARS-CoV with 
inactivated ExoN is growth impaired and mutates at a much higher level (>20-fold149 higher, see right 
panel in Figure 10). SARS-CoV with one of the longest genomes (see Figure 16) among common RNA 
viruses (HIV, Influenza, Rhino, Ebola) abhors errors150 in replication (not corrected in other common 
RNA viruses with low fidelity RNA replication). High fidelity replication has enabled SARS-CoV to 
maximize its genome size (see Figure 16) using RNA-dependent proof reading system, repair and error 
correction implemented by Nsp14-ExoN (there are Nsp14 homologs in other viruses). Lack of error 
correction in humans151 may result in disease, dysfunction and death, even due to point mutations. 

  
 

Figure 10: Mutated or inactivated Nsp14-ExoN results in >20-fold increase (Eckerle et al 2010) in 
genomic errors (B, right panel). ExoN in RdRp of SARS-CoV-2 enables error correction (left panel). 

 

 Error correction in SARS-CoV-2 may have implications for optimizing target selection for anti-
viral strategies. The choice of the receptor binding domain in subunit 1 (S1 RBD) of the SARS-CoV-2 
Spike protein, therefore, may be incomplete as a target (Figure 3). It appears that the fusion machinery 
and the fusion peptide (FP) region of the Spike protein (subunit 2) is better conserved and will continue 
to remain better conserved due to the error correction mechanism (see Figure 10). Hence, sub-segments 
within subunit S2 of S protein may be better targets. The obvious caveat in this discussion is whether the 
chosen sub-segments in S2 may be sufficiently exposed or available to bind with the anti-viral molecules. 
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Figure 11: S protein (trimer) consists of 2 structurally noncovalently linked domains, S1, contains RBD 
(receptor binding domain) and S2 contains the fusion machinery and the fusion peptide152 (FP). Site of 

proteolytic cleavage → vertical arrow. S2 contains 2 HR (heptad repeat)153 regions HR1 (898 –1005) and 
HR2 (1145–1184) connected by 22-amino acid linker (LVPRGSGGSGGSGGLEVLFQGP). Hydrophobic 
residues (a and d positions in heptad repeat regions) are conserved. SS (N-terminal signal sequence), TM 
(transmembrane domain, C terminus), FP (fusion peptide, bottom154), IBV (infectious bronchitis virus), 
FIPV (feline infectious peritonitis virus), MHV (murine hepatitis virus - murine coronavirus). 
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8. Discussion 
 

Could we detect SARS-CoV-2 in saliva, prevent155 membrane fusion and block viral entry156 with 
the same aptamer or another type of molecule based157 on the better conserved S2 of the SARS-CoV-2 
Spike protein? Could we detect SARS-CoV-2 in saliva of asymptomatic individuals without COVID-19? 
ADD may use better targets for its aptasensors beyond RBD S1 and hACE2. ADD can be accomplished, 
as suggested by the evidence from creation of DeMEA158 (but it uses high cost microfluidics159).  

Even if ADD is successfully engineered to be a low-cost biomedical device for non-invasive 
detection, dissemination of ADD and other systemic surveillance tools will still depend on community-
specific economics of technology160 to facilitate diffusion and adoption. Bringing data and information 
together to make sense and extract foresight (uncertain of the value of hindsight161) will be a challenge 
which new initiatives162 must address. Diffusion of the tool to vulnerable communities will be restricted 
unless the end-to-end system is cost-effective at a level where it is sustainable for repeated use, preferably 
daily, as a surveillance tool for humans, pets and farm animals.                                                         

Data when transformed into usable information may deliver value for the greater good, for the 

greatest number. ADD is one small surveillance tool but it isn’t enough. Healthcare cannot be a knee-

jerk reaction to epidemics and pandemics. Continuous monitoring (even for high risk individuals) may 

remain a mirage in view of the disproportionate socio-economic imbalance. While we must ADD up to 

address the crisis163 at hand, we must also utilize this disaster as an opportunity to deploy profiling as a 

healthcare staple. Other tools, for example, wastewater164 analysis165 may offer transparency166 and guide 

public health strategies regarding elements the community must address, in advance, to prevent melt-

down of health services. When an emergency presents itself we must not disintegrate into quagmire. 

Precision medicine and precision public health may benefit if we probe the broader question of 

physiological status as expressed by proteins but further complicated by our microbiomes167. Isolated 

snapshots of data may be rate-limiting for communities under economic constraints. But, convergence 

of data from ADD along with multiple levels of profiling168 (DNA, RNA, protein, RDW169) as well as 

environmental170 and wastewater171 data172, if included173, may augment the value of information, which 

could be catalytic for medicine174, in general, if aggregated and shared between open175 platforms.  

Analytical skills necessary to deconstruct the data and reconstruct its meaning, relevant to the 

individual and/or the community, may pose a rather insurmountable barrier in terms of tools and/or 

human resources. The ill-informed inclination is to hastily pursue a “quick and dirty” version (perhaps 

shoddy, yet masquerading as good enough) without a long term view or a vision that embraces a sense of 

service, science for the good of society and access to global public goods for all. It goes without saying 

that one shoe does not fit all. It is obvious that ADD is not enough to better prepare for the future176. 
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Figure 12:  Serum from a significant percentage of patients (one third) recovering from COVID-19 have 

low viral neutralizing activity. Depending on the acuity of the infection, patients may or may not follow 

standard immune profile (top177). Low variation (Fig 10) in SARS-CoV-2 Spike protein is good news but 

mutations, D614G (middle panel and bottom) may still complicate178 the immune response and 

expected anamnestic response to reinfection or use of classical179 approaches180 to vaccination.  

  

 

If immunity from traditional 

vaccines are uncertain181, can we 

supplement with alt-vaccines 

(which are non-immunogenic, 

for example, aptamers), to better 

prepare for low-cost and rapid182 

response to public health during 

future epidemics / pandemics? 
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9. Concluding Comments 
 Since 1980’s the HIV epidemic has infected ~76 million people183 (~1% of the global population) 
and almost half are dead (~33 million AIDS related deaths, disease caused by HIV) and currently the 
other half is still living or struggling with the disease. Yet, the thrust for HIV vaccine pales compared to 
the warp speed vaccine development collaboration184 against SARS-CoV-2, which erupted in 2020 as the 
COVID-19 pandemic. Is it because SARS-CoV-2 is irreverent and indiscriminate in infecting humans? 
 

 
 

Figure 13: The timeline of SARS-CoV-2 Vaccine Development184 (mRNA-1273 vaccine185) to control 
COVID-19 (codeveloped by NIAID, NIH and Moderna, Cambridge, MA). The mRNA encodes the 
SARS-CoV-2 full-length spike glycoprotein trimer, S-2P (modified to include two proline substitutions 
at the top of the central helix in the S2 subunit). The mRNA is encapsulated in lipid nanoparticles (0.5 
mg per mL) and diluted with normal saline to achieve the final target vaccine concentrations186. 
 

 

 
Figure 14: 7-day rolling average of new COVID-19 cases187 from January through September 21, 2020.  
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Coronaviruses have long co-existed with humans and animals. Error correction (Figure 10) has 
made the genome of the coronavirus one of the largest among viruses (Figure 16). What does it mean? 
Compared to diseases188 due to relatively unknown viruses189, and despite the flu pandemic ~100 years 
ago, the coronavirus, in less than six months, has changed, perhaps permanently, global thinking, trends 
and technology. Tobacco Mosaic Virus (TMV) was discovered around 1890-1892190 but after more than 
100 years191 of virus discovery, we have just now acknowledged the threat to global health from viruses. 
Understanding the molecular basis of virulence is the single most important questions in basic biology 
which must be investigated by the best and brightest, if we ever expect to mitigate the risk from viruses.   

 
Figure 15: Coronavirus phylogenetic tree. Human coronaviruses (courtesy of S. M. Gygli, NIAID)192 
 

 
Figure 16: Coronavirus pandemic wasn’t really expected193 according to at least one global expert194. The 
coronavirus has the largest RNA genome. Is it just a coincidence or is there any bio-medical correlation? 
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 While we remain clueless about what constitutes virulence, the genome size does not offer any 
solace or solution. The quagmire195 about R0 and k196 for COVID-19 defies epidemiological models197 
but prefers apocryphal Pareto198 principles which suggests that 80% of new infections may be caused by 
only 20% (or even less, 10%) of the infected individuals.  
 

Could there be one or more genetic factors that may underlie the differentiation between super-
spreaders199 vs sub-spreaders for SARS-CoV-2? If the latter is true then how valuable is generalizing 
infection dynamics200 from communities as a prediction tool for overall public health, advance planning 
and use as early warning201 for cautionary preparation? 
  

In future, genomic analysis may enlighten us if there are polymorphisms202 which may partially 
account for this differentiation. It may be worth digressing to note that some individuals may be more 
susceptible to leprosy, caused by Mycobacterium leprae. Genes203 associated with leprosy include HLA 
(human leukocyte antigen) proteins. Analysis of eleven HLA genes in 1155 Vietnamese individuals 
revealed 4 leprosy-associated independent amino acid variants [HLA-DRβ1 positions 57 (D) and 13 (F), 
HLA-B position 63 (E) and HLA-A position 19 (K)] which comprised 2 pairs of linked genes, with one 
set conferring susceptibility [HLA-DRβ1 and HLA-A] and one being protective204.  

 
The demographics of infection by SARS-CoV-2 may be due to genetic205 determinants206 and 

individual outcomes207 may be determined by our genes208 as well as epigenetic factors which may be 
mapped to biomarkers209. At this point it is unclear whether the etiologic agent of this 2019 coronavirus 
pandemic should be referred to as SARS-CoV-2 where SARS imply severe acute respiratory syndrome. 
 

 
 

Figure 17: What is COVID-19? Respiratory illness? Blood clotting disorder210? Cardiovascular disease? 
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Figure 18: CalTech’s hypothetical211 5212 cent213 déjà vu graphene sensor claims to detect SARS-CoV-2 
antigens. Can it serve as a global surveillance tool (humans, animals) and bridge the chasm of inequity? 
 

 
 

Figure 19: Detection of one copy RNA per µL (microL) from SARS-CoV-2214 with mobile phone camera. 
Cas13a (C2c2) is complexed with a CRISPR RNA (crRNA) containing a programmable spacer sequence 
(red tube) to form a nuclease-inactive ribonucleoprotein complex (RNP). When the RNP binds to a 
complementary target RNA, it activates HEPN (higher eukaryotes and prokaryotes nucleotide-binding 
domain) motifs of Cas13a that then indiscriminately cleaves surrounding ssRNAs. Target RNA binding 
and subsequent Cas13 cleavage activity can therefore be detected with a fluorophore-quencher pair 
linked by an ssRNA, which will fluoresce after cleavage by active Cas13. Ott et al used the SARS-CoV-2 
nucleocapsid (N) gene as the template (detection target) to create an array of crRNA spacer (red tube).    
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The socio-economic fall-out from the stochastic spread of infection and non-deterministic 
trends affecting certain countries, select groups (race, ethnicity) and underserved clusters, may be an 
example of “writing on the wall” we are slow to acknowledge. The cost of testing 100,000 individuals in 
the US approximate $6 million. If 30 million tests are performed weekly it would require an additional 
$75 billion and adding the cost of contact tracing might bring the total to approach $100 billion215. 

The “writing” says that the NIAID-Moderna mRNA-1273 vaccine or any other safe and effective 
vaccine against SARS-CoV-2, when it may become available in 2021 or later, may still be out of reach for 
billions of people. CRISPR216-based tests may be promising217 in the future (see Figure 19). BinaxNOW 
$5 test218 is at hand but may not be feasible for daily use in communities under economic constraints. 
The case of Hepatitis-C219 is an example how even after nearly 50 years, anti-viral drugs are not within 
the buying power of billions of people. 

Death, destruction and the decay of civilization220 may continue and may continue to amplify in 
certain regions of the world, long after the pandemic. If the current pandemic is substantially contained 
by the end of 2021, then the aggregated loss from mortality, morbidity, mental health conditions, and 
direct economic losses in the US alone is conservatively estimated at $16 trillion221. The US economy is 
about a quarter of the global economy222, hence, extrapolation suggests that losses due to this pandemic 
may be an estimated $64 trillion, globally (about 80% of the global GDP223). 

This mundane proposal is an elusive quest for an alternative path, albeit temporary and vastly 
incomplete, perhaps through the use of aptamers (or other variations based on oligonucleotides224) to 
partially bridge the chasm of inequity225 and  cushion the blow from the mortality and morbidity, yet to 
be witnessed. Healthcare is a pillar (FEWSHE - food, energy, water, sanitation, healthcare, education) of 
life and living but it is prudent to avoid indulging in any illusion or delusion because neither aptamers 
nor vaccines or CRISPR tools, irrespective of their respective efficacies, are a panacea for the restoration 
of civilization, even if this pandemic subsides in one or two years. The quintessential ingredients for the 
global rejuvenation may be credibility, magnanimity and ethical leadership. 
 

 

Figure 20: Similar to HIV and other 
viral fusion proteins, SARS-CoV-2 
Spike protein uses a N-glycan shield226 
to thwart the host immune response 
(protective coating of N-glycans in 
cobalt blue, right) and makes long term 
immunity heterogeneous, at best. If 
SARS-CoV-2 becomes endemic227, it 
will behoove us to explore parallel risk 
mitigation strategies. Oligonucleotides 
and aptamers may be an alternative 
path, suggested in this proposal. 
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10. APPENDIX – Brief Description of the Components228 for ADD Decision System (Figure 1) 

 
 

Message Broker 

When users upload images (the data after scanning with the HoloLens app or equivalent mobile tool), 

the mobile application (on their phones) writes messages with the image content and other metadata to a 

message-broker, which may be cloud-based message queuing (MQ229) protocol (open source software). 

The message broker allows devices to quickly offload data and confirm “sent” to a user (if cloud based), 

thereby decoupling the user experience from the data store (even if it uses a temporary tinyDB on the 

device, if the network is unavailable to access the cloud in real-time at the point of use). Messages can be 

queued in topics and the system may enable autoscaling (as usage of the application increases, more 

users can be provisioned, process user uploads and get them stored). The uploads (data) are also sent by 

the message broker to the feature extractor and long-term storage database (may use the batch upload 

option when device is proximal to a high bandwidth gateway which can offer access to cloud services).  

Operational Data Store 

The message broker transfers uploads to ODS (Operational Data Store230), which may be a cloud-based 

managed service or part of the tinyDB on the device, if cloud is inaccessible at the point of use. ODS 

must be able to store image data (supports binary blog column type) alongside time-index numerical 

and character data. It is intended to only serve “hot” (nascent) data to the application. Older data may be 

evicted (batch uploaded to cloud managed facilities) to optimize on-device service and prevent data 

amplification. ODS is tuned for fast random reads and serves requests made by mobile app when users 

view recent uploads and additional metadata about those uploads, including “risk scores”. ODS is  

optimized for fast writes and high efficiency time-series queries.  
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Feature Extractor 

Extracts additional metadata from images/data uploaded from the mobile app (uploads it to the long-

term system of record231 which includes raw data uploaded from the application, similar to “master 

data” in ERP232). Feature Extractor may convert the uploaded image into a numeric matrix233 or create 

hash table or representation of a region234 and correct for differences in resolution (for example, 

variation due to pixel density of cameras on different smartphones). Feature235 vectors236 may be 

maintained in the long-term system of record. It may be written to the operational data store to enable 

extraction/selection237 of incoming data (uploads from message broker) relevant to these feature vectors.  

Long-term System of Record 

Mobile applications may never access data directly from this data store238. Interactive-speed queries to 

this data store may not be supported. When necessary, objects stored in this “record” may be extracted 

and the data is loaded into an analytical data store. For object stores, this operation may be accomplished 

using query-over-files engines239. The thorniest problem that ferments within long-term data record is 

the inaccuracy of “accurate” data and the diabolical mayhem from “big data” if it is sourced and stored.  

Analytical Data Store 

Scientists and data experts will need historical data (from uploaded samples) to train task-specific240 

machine learning (ML) models to assign risk scores to samples. Analytical data store (ADS database241) 

may be populated with data from the long-term system of record using scheduled batch data uploads. 

Model Training  

In model training242, a statistical model is built from historical data. Models should be serializable243 

representations of the program generated by ML training. Serialization is essential for interoperability on 

different platforms. It is key to create composable models where models from different groups can be 

deconstructed to sub-elements which can be reconstructed to compose a new model (which may be 

greater than the sum of parts). Serialization enables the process of translating a data structure or object 

state into a format that can be stored or transmitted and reconstructed. Proprietary software vendors 

obfuscate or encrypt serialized data to prevent access. Standard architectures such as CORBA244 define 

the serialization formats in detail to enable open access. 

Model Scoring 

In model scoring, a model is called on input data, the model processes the input data and generates a 

prediction. The structure of this code depends on the design choices made during model training. For 

reliability of deployment, model scoring may run in a container245 (an unit of software) which contains 

code (and all its dependencies) that uses a model to produce predictions on new input data. If model 

scoring runs in a container then the model can be arbitrary code in the developer’s language246 of choice. 

Model scoring requires features created previously by the feature extractor (feature selection is critical). 
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