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Abstract:  In this  work  the effect  of  glucose concentration on  the  metabolome of  living  hippocampal
HN9.10e neurons was studied.  This  cell  line  represents  a  reliable,  in  vitro  model  of  one of  the  most
vulnerable  regions  of  central  nervous  system.  Targeted  metabolites  were  analyzed  in  the  cell  culture
medium by two direct methods, namely liquid chromatography – diode array detection and headspace –
solid phase micro extraction – gas chromatography – mass spectrometry. Twenty-two metabolites were
simultaneously identified and quantified in the growth medium of the cells, treated with 25, 50 or 75 mM
glucose,  sampled along 8 days to mimic a prolonged hyperglycemia. The results of  statistical  analysis
showed the clear impairment of neuronal metabolism already after 48 hours, represented by a significant
reduction of the metabolic activity.

Keywords: Targeted metabolomics; hyperglycemia; primary cultured hippocampal neurons; HPLC-DAD;
cell death; 3-way PCA.

1. Introduction

Glucose is  an energetic  substrate  essential  for  our  brain,  but  its  excess  strongly affects  brain
metabolism giving serious pathological consequences.[1] Cerebral glucose metabolism is tightly
linked  to  neuronal  metabolism[2] likely  because  of  the  ATP-sensitive  potassium  (KATP)
channels, which are found in many excitable cells, including cardiac myocytes, pancreatic β cells,
and neurons.[3,4]
Cho  et  al.  found  that  high  glucose  induced  apoptosis  in  SH-SY5Y  neuronal  cells via  the
mitochondria-dependent pathway due to the mitochondria oxidative phosphorylation, cell death
regulation, and ROS production.[5] Macauley et al. reported that high glucose levels typical of
type 2 diabete alter both hippocampal interstitial fluid Aβ levels and neuronal activity in mice,
acting as pharmacological manipulation of KATP channels in the hippocampus. KATP channel
activation  mediates  the  response  of  hippocampal  neurons  to  hyperglycemia  by  coupling
metabolism with neuronal activity.[6] Elevated extracellular glucose levels can evoke indeed rapid
changes  in  neuronal  excitability  through  KATP  channel  closure  and,  thus,  membrane
depolarization.[3] 
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Recent studies in primary cultured hippocampal neurons report that high glucose (from 50 up to
150 mM) for 24, 48, 72 and 96 h is the main factor of diabetic cognitive impairment and can cause
hippocampus  abnormalities  due  to  ROS generation.[7] In  their  work  Russell  and  co-workers
indicate  that  45  mM  glucose  levels  induce  reactive  oxygen  species  (ROS)  production,
mitochondrial membrane depolarization, partial depletion of ATP, and activation of caspase-3 and
-9  that  precedes  neuronal  apoptosis.[8] Studies  have  demonstrated  that  hyperglycemia  arising
from diabetes induces peripheral sensory neuronal impairment and mitochondrial dysfunction.[9]
Furthermore, there is evidence that the hippocampal dysfunction in diabetic animals might result
in cognitive deficits and increases the risk of depression and dementia.[10] 
It  is  known  that  in  the  central  nervous  system  of  many  vertebrates,  including  humans,  the
neurogenesis  continues  during  the  adulthood.  This  process  has  been  well  documented  in
neocortex,  in  striatum[11,12] and,  in  particular,  in  hippocampus.[13] The  hippocampal
neurogenesis is required for learning and memory processes,[14,15] and it is also responsible of
many  different  pathologies  including  mood  disorders,  stress  and  epilepsy.[16,17] Thus,  the
specific conditions able to influence the neurogenesis must be carefully addressed in the view that
their deregulation could increase the risk of abnormalities in cognitive function. 
Due to the role of hyperglycemia in neurodegenerative diseases[18], and to the severe damage of
hippocampal  region  in  this  kind  of  pathologies[19],  the  study  of  the  effects  of  glucose  in
proliferating  neurons  is  of  crucial  importance.  By  contrast,  these  cells  are  still  largely
uncharacterized from a metabolic point of view and, in particular, the consequences of an elevated
glucose exposure remain mostly unexplored. The effect of high-glucose environment on neuron
metabolism was studied using nuclear magnetic resonance (NMR)-based metabolomics in primary
neuron cultures  to contribute  to the understanding of the metabolic  alterations  and underlying
pathogenesis of cognitive decline in diabetic patients.[20]

In  this  work  we  studied  the  effect  of  glucose  concentration  in  living  hippocampal  HN9.10e
neurons, a somatic fusion product of hippocampal cells from embryonic day 18 C57BL/6 mice
and N18TG2 neuroblastoma cells.[21] This cell line shares many structural and functional features
with primary hippocampal neurons and, consequently, it is a reliable in vitro model of one of the
most vulnerable regions of central nervous system.[22] Since HN9.10e is a well-characterized cell
line from the morphological and functional point of view, it allows a reliable evaluation of minute
metabolic alterations, which is currently missing in the literature.

2. Results

2.1. Glucose influences the growth rate and viability of HN9.10e neuroblasts.
The effects of glucose on the neuronal growth were evaluated as confluence fraction of the cell
population, whose values are reported in Fig 1A and in Supplementary Table 1S.
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Figure 1.  Effect of glucose on growth rate and viability. A) Left: a representative image illustrates the
typical  cell  contouring by the Matlab scientific software.  The ratio [surface occupied by cells/cell-free
surface] is used to quantify cell density and growth rate in cultures incubated with 25, 50, 75 mM glucose.
Right: the cell confluence fraction for the different glucose concentrations. Each value represents the mean
of the ratio [surface occupied by cells/total surface] measured in n = 5 independent, non-overlapping fields
400 x400  μm (SD < 2%; p<0.01).  B) Representative images of apoptotic HN9.10e neuroblasts in early
(left) or late phase (middle), arrow indicates a typical collapsed and fragmented nucleus. Right: apoptosis
incidence  for  the  different  glucose  concentrations  (SD<2%;  p<0,001).  C)  Left:  typical  necrotic
morphology: arrows point to HN9.10e neuroblasts dying for necrosis. Right: necrosis incidence for the
different glucose concentrations (SD<2%; p<0,001). Apoptotic and necrotic cells were counted in the same
fields in which confluence was quantified.   

Cell confluency increased linearly with time up to 192 h. In hyperglycemic conditions (50 and 75
mM) a higher growth rate, compared to the basal condition (25 mM), is demonstrated by the slope
of the confluence fraction curve, particularly during the first 96 h of treatment (T0-T2).  Only in
cultures treated with 75 mM glucose the cell confluence decreased abruptly and significantly at
192 h (T6). 
Starting from 120 h (T3) the growth rate in glucose 50 and 75 mM decreased, probably due to an
increase in the incidence of cell death. To clarify the impact of cell death, a specific analysis of the
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apoptosis and necrosis incidence in the different experimental conditions was made. Apoptotic and
necrotic cells were distinguished on the basis of their standard, well recognized, morphological
features.[23] The early phase of apoptosis is characterized by blebbing of the plasma membrane
without  integrity  loss,  followed  by  cytoplasmic  shrinkage,  nuclear  collapse  and  formation  of
pyknotic bodies of condensed chromatin (Fig. 1 B left and middle). Necrotic cells exhibit loss of
membrane integrity and disaggregated appearance in transmitted light microscopy (Fig. 1C left).
The  apoptosis  incidence  was  very  low in  each  experimental  group  (<0.01%)  (Fig.1B,  right).
Indeed,  a  minimal  apoptosis  incidence  is  a  physiological  phenomenon,  corresponding  to  the
normal cellular turnover of the culture. During the first 6 days (T0-T4), the apoptosis incidence
slightly increased  in  50 and 75 mM glucose compared to  the basal  condition  (25 mM). This
indicates a double effect of hyperglycemia: by one hand it increased the rate of cell proliferation,
on the other hand, it also increased the apoptosis incidence. This suggests an enhanced cellular
vulnerability in high glucose conditions. However, it is evident that the neuronal energetics is still
able to support the active process of apoptotic death during the first 6 days (T4) of culture.
In 25 mM glucose the apoptosis incidence linearly increased with the confluence and it typically
reached  the  0.01% value  for  a  95-98% confluence.  On  the  contrary,  a  clear  decrease  of  the
apoptosis incidence was observed in high glucose starting from day 7  (T5): 0.005% in 50 mM,
0.003% in  75  mM compared  to  0.007% in  25  mM glucose  (4% relative  standard  deviation;
p<0.001).
In parallel, the necrotic death, undetectable in any experimental group until day 5 (T3), increased
considerably in 50 and 75 mM glucose beyond this  time limit  (Fig.  1C, right). The raise was
gradual in 50 mM, but much more pronounced in 75 mM glucose, producing a sharp drop of the
cell  confluence  value.  The  appearance  of  this  massive  necrosis  suggests  a  severe  energetic
collapse, affecting more than 90% of the HN9.10e neuroblasts cultured in 75 mM glucose. 
Based on these functional and morphological observations on living HN9.10e cultures, we did the
exo-metabolites screening in CCM at corresponding times. 

2.2. Metabolites quantified in HN9.10e culture medium.
SPME-HS-GC-MS  and  HPLC-DAD  methods  were  here  applied  for  targeted  metabolomic
analysis. On the basis of our previous works,[24,25] ethanol was selected among various volatile
metabolites and monitored through SPME-HS-GC-MS. Twenty-one metabolites were found by
HPLC-DAD in  the  samples  analyzed,  mainly  belonging to  glycolysis/gluconeogenesis,  citrate
cycle  (TCA  cycle),  synthesis  and  degradation  of  ketone  bodies,  pyruvate  metabolism  and
aminoacyl  tRNA biosynthesis.  The complete  list  of the quantified  compounds,  along with the
respective  concentrations,  is  presented  in  Supplementary  Table  2S,  along  with  their  Human
Metabolome Database (HMDB) ID and retention time.

2.3. Principal components analysis (PCA).
For statistical comparison, samples were divided in two sub-groups (i.e. basal at T0, all grown in
25 mM glucose,  versus CCM samples at  48 h, and CCM sampled from 48 h to 168 h). The
sampling point at 192 h (T6) was excluded from the analysis as the drop of cell confluency values
suggests the massive release of metabolites due to cell necrosis.
First,  samples  at  T0  (gx_T0,  see  Table  1S)  and  at  T1  =  48  h  (gx_T1,  see  Table  1S)  were
compared.  All  gx_T0  samples  grown  in  25  mM  glucose  and  represent  the  reference  basal
condition, while gx_T1 (x = 25, 50 or 75) samples had experienced equal or increasing glucose
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quantities. Principal component analysis was then performed, and it showed a good separation
along Dim1 (which accounts for 76.5% of total variance) between cells grown in 25 mM glucose
respect  to  those  treated  with  50  mM and 75 mM glucose  (Figure  2).  The  second  dimension
differentiated samples treated with 50 mM glucose from those treated with 75 mM glucose, while
cells grown in 25 mM glucose and collected after 48 h (g25_T1) clusterized with the respective
basal (g25_T0). The analysis of loading plot (Figure 3) showed that the three basal samples and
glc25_T1 are strongly positively correlated with all the metabolites, except oxidized nicotinamide
adenine dinucleotide (NAD+) (which is responsible for the separation of g50_T1), butyric acid and
ethanol (both correlated with g75_T1).
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Figure 2. Principal component 1 (Dim1) versus principal component 2 (Dim2) score plot based on the
result of principal component analysis. Percentage in the axis indicates the fraction of variance explained

by the principal component.
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Figure 3. Principal component 1 (Dim1) versus principal component 2 (Dim2) loading plot based on the
result of principal component analysis for samples gx_T0 and gx_T1 (x = 25, 50 or 75 mM glucose).

PCA was also used to represents samples from gx_T1 to gx_T5 (x = 25, 50 or 75), representing
the temporal evolution of the three classes of experiments at increasing glucose concentrations.
Figure 4 shows a clear separation through the second dimension of all g75 samples with respect to
the others, while a weaker distinction appears along the first PC for g25 and g50 samples. Rather,
the latter seems more influenced by the temporal evolution, with the samples moving from right to
left with increasing time, i.e. the permanence of cells in the corresponding medium. The loading
plot (Figure 5) mostly reflects the same plot obtained in the previous PCA. Here, the metabolites
belonging to the TCA cycle (succinic acid, fumaric acid, propionic acid and citrate) are positively
correlated among them and with the samples at 25 mM glucose analyzed after 48 (T1) and 96 h
(T2), on the right side of score plot. With respect to the results of the PCA reported in figure 2 and
3,  here  ethanol  is  strongly  correlated  with  NAD+ and  with  the  samples  treated  with  50  mM
glucose. The hypothesis emerging from this analysis is that a high glucose concentration (i.e. 75
mM) induces a switching of HN9.10e neurons metabolism toward alternative metabolic pathways
involving, in the case investigated, the production of butyric acid. At lower glucose concentrations
(i.e.  50 mM) an alteration of metabolic  pathways typical  of normo-glycemic conditions likely
occurs.
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Figure 5. Principal component 1 (Dim1) versus principal component 2 (Dim2) loading plot based on the
result of principal component analysis for samples from gx_T1 to gx_T5 (x = 25, 50 or 75 mM glucose).

2.4. Three-way Principal Component Analysis (3- way PCA).
PCA is generally not recommended to handle time-course data, which are non-independent. Here,
PCA was used to have an overview of the quality of the acquired data. To further distinguish the
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exact contribution of each variable to the observed changes in T1-T5 samples, 3-way PCA by
applying the Tucker 3 model was performed to decompose metabolomic variations derived from
time and glucose treatment. 
3-way  PCA  is  indeed  particularly  suitable  for  the  management  of  three-dimensional  data,
especially when samples are analyzed over time. For a more complete treatment of this subject the
reader should refer to [26].
The final results of 3-way PCA are three sets of loadings, which from a graphical point of view
closely follow the score plot of standard PCA and whose relationship is described by a core array.
Here, since two components for each mode (i.e. samples, variables and times, with I = 3, J = 22, K
= 5) were retained, the final array is a cube having dimension [2,2,2]. The total variance of the j-
scaled data explained by the Tucker model is 69.4%, which is fully satisfying considering the
variability of a biological system. After body diagonalization, the following core array is obtained:

[ g111 g121 g112

g211 g221 g212

g122

g222 ]

[ 15.542 2.1486 −0.21391
0.76987 0.31494 −5.1932

−1.9009
−6.5705 ]

Despite the matrix does not show a super-diagonal structure, the element g1,1,1 is by far the largest
one, followed by the element g2,2,2. This behavior permits to display the three loading plots in a
single triplot for the joint interpretation of the first two components for each mode. 
From the plot of conditions (Figure 6), it can be noted that the data are elongated on Axis 1 and
that the distance between the five points is not equal, similarly to the score plot of PCA. Three
clusters can be identified as T1, T2 and T3-T4-T5. A possible interpretation is that the kinetics of
the metabolic changes due to glucose treatment is not constant for each time lapse.
The points related to glucose treatment are spread along Axis 2, with the conditions at higher
glucose concentration (50 and 75 mM) more closely related between them respect to the control at
25 mM. It  has to be noticed that  the 3-way PCA could detect  the glucose effect  much more
efficiently than standard PCA. 
Most of the variables are not influenced neither by time along Axis 1 nor by glucose concentration
along Axis 2, with the exception of butyric acid and L-cysteine which appear oppositely correlated
along Axis 2, and NAD+ and ethanol,  whose loadings are higher for Axis 1, i.e. they became
significant for longer treatments (T3-T5) with 50 mM glucose.
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Figure 6. Results of 3-way PCA applied to the T1-T5 dataset.

Figure 7 reports the time dependent plots of NAD+, butyric acid, L-cysteine and ethanol together
with the trend of the metabolites belonging to the Kreb’s cycle (succinic, fumaric, pyruvic and
citric  acid),  while  Figure  S1  shows  the  rates  of  some  key  metabolites  accumulation  per
24h/normalized confluency.
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Figure 7. Trend of some key metabolites (i.e. L-Cysteine, butyric acid, ethanol and NAD+ emerging from
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3. Discussion

The effects of a high glucose environment on metabolome have been previously reported for cell
lines from pancreas (BRIN-BD11 and INS-1E),[27] liver (HepG2)[28] and kidneys (HK-2).[29–
31] In the studies mentioned, 25 mM was the maximum concentration of glucose employed to
treat the cells, respect to a physiological glucose concentration equal to 5.5 mM.[32]
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Due to the serious neurological complications associated with pathologies as diabetes, we propose
here  the  HN9.10e  hippocampal  neuroblasts  as  model  line  to  study  hyperglycemia  metabolic
effects. The experimental conditions here adopted do not allow HN9.10e neuroblast differentiation
since, due to the frequent change of CCM, the endogenously produced neurotrophins and growth
factors  cannot  reach  the  optimal  concentration  required  to  trigger  the  differentiation  process.
Hence the cultures, remaining undifferentiated, represent a reliable in vitro model of proliferating
hippocampal neuroblasts. The choice of examining the exo-metabolome instead of cell lysates is
due to the relative simplicity of measuring over time and in the same cultured cells the variations
of chemical composition in CCM, which rapidly provides the response of cells to external stimuli
with a minimal perturbation of cell system.
Adherent neuronal cells are usually grown in the Dulbecco’s Modified Eagle Medium (DMEM)
containing  25  mM  glucose,  which  here  and  in  most  of  the  studies  dealing  with  neuroblasts
represents a consolidated basal condition, because of the high metabolic rates of neuroblasts.[33]
In a  previous  work,  Liu  et  al.  reported  that  the exposure of  hippocampal  neurons to  50 mM
glucose was enough to provoke evident damages to cells. [7] They verified that the osmolality of
glucose solutions between 25 and 150 mM being between 260 and 320 mOsm/kg, did not exert
any effect on cell normal metabolism.[7] 
In this work in addition to the basal concentration of 25 mM glucose we investigated the effects of
50 mM and 75 mM glucose, to verify the occurrence of a cellular metabolic shift.  
We found that the cell viability in HN9.10e cells exposed to 75 mM glucose decreased remarkably
after 8 days, compared to basal group, in line with previous studies and with the observation that
long-term  exposure  to  high  glucose  concentrations  could  impair  the  mitochondrial  function
inducing the hippocampal  neurons dysfunction.[7] The sharp drop of cell  viability  of g75_T6
group is due to a massive necrosis process, as shown by the analysis with differential interference
contrast  microscopy.  Other  forms  of  cell  death  cannot  be  excluded,  such  as  necroptosis,  a
regulated and active form of necrosis, typically triggered by inflammation and consistent with the
enhanced ROS production induced by hyperglycemia.[34–36] 
The metabolic impairment in HN9.10e embryonic hippocampal cells due to increasing glucose
concentrations  was  studied  by  extracellular  metabolites  quantification.  Although  the  panel  of
metabolites in our study was smaller if compared to untargeted mass spectrometry studies, this
work was focused on several final products of cellular metabolism, which are known to represent
the response of the cell to external stress. 
Multivariate analysis and detailed metabolite level measurement show that the treatment with high
doses of glucose induced a decrease of the concentration of metabolites from TCA cycle, which
despite being intracellular intermediates here were found in the CCM. A reasonable hypothesis is
the release of these metabolites in the extra-cellular medium by means of the monocarboxylate
(MCTs), di- and tri-carboxylate transporters.[37,38]
The results obtained from 3-way PCA, which is a statistical technique suitable for the analysis of
time-series,  confirmed  that  neuronal  cells  have  dose-dependent  characteristic  metabolic
phenomena.  Higher  doses  of  glucose  (75  mM  in  the  case  investigated)  trigger  in  HN9.10e
hippocampal  neuroblasts  deep  metabolic  alterations  suggestive  of  the  activation  of
“unconventional” metabolic pathways. These results are in agreement with the those found in HK-
2  cell  treated  with  various  glucose  concentrations  by  Wei  et  al.  [31],  where  the  increase  of
glycolysis  and glucose  oxidation  was correlated  to  characteristic  metabolic  changes  including
increase in lactate-to-pyruvate ratio and suppression of TCA cycle.
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HN9.10e hippocampal neuroblasts exposed to moderately high glucose levels (e.g. 50 mM in this
cell system) ethanol production is strongly stimulated respect to basal condition, and NAD+ levels
increase, but the increase of these metabolites seems more related to exposure time rather than to
glucose level in CCM. The delay in the ethanol production agrees with a previous observation[25]
and it could be related to an ancestral “safety procedure” which allows the cells to proliferate also
when lactate concentration increases because mitochondrial function is effectively or apparently
compromised or in hypoxic environments.[39]
The increase of adenine dinucleotide (NAD+) is consistent with the reliance of neurons on glucose
as an energy source, and it is subsequent to the conversion of excess pyruvate into lactate and
ethanol, not regenerated because of the suppression of TCA cycle. The conversion of pyruvate
regenerates NAD+ and guarantees the support of the glycolytic flux.[39] It is well known, indeed,
that the activity of lactate dehydrogenase is high in neurons.[40]
It  is  known  that  NAD+ is  an  important  energy  substrate  and  cofactor  involved  in  multiple
metabolic reactions and that NAD+ level is a critical determinant of neuronal survival.[41–44] It is
also  reported  that  NAD+ attenuates  excitotoxic  death  and  preserved  cellular  NAD+ levels  to
support sirtuin 1 and polymerase 1 activities, Ca++ homeostasis and, thus, it effectively coordinates
mitochondrial function, metabolism and ageing.[41,45]
In brain NAD(H) de novo synthesis may occur only from niacin (vitamin B3).[46] Liu et al. found
that  NAD+ level  affects  the principle  mechanism for neuronal  survival  during excitotoxic  and
ischemic  conditions.[41] Neurodegenerative  disorders  characterized  by  protein  accumulation,
misfolding and proteotoxic stress have also been linked to NAD+ depletion.[45]An increase of
glycolysis enhances NADH oxidation to NAD+, inducing an adaptive shift in energy metabolism.
[47] Thus, it cannot be excluded that the increase of NAD+ level has a signalling role to activate a
salvage pathway in neurons. The impaired mitochondrial function, which is associated to many of
these disorders, is,  indeed, successfully restored by elevate cellular NAD+ levels.  It is known,
indeed, the role of the rise of NAD+ and sirtuin-activating compounds,[45,48] as well as the role of
NAD+  supplementation  to  reverse the impaired  cell-energy metabolism and possibly oxidative
stress  that  are  implicated  in  AD cognitive  decline,[44] and in aging and age-related  diseases.
[42,43] 
The most intriguing result obtained in this work is the detection of high levels of butyric acid
(BA), which was the main metabolite increasing after treatment with 50 and 75 mM glucose (see
Figure 7). Butyrate is produced by several fermentation processes of obligate anaerobic bacteria
starting from the glycolytic cleavage of glucose to two molecules of pyruvate. Three molecules of
ATP are produced for each glucose molecule, a relatively high yield. Other pathways to butyrate
include succinate reduction and crotonate disproportionation.
It is universally accepted that mammalian cells do not produce significant amounts of butyrate,
and in humans the only significant sources are the microbiota and ingestion of dairy products. It is
known, as well, that neurons are very sensitive to BA and its derivates (e.g. gamma-amino butyric
acid, GABA or drugs).  Cueno et  al.  reported that mM concentrations  of BA induce oxidative
stress, altered calcium homeostasis and neurite retraction in PC12 cells.[49] Cayo et al. showed
that BA treatment of nerve growth factor (NGF)-untreated PC12 cells affected cell viability and
lead  to  apoptosis  induction.[50] Compounds derived from BA are  gamma-amino butyric  acid
(GABA) and inhibitors of histone deacetylases (HDACs, butyric acid itself, valproic acid and 4-
phenylbutyric  acid).[51,52] Sharma et al.  reported that  4-phenyl butyric  acid (4-PBA) inhibits
hyperglycemia-induced apoptosis in the dorsal root ganglion neuron.[51]
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Nankova et al. reported that BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12
cell model,[53] and that short chain fatty acids (SCFA) like propionic acid and BA produced by
gastrointestinal bacteria are involved in the development of neuronal disorders including autism
spectrum  disorders  influencing  brain  monoaminergic  pathways  (gut-brain  axis).[54] All  these
results  refer to the effects  of exogenous butyric  acid,  i.e.  BA administered  to cell  cultures or
produced by intestinal bacteria. 
The increase of BA found in this work is related to the endogenous production of BA by HN9.10e
neurons  metabolism.  Currently,  we  have  no  proven  explanations  on  the  mechanism  or
mechanisms that were involved in the production of BA by primary hippocampal neurons. This
issue requires further investigation.
It is known that glucose, once trapped in cells as glucose-6-phosphate, may go through glycolysis,
pentose  phosphate  pathway  or  it  can  be  employed  for  the  glycogen  synthesis.[55] However,
neurons are not able to synthesize glycogen and their capacity to upregulate glycolysis is limited
due  to  the  constant  proteasomal  degradation  in  neurons  of  the  enzyme
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase  3  (Pfkfb3),  a  key  positive  modulator  of
glycolysis in cells.[56,57] Thus, glucose is trapped in neurons as glucose-6-phosphate and it is
mainly  processed through the  oxidative  branch of  the pentose phosphate pathway in neurons,
rather than through glycolysis. This pathway is the main producer of reducing equivalents in the
form of NADPH. In normoglycemic conditions NADPH is used to regenerate reduced glutathione,
which is the main ROS scavenging agent in neurons and in less extent to synthesize fatty acids.
In the early stage of hyperglycemic conditions glycolysis and TCA is pushed by excess substrate,
and neurons undergo oxidative stress with a high production of ROS. [7] Later, this likely induce a
“metabolic reprogramming” in a “Warburg-like” phenotype, a TCA cycle suppression.[58] Thus,
in hyperglycemia  it  is  likely to suppose that  neurons have a  metabolic  switch from oxidative
phosphorylation toward non-oxidative glycolysis in the presence of oxygen, using glucose both in
glycolysis for bioenergetic purposes cumulating pyruvate, lactate and ethanol, and redirect glucose
as glucose-6-phosphate through the pentose phosphate pathway as “safety procedure” to increase
NADPH production.  The linear  decrease of  pyruvate  concentration  over  the time at  the three
glucose doses (see Figure 7), confirms the metabolic switch.  This metabolic reprogramming is
found in several diseases related to oxidative stress, likely triggered by mitochondrial dysfunction
and massive ROS production.[58]
The excess of glucose-6-phosphate and the consequent high consumption of NADPH in the first
steps might avoid the elongation of short fatty acids. The hypothetical inhibition of the elongation
steps could bring to butyric acid release from butyryl-ACP by a thioesterase enzyme. 
Butyric acid is well known to modulate gene expression in elevated levels due to its action as a
histone deacetylase,[59,60] and it is responsible for neuronal damage observed in short-chain acyl-
CoA dehydrogenase deficiency (SCADD).[58] Accumulated butyric acid may be responsible for
protein misfolding that causes oxidative damage, which is in a manner of a vicious circle with
mitochondrial  dysfunction.  Its  neurotoxicity  may  be  responsible  for  the  massive  cell  death
observed at 192 h.
Considering  the  mitochondrion’s  origin,  i.e.  the  bacteria,[61] it  can  be  hypothesized  that  any
response of cell to stress agents that involve an alteration of energetic metabolism (high glucose
concentration in this study, thallium contamination investigated in previous ones[24,25]) recalls
ancestor mechanism to preserve cell vitality.
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Figure 8 shows potential  pathways that involve the metabolites determined in in HN9.10e cell
lines and that significantly increase or decrease their extracellular concentration, assuming specific
or aspecific  transport  outside the cells.  For each metabolite  the time evolution  of the ratio  of
concentration  level  in  50mM glucose/25 mM glucose (red lines)  and 75 mM glucose/25 mM
glucose (black line) is shown. Figure 7 shows the enlargement of the time dependent plots of some
key metabolites for an easier inspection.  Direct  data presenting the rates/time evolution of key
metabolites accumulation per 24h/normalized confluency are also reported in Figure S1. The final
plateau in  the  plots  of  metabolite  variation  (i.e.  the  difference  in  concentration  between  the
sampling time Tx and T(x-1)) could be due to a reduced metabolic activity of the cells and/or to a
depletion of TCA intermediates. In our experiment the CCM was refreshed at each sampling time
point, thus the measurement of metabolites variation is an indication of the activity and vitality of
the cell for each specific time window.
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Figure 8. Potential  pathways involving the metabolites determined in CCM of HN9.10e cell  lines, assuming specific or aspecific transport
outside the cells. Time resolved extracellular metabolite concentration in HN9.10e cell lines are reported as ratio for black: 50mM glucose / 25 mM
glucose, red: 75 mM glucose / 25 mM glucose. Error bars denote standard error of mean (SE).
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4. Materials and Methods

4.1. Chemicals.
Sulfuric acid for HPLC analysis was employed (30743 Honeywell Fluka 95-97%). Methanol for
RP-HPLC was  purchased  from Merck (34860,  99.9%).  Preparation/dilution  of  samples  and
solutions was performed gravimetrically using ultrapure water (MilliQ; 18.2 M cm-1 at 25 °C,
Millipore, Bedford, MA, USA).
Standard solutions for HPLC (TraceCERT®, 1000 mg/L in water) and ethanol (analytical standard
for GC) were purchased from Sigma Aldrich (Milan, Italy). All compounds had purity higher than
98% and, thus, were used without any further purification. Analytes stock solutions were prepared
by dissolving a weighed amount of the pure compound in deionized water and stored at 4°C up to
1 month.
All compounds had purity higher than 99% and thus were used without any further purification.
Solid  Phase  Micro-Extraction  Fiber  based  on  85  um  carboxen/polydimethylsiloxane
(CAR/PDMS) were employed for the preconcentration of volatile compounds in the HS.
All chemicals, having purity higher than 99%, were purchased from Sigma-Aldrich (Italy) and
used without any further purification. Working solutions were prepared by diluting standard stock
solutions with milli-Q water and then stored at 4 °C up to 1 month in an amber vial until their use.
Helium 5.6 IP was purchased from Sol Group Spa (Italy) and was further purified with a super
clean  filter  purchased  from  Agilent  Technologies  (USA)  to  remove  water,  oxygen  and
hydrocarbon  contaminants.  Solid-phase  microextraction  fiber  based  on  85  µm
carboxen/polydimethylsiloxane was employed for the preconcentration of ethanol in the HS.
Preparation/dilution of samples and solutions was performed gravimetrically using ultrapure water
(MilliQ; 18.2 M cm-1 at 25 °C, Millipore, Bedford, MA, USA).

4.2. Cell culture and automated imaging of HN9.10e neuroblasts.
The experimental design adopted in this study is shown in Supplementary Table S1. To investigate
the effects of high glucose culture medium, the HN9.10e hippocampal neuroblasts were incubated
with three different doses of glucose representing a 2 and 3-fold increase from baseline (25 mM
glucose). After 48 h of culturing in the basal condition (glucose 25 mM), glucose was kept 25 mM
in CCM of control cultures and increased to 50 and 75 mM. Two independent batches for each
glucose  level  were  cultured.  Cell  culture  medium  (CCM)  containing  the  established  glucose
concentration was collected and refreshed after the first 48h and successively every 24 h up to 192
h (8 days) after the beginning of the experiment. 
The morphological and functional responses of HN9.10e neuroblasts to glucose increase in CCM
were  followed  by  differential  interference  contrast  microscopy  (also  known  as  Nomarski
interference  contrast).  This  allowed enhancing the contrast  of  unstained neurons in  the  living
cultures, avoiding the use of cell dyes or fluorescent probes. Indeed, the neuronal staining would
imply a long permanence of dyes in CCM, due to the extended sampling and monitoring time (192
h). However, this could induce unpredictable metabolic alterations, or even a certain degree of
vitality loss.
HN9.10e cells were grown in DMEM-F12 (1:1) medium HEPES buffered, supplemented with 4
mM L-glutamine,  50  UI/mL penicillin  and  50  mg/mL  streptomycin,  at  37  °C  in  humidified
atmosphere containing 5% CO2. Cells, seeded at 20,000 cell/cm2 in culture flasks containing 5 mL
of medium, were left in culture for 4 days before treatments in order to allow substrate adhesion
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and growth to an optimal 40 % confluence. After this, they were incubated in CCM containing 25,
50 or  75 mM glucose.  To take account  of  variations,  two independent  batches  of  cells  were
cultured for each glucose level.
In order to analyze the cell morphology and growth rate avoiding the metabolic alterations or the
viability loss potentially induced by the use of cell dyes, an  inverted microscope (Axiovert 35,
Carl Zeiss, Oberkochen, Germany) equipped with Nomarski interference contrast optics and 40x
or  63x objectives  was  used.  This  set  up  allowed  to  monitor  the  growth and death  events  in
unstained living cultures, without the need for any dye or fluorescent probe.
The degree  of  cell  confluence  was evaluated  by  the  automated  measure  of  the  ratio  [surface
occupied by cells / cell-free surface] obtained after the cell boundaries were determined with the
standard  function  “Edge  Detection”  of  the  MATLAB  scientific  software  (The  MathWorks,
Massachusetts, U.S.A.), adapted to the specific contrast level and cell shapes of HN9.10e cultures.
The measurements have been performed in n = 5 independent, non-overlapping, fields (400 x 400
μm) for each dose of glucose and sampling time. In the initial condition (T0), at a confluence
value  0.4,  each  field  contained,  on  average,  150  cells.  The  HN9.10e  cell  line  (embryonic
hippocampal  neurons), developed by Lee H.J.  et  al.,  was a kind gift  of Dr. Kieran C. Breen,
Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.  For a detailed description of the
cell line see the original paper [62].
Results were expressed as mean ± SD, and statistical significance of the differences was assessed
by two-way  ANOVA for  a  normal  distribution  of  data.  A p < 0.01  value  was  considered  as
significant

4.3. Experiments to exclude an artifactual origin of CCM exo-metabolites.
To rule out a possible artifactual origin of specific extracellular metabolites in CCM (such as, in
particular, ethanol and BA) several control experiments were performed in different conditions.
First of all, cell-free CCM was incubated in sealed flasks (N=3) at 37 °C for various times, up to
25 days. Neither ethanol nor BA were detected in this experimental condition, excluding that they
may originate  from CCM degradation.  Furthermore,  to obtain a  strong evidence that HN9.10e
cultures are sterile and free from even the slightest bacterial contamination, we collected 500 μL
of CCM from every experimental flask. These aliquots were added to control flasks containing 5
mL of fresh medium and incubated at 37 °C up to 25 days.  Over such long times, any minimal
bacterial contamination would amplify and become evident.  However, neither bacterial growth,
nor  EtOH and  BA were  detected  in  the  control  flasks,  excluding  a  bacterial  origin  of  these
compounds.

4.4. Targeted metabolomics, data processing and statistical analysis.
CCM was analyzed by HPLC-DAD and SPME-HS-GC-MS methods developed and validated in
previous  works[63,64].  For  the  analysis,  5  mL  of  CCM  were  removed  from the  flasks  and
collected in 10 mL headspace vials (Agilent Technologies, Part No. 8010–0038). The vials were
sealed with holed screw-caps equipped with Teflon/silicone septa for use with the CombiPAL
(Agilent Technologies, Part No. 8010–0139) and kept at -20°C until the analysis. The transfer of
such volumes was accomplished using adjustable pipettes and, for better precision, all aliquots
were  weighted.  Details  regarding  both  methods  and  acquisition  parameters  are  listed  in
Supplementary Table S5. 
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For SPME-HS-GC-MS, the chromatographic peak for ethanol was detected and integrated by the
GC/MSD ChemStation  software  (version  E.02.02  Agilent  Technologies,  USA).  A  calibration
curve was built for quantitative purposes analyzing 5 mL of 0, 0.023, 0.046, 0.23, 0.46 and 2.3
mM EtOH (primary standard solution) introduced in 10 mL headspace vials. The mass spectrum
of ethanol has been provided in Supplementary Material.
For RP-HPLC-DAD analysis, samples were diluted 5 times in 5 mM sulphuric acid, filtered using
a 0.20 m RC Mini-Uniprep (Agilent Technologies, Italy) and injected in the HPLC system. The
identification of metabolites was based on the comparison of the retention time and UV spectra of
standard  compounds.  The  220  nm detection  was  selected  to  control  the  interference  of  high
absorbing compounds, the signals were manually integrated, and the concentration obtained by
building a calibration curve with the corresponding analytical standard.
A data  matrix  was then prepared,  having each sample in rows and SPME-HS-GC-MS/HPLC-
DAD data of each metabolite in columns, and evaluated by a tailored in-house R-script (R version
3.6.3 (R Development Core Team 2012) and R-Studio, Version 1.1.463). The missing values were
replaced  with  a  half  of  the  minimum  value  found  in  the  data  set,  and  for  each  glucose
concentration-time  point  pair  the  average  and  standard  deviation  from  the  analysis  of  two
independent  batches  were  calculated.  For  all  statistical  analyses,  the  concentrations  were
normalized by cell confluency, transformed by cube root and Pareto scaled. Data normalization to
cell number found its admissibility in the work of Muschet and coworkers [65], which found that
the concentrations of most metabolites belonging to different classes is positively correlated with
the cell number in a linear fashion.
Missing values were replaced by a random value comprised between zero and the detection limit
of  the  corresponding  analyte.  The  R-packages  FactoMineR,  factoextra,  ggpubr,  tidyverse  and
rstatix were used for principal component analysis (PCA) and for data visualization, respectively.
3-way PCA was performed with the open-source Chemometric Agile Tool (CAT) program (http://
www.gruppochemiometria.it/index.php/software/19-download-the-r-based-chemometric-
software). 
For each glucose treatment, cell cultures were growth in duplicate, CCM collected at five different
times, and 22 variables quantified by HPLC-DAD and SPME-HS-GC-MS. Thus, the real structure
of the datasets can be identified as a parallelepiped whose size was 3 × 22 × 5. In order to apply
standard PCA, the three-way data array was matricized to obtain a two-way data table, having 15
rows (3 samples × 5 times) and 22 columns. Before 3-way PCA the cubic data matrix was j-scaled
to remove the differences among the variables without removing the differences among the objects
and among the sampling times.

5. Conclusions

The number of metabolomics studies applied to cell-cultures is still low if reported to the plenty of
existing literature on animal models or human body fluids,[66] and the available data in this area
are often fragmented. Our study represents a tile in the exploration of cell metabolome, aiming to
clarify with a simple targeted approach the unbalances deriving from high-glucose environments
in HN9.10e immortalized neurons.
Despite the huge amount of cellular metabolite involved in the response to hyperglycemia, and
despite the apparent unaltered neuron morphology and vitality at least up to 120 h, the proposed
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experimental design and data processing allowed us the identification of two main metabolites
increasing in HN9.10e immortalized cell line treated with 50 and 75 mM glucose with respect to
control cultured in 25 mM glucose: NAD+ and butyric acid.
These two molecules are known to act as signaling molecules and suggest (i) a hyperglycemia-
induced switch of neuronal metabolism toward glycolytic pathway as energetic source and toward
pentose  phosphate  pathway  as  “safety  procedure”  to  increase  NADPH  production;  (ii)  an
“attempt” of fatty  acid synthesis due to the excess of acetyl-CoA.  The metabolic  alteration is
evidenced only by a sudden, massive cell death classified as necrosis after 192 h, which reflects
serious mitochondrial damage due to ROS accumulation, in agreement with previous metabolomic
studies on the effects of glucose on different cell lines from hippocampus.

Supplementary  Materials: The  following  are  available  online,  Figure  S1:  Accumulation  rate  of  the
quantified metabolites  per  24h/normalized confluency expressed  as  difference between the normalized
concentration at each sampling time point and the previous one. Error bars denote standard error of mean
(SE), Figure S2: Comparison between the mass spectrum of ethanol detected in CCM (red spectrum) and
the  NIST reference  (blue  spectrum),  Table  S1:  Experimental  design,  Table  S2:  Concentrations  of  the
quantified metabolites (mean and standard deviation), Table S3: PCA scores, Table S4: PCA loadings,
Table S5: HPLC-DAD and HS-SPME-GC-MS experimental conditions.

Author Contributions: All authors contributed toward design of the research, in interpretation of results,
and in writing the paper. L.C. performed cell  imaging by differential interference contrast microscopy.
M.O. prepared the samples and performed SPME-HS-GC-MS analysis, R.N and E.B. performed HPLC-
DAD analysis, and B.C performed statistical analysis.
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