
On the Completeness of Three-Dimensional 
Electron Diffraction Data for Structural Analysis of 
Metal-Organic Frameworks
Meng Ge,‡ Taimin Yang,‡ Yanzhi Wang,# Francesco Carraro,∥ Weibin Liang,§ Christian Doonan,§

Paolo Falcaro,∥ Haoquan Zheng,# Xiaodong Zou‡ and Zhehao Huang‡,*
‡Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden 
#Key  Laboratory  of  Applied  Surface  and  Colloid  Chemistry,  Ministry  of  Education,  School  of  Chemistry  and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China.
∥Institute  of  Physical  and Theoretical  Chemistry,  Graz  University  of  Technology,  Stremayrgasse  9,  8010 Graz,
Austria
§Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, 5005
South Australia, Australia

E-mail: zhehao.huang@mmk.su.se.

Abstract:

Three-dimensional  electron diffraction (3DED) has been proven as an effective and accurate
method  for  structure  determination  of  nano-sized  crystals.  In  the  past  decade,  the  crystal
structures of various new complex metal-organic frameworks (MOFs) have been revealed by
3DED, which has been the key to understand their properties. However, due to the design of
transmission electron microscopes (TEMs), one drawback of 3DED experiments is the limited
tilt  range of  goniometer,  which often leads  to  incomplete  3DED data,  particularly  when the
crystal symmetry is low. This drawback can be overcome by high throughput data collection
using  continuous  rotation  electron  diffraction  (cRED),  where  data  from  a  large  number  of
crystals can be collected and merged. Here, we investigate the effects of improving completeness
on structural analysis of MOFs. We use ZIF-EC1, a zeolitic imidazolate framework (ZIF), as an
example. ZIF-EC1 crystallizes in a monoclinic system with a plate-like morphology. cRED data
of ZIF-EC1 with different completeness and resolution were analyzed. The data completeness
increased  to  92.0% by  merging  ten  datasets.  Although  the  structures  could  be  solved  from
individual datasets with a completeness as low as 44.5% and refined to a high precession (better
than 0.04 Å), we demonstrate that a high data completeness could improve the structural model,
especially on the electrostatic potential map. We further discuss the strategy adopted during data
merging. We also show that ZIF-EC1 doped with cobalt can act as an efficient electrocatalyst for
oxygen reduction reaction. 



Introduction
During the past two decades, three-dimensional electron diffraction (3DED) has been steadily
developed  as  a  complementary  technique  to  single-crystal  X-ray  diffraction  (SCXRD)  for
structural  elucidation  of nanocrystals1–4.  The early development  of 3DED techniques  such as
ADT/PEDT5,6,  RED7,8,  and  EDT9 utilize  stepwise rotation,  where a  crystal  is  tilted  along an
arbitrary  axis  in  a  transmission  electron  microscope  (TEM),  and  electron  diffraction  (ED)
patterns  are  collected  at  each  angle.  Recently,  new protocols  of  3DED,  such as  continuous
rotation  electron  diffraction  (cRED)10,  fast  ADT/EDT11,12,  microED13,  and  rotation  electron
diffraction14,  have been developed. They are based on continuous data acquisition where the
goniometer  continuously rotates at  a constant speed and the detector records a movie of ED
patterns. The rapid development on 3DED has made large impacts in structural characterization
of new materials, such as zeolites15–20, metal oxides21–24 and quasicrystal approximant25. 

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are a class
of hybrid materials by linking inorganic metal building units and organic ligands26,27. The almost
unlimited combination of inorganic and organic components has led to an ever-expanding family
of MOFs with versatile structures and properties28. However, due to the reversible coordination
bonds,  MOFs  are  sensitive  to  radiation  damage  by  electron  beam,  which  hampered  their
structural  analysis  using  3DED.  This  challenge  has  been  tackled  by  the  development  of
continuous rotation data collection, using which one 3DED dataset can be acquired in less than a
few minutes, with a dose rate lower than 0.1 e s-1 Å-2. The fast data collection minimizes loss of
crystallinity due to beam damage, and consequently the quality of 3DED data, such as resolution,
has been improved significantly.

Benefited  from  continuous  rotation  electron  diffraction,  a  growing  number  of  MOF
structures  have  been  determined,  with  their  unique  properties  revealed29–38.  However,  the
geometric constraints in a TEM impose a physical limitation of the tilt range on the goniometer.
Even using a specialized tomography sample holder, 3DED data can be acquired only from −70°
to +70°.  The angular  coverage of a maximum 140° represents ca.  78% sampling volume of
reciprocal space, where the remaining 22% of reciprocal space is not accessible. In practice, the
tilt range is lower than the maximum value due to the movement of the target crystal, and also
overlap of the target crystal with other crystals or TEM grid. The limited sampling therefore
leads to an incomplete 3DED data, known as the missing cone problem. The incomplete data
could hinder an accurate structure determination, which is more severe for MOF crystals with a
low symmetry.

To solve this problem, Gruene et al. developed a specialized 3D TEM grid for 3DED data
collection39. As the data processing and structure determination using 3DED data are similar to
those  using  SCXRD  data,  we  present  a  strategy  to  improve  data  quality,  particularly  data
completeness by merging data from different individual crystals. We use ZIF-EC1 as an example
to studying the missing data problem.  ZIF-EC1 was first discovered as a minor phase in a MOF
mixture by continuous rotation electron diffraction (cRED). It crystallizes in a monoclinic space
group P21/c with a=13.462(2) Å, b=14.659(3) Å, c=14.449(2) Å, β=118.12(1)°. The structure of
ZIF-EC1 was first solved and refined using a single cRED data obtained from the phase mixture,



and then using merged data from nine crystals of its pure phase40. Here we present a systematic
study of the influence of data completeness on the structural analysis of ZIF-EC1. We show the
data completeness can be improved after data merging. As each crystal has a different orientation
and particle size, we further discuss the use of correlations of cRED intensity among different
datasets for choosing the best combination to improve data quality. Moreover, merging of 3DED
data is performed using different algorithms adapted from X-ray crystallography. We show the
structure  could  be  solved  and  refined  to  a  high  precision  from  individual  datasets  with  a
completeness as low as 44.5%. With an increased data completeness, the structural model of
ZIF-EC1  could  be  further  improved,  and  peaks  corresponding  to  atoms  in  the  electrostatic
potential  map have  well-defined  isotropic  shapes.  By knowing the  atomic  structure  and the
underlying  property,  ZIF-EC1  was  doped  with  cobalt  and  utilized  as  an  electrocatalyst  for
oxygen reduction reaction (ORR).

Experimental Section 
Synthesis.  In a typical synthesis of ZIF-EC1, 0.125 mL of a 3.84 M aqueous solution of 2-
methylimidazole (HmIM, TCI Chemicals) was mixed with 1.875 mL of deionized water. 1 mL
of 0.24 M aqueous solution of Zn(OAc)2∙2(H2O) (EMSURE, Merck) was added into the above
solution under vigorous stirring. The stirring condition was then maintained for at least 4 h at
RT. The products were washed by deionized water for at least six times. After centrifugation, the
products were re-suspended in deionized water. ZIF-EC1(Zn,Co) was synthesized in a modified
condition. Instead of using 0.24 M aqueous solution of Zn(OAc)2∙2(H2O), a mixture of 0.16 M
Zn(OAc)2∙2(H2O) and 0.08 M Co(NO3)2∙6(H2O) was used, with a Zn:Co molar ratio of 2:1.

cRED data collection.  The samples for cRED data collection were crushed in a mortar and
dispersed in deionized water. A droplet was then taken from the suspension, put on a copper grid
covered with lacey carbon, and dried in air at room temperature. cRED data were collected on a
JEOL JEM2100 microscope operated at 200 kV (Cs 1.0 mm, point resolution 0.23 nm). cRED
data  collection  was controlled  by using  the  data  acquisition  software  Instamatic10,41,  and the
electron diffraction (ED) patterns were recorded by a Timepix hybrid detector QTPX-262k (512
× 512 pixels, pixel size 55 μm, Amsterdam Sci. Ins.) A tomography holder was used for the data
collection,  which  could  tilt  from –70°  to  +70°  in  the  TEM.  The  area  used  for  cRED  data
collection was about 1.0 μm in diameter, as defined by a selected area aperture. To minimize
electron beam damage of the crystal and maximize the data quality, data was collected at a low
electron dose condition. Ten cRED datasets were collected on the ZIF-EC1 crystals, covering a
tilt range from 42.34o to 122.71o. Two different rotation speed were used for the datasets, and the
data collection time ranges from 77.7 to 239.5 seconds. The detailed conditions for acquiring
each dataset can be found in Table 1.  

cRED data processing and structural analysis.  The X-ray crystallography software package
XDS42 was  used  for  data  processing  to  determine  the  unit  cell  and  space  group,  index  the
diffraction spots and estimate integrated diffraction intensities.  XSCALE,  which is part of the
XDS package, was then applied for data merging. The SHELX software package43 was used for
structural analysis, where SHELXT was used for structure solution and SHELXL for structure
refinement. Atomic scattering factors for electrons based on neutral atoms were used. All atoms



were refined anisotropically. While the model obtained from each individual dataset could be
refined, for easy comparison, the same starting SHELXL input file was used for all the structure
refinements presented here. EADP were applied on two carbon atoms (C5 and C20). A planarity
restraint (FLAT) was applied to the 2-methylimidazolate (mIm-) groups to maintain a reasonable
geometry. The similarity restraints as a combination of the free variables and the DFIX with
DANG instruction were used to maintain reasonable C-C and C-N distances. At the end, EXTI
was applied in the refinement. The crystallographic details can be found in Table 2. 

Electrochemical  application.  All  electrochemical  tests  are  evaluated  by  a  three-electrode
system  (The  counter  electrode  and  the  reference  electrode  are  graphite  rods  and  saturated
Ag/AgCl electrodes, respectively) on the CHI 660E electrochemical workstation at 30 °C. The
working electrode is a rotating disk electrode (RDE) with a diameter of 5 mm (0.196 cm 2). CV
test is carried out in 0.1 M KOH saturated with Ar or O2 (scan rate is 50 mV s−1). The linear
sweep voltammetry. LSV test is carried out in 0.1 M KOH saturated with O2 (scan rate is 5 mV
s−1). The catalyst ink for ORR tests was prepared as following: 4 mg ZIF-EC1(Zn, Co) and 1mg
carbon nanotube was weighed and dispersed in mixed solution containing 450 μL isopropanol,
40 μL deionized water and 10 μL Nafion D520 aqueous solution (5 wt%). The mixed solution
was treated  by ultrasound for 1  h to  form a homogeneous suspension.  Then 15 µL catalyst
solution was taken from the pipette and uniformly dripped onto the rotating disc electrode (RDE)
electrode. After drying, it was used for electrocatalytic ORR performance evaluation.

Results and discussion 
ZIF-EC1 crystallizes in a monoclinic system with a plate-like morphology (Figure 1a). With a
chemical formula of Zn3(mIm)5(OH), ZIF-EC1 is composed by ZnN4 mononuclear clusters and
binuclear Zn2N6(OH) clusters, where Zn(II) cations link to mIm- ions (Figure 1b). Ten cRED
datasets collected on the ZIF-EC1 crystals were chosen for this study (Table 1), among which
eight (No. 1-8) are good datasets with high resolution (0.70-0.93 Å) and another two (No. 9-10)
with lower resolution (1.00-1.21 Å).  The 3D reciprocal lattices reconstructed from datasets 1-8
are presented in Figure 2, where the missing cones appear at different locations. As ZIF-EC1 is
crystallized in a monoclinic system, the individual 3DED datasets have completeness ranging
from 24.1-71.6% after the reflections  were indexed by using X-ray crystallography software
package XDS42 (Table 1). The structure could be solved and refined from each of the datasets 1-
8.



Figure 1. (a) SEM image of ZIF-EC1 crystals. (b) The structural model of ZIF-EC1. Cyan tetrahedra: Zn
atoms; red spheres: O atoms; blue spheres: N atoms; grey spheres: C atoms. 

Figure 2. 3D reciprocal lattices of ZIF-EC1 reconstructed from the datasets (a-h) 1-8, respectively. They
are viewed along the same direction, with data completeness of  44.5%, 47.1%, 55.0%, 58.3%, 52.9%,
71.6%, 62.9%, and 32.5%, respectively. The different data cover different parts of the reciprocal space.

Table 1. Selected parameters and data information of ten cRED datasets collected on ZIF-EC1 crystals
(200 kV, λ = 0.02508 Å).

Dataset No. 1 2 3 4 5 6 7 8 9 10

Group A A A A B B C C D D

Rotation Range (°) 122.71 103.77 97.20 87.15 81.89 108.92 102.05 94.07 44.31 42.34

Tilting Rate (° s-1) 1.13 1.13 1.13 1.13 0.45 0.45 0.45 0.45 0.45 0.45

Collection time (s) 108.3 91.7 86.1 77.7 181.0 239.5 223.7 208.5 97.7 93.6

Resolution (Å) 0.70 0.78 0.75 0.74 0.76 0.78 0.93 0.92 1.21 1.00

Completeness (%) 44.5 47.1 55.0 58.3 52.9 71.6 62.9 32.5 40.8 24.1

To  improve  the  overall  data  quality,  XSCALE  was  applied  for  data  merging.  We
performed systematic studies by merging different number of datasets to study the influence of
data completeness on the structural analysis of ZIF-EC1. We divided the ten datasets into four
groups, collected under different tilting rates and/or with different resolutions. Group A includes
four datasets  1-4  collected using a high tilting rate (1.13° s-1), all with high resolution (0.70 –
0.78 Å). The remaining datasets  5-10 were collected using a low tilting rate (0.45° s-1), groups
according to the data resolution; datasets 5-6  with 0.76-0.78 Å resolution belong to Group  B,
datasets 7-8  with 0.92-0.93  Å  resolution  to  Group  C,  and  datasets 9-10  with 1.00-1.21  Å
resolution to Group D.  We first merged datasets in Group A, which has completeness ranging
from 44.5% to 58.3%. The data completeness was improved steadily from 44.5% of the single



dataset  1 to  71.5,  75.5,  and  81.4% for  combining  two  (M_A1,  Merged  dataset  A1),  three
(M_A2),  and  four  datasets  (M_A3),  respectively  (Table  2).  To  investigate  the  relationship
between data completeness and the structural model, we refined the structural model of ZIF-EC1
against the data merged from different numbers of cRED datasets. While the number of unique
reflections increased significantly,  from 2189 for a single dataset  1  to 4154 by merging four
datasets, the R1 values are very similar, varying between 0.204 and 0.213. This indicates that the
refinement  results  keep  improving.  The  improvement  can  be  easily  visualized  in  the
corresponding  electrostatic  potential  maps (Figures 3a-d and 3k-n).  For those with high data
completeness (75.5% for  M_A2 and 81.4% for  MA_3), the  peaks appear more spherical with
similar  peak heights for the same atom types (Figures 3d and n).  In contrast,  data with low
completeness (44.5% for  1  and 62.6% for  M_A1) resulted in either missing peaks with large
variations in peak heights (Figures 3a and k) or severe peak elongation (Figures 3a, b, k and l).
Because the electrostatic potential map is the basis of a structural model, distortion of the map
leads  to  reduced  reliability  and  accuracy  of  the  atom  coordinates  and  atomic  displacement
parameters. Therefore, even though a structural model can be obtained from a single dataset, it is
vital to improve data completeness.

Table 2. Refinement details of the merged datasets.

Dataset no. 1 M_A1 M_A2 M_A3 5 M_B 7 M_C M_BC M_ABC
M_AB

CD
Datasets used for 
merging

N/A 1 & 2 1-3 1-4 N/A 5 & 6 N/A 7 & 8 5-8 1-8 1-10

Completeness (%) 44.5 71.5 75.5 81.4 53.5 85.0 62.9 63.3 87.0 89.1 92.0
Resolution (Å) 0.78 0.78 0.78 0.78 0.78 0.78 0.93 0.93 0.78 0.78 0.78
No. of reflections 
(total)

3935 9224 14352 19372 6502 16354 4958 7456 23817 43219 46079

No. of reflections 
(all unique)

2189 3615 3848 4654 3132 4859 2088 2138 4976 5093 5262

No. of reflections 
(I > 2 sigma(I))

1495 2420 2845 3306 1874 3263 1221 1409 3345 3933 3669

R1 (I > 2 sigma(I)) 0.174 0.179 0.178 0.181 0.178 0.182 0.153 0.150 0.170 0.173 0.181
R1 (all reflections) 0.204 0.213 0.204 0.211 0.219 0.211 0.193 0.181 0.201 0.193 0.250
Goof 1.564 1.486 1.542 1.544 1.870 1.442 1.321 1.409 1.450 1.676 1.530
ADRA (Å)* 0.035 0.027 0.018 0.015 0.038 0.015 0.036 0.034 0.010 0 0.012
*The structural model refined against dataset M_ABC was used as the reference to calculate the ADRA values.

Furthermore,  we  applied  data  merging  on  datasets  collected  using  a  low tilting  rate
(Groups B and C). The completeness increased significantly from 53.5% for single dataset 5 to
85.0%  with  merging  datasets  5 and  6 (M_B).  However,  there  is  little  increase  in  data
completeness for Group C, when datasets  7 and 8 are merged (from 62.9% for 7 to 63.3% for
M_B). The electrostatic potential maps present a significant improvement from single dataset 5
to  M_B as the completeness is increased from 53.5 to 85.0% (Figures 3f, g, p, and q). On the
contrary, there is very limited improvement in the electrostatic potential maps from single dataset
7 to  M_C,  because  the  completeness  was only  increased  by 0.4% (Figures  3h,  i,  r,  and s).
Notably,  merging  the  four  datasets  5-8 in  Groups  B  and  C  (M_BC)  led  to  improved



completeness (87.0%), and the electrostatic potential map (Figures 3j and t). Further merging all
the aforementioned datasets  1-8 (M_ABC) resulted in the highest completeness (89.1%), and
thus  the  best  electrostatic  potential  map with  most  spherical  peaks  (Figures  3e and o).  The
structural model refined against the dataset  M_ABC is therefore used as a reference model, to
which the atomic coordinates from the structural models obtained from datasets  M_A3,  M_B,
M_C and M_BC were compared. It shows that with a low completeness, e.g. 63.3% for M_C,
the corresponding structural model resulted in higher deviations on atomic positions, compared
to those from other datasets with high completeness (Table 3). We further calculated the average
deviation from reference atoms (ADRA)44 values to compare the different models (Table 2). The
ADRA values decreased successively from 0.035 Å to 0.015 Å by merging more and more
datasets in Group A (M_A3). Improving completeness from 53.5 to 85.0% in Group B (M_B)
also led to decreasing ADRA values from 0.038 Å to 0.015 Å. One the other hand, the ADRA
values showed little improvement by merging datasets 7 and 8 in Group C (M_C), varied from
0.036 to 0.034 Å, with a completeness of 62.9 and 63.3%, respectively. Moreover, merging the
four datasets 5-8 in Groups B and C (87.0%, M_BC) led to a reduced ADRA value (0.010 Å).
Figure 4  shows a clear trend that the ADRA values are reduced with the increase of the data
completeness as well as the increase of number of unique reflections.

Figure 3. Electrostatic potential maps calculated based on datasets (a and k) 1, (b and l) MA_1, (c and m)
MA_2, (d and n) MA_3, (e and o) M_ABC, (f and p) 5, (g and q) M_B, (h and r) 7, (i and s) M_C, and (j
and  t)  M_BC,  viewed along  (a-j)  the a-axis  and (k-t)  the  c-axis.  The  refined  structural  model  is



superimposed in the map and used for calculating the structure factor phases. Missing peaks are observed
on the maps constructed from data with low completeness. Peaks are more spherical with the increase of
completeness.  The electrostatic potential maps are drawn at the same contour level. Atom color codes:
Grey: C; blue: N; red: O; cyan: Zn.

Table 3. Deviations of the atomic coordination. The structural model obtained from M_ABC is set as the
reference.

Atoms M_A3 M_B M_C M_BC
Zn1 0.004(3) 0.005(4) 0.028(7) 0.005(3)
Zn2 0.002(4) 0.005(5) 0.031(8) 0.003(4)
Zn3 0.004(5) 0.006(4) 0.015(7) 0.006(4)
N1 0.008(15) 0.014(12) 0.030(21) 0.014(10)
N2 0.019(17) 0.014(10) 0.014(14) 0.013(13)
N3 0.019(17) 0.027(11) 0.014(17) 0.021(12)
N4 0.001(17) 0.014(14) 0.051(19) 0.006(13)
N5 0.007(12) 0.013(14) 0.045(20) 0.003(11)
N6 0.012(13) 0.017(11) 0.048(21) 0.008(11)
N7 0.012(10) 0.010(14) 0.069(17) 0.015(12)
N8 0.011(15) 0.015(15) 0.037(16) 0.005(16)
N9 0.008(13) 0.008(15) 0.040(18) 0.005(11)
N10 0.019(16) 0.015(10) 0.033(16) 0.006(11)
O1 0.025(13) 0.015(17) 0.048(22) 0.010(18)
C1 0.012(11) 0.024(14) 0.040(18) 0.004(11)
C2 0.013(17) 0.006(12) 0.024(17) 0.004(12)
C3 0.020(13) 0.020(9) 0.033(21) 0.020(10)
C4 0.007(13) 0.003(14) 0.037(23) 0.010(15)
C5 0.009(17) 0.019(13) 0.017(28) 0.015(13)
C6 0.030(19) 0.033(17) 0.041(20) 0.018(16)
C7 0.032(19) 0.031(14) 0.053(17) 0.027(18)
C8 0.034(15) 0.004(14) 0.073(29) 0.019(13)
C9 0.025(16) 0.003(18) 0.030(18) 0.007(17)
C10 0.015(15) 0.015(14) 0.041(21) 0.010(12)
C11 0.007(20) 0.016(15) 0.025(21) 0.013(14)
C12 0.010(16) 0.017(18) 0.022(19) 0.008(16)
C13 0.022(17) 0.012(15) 0.017(16) 0.014(14)
C14 0.029(16) 0.009(14) 0.034(26) 0.008(14)
C15 0.019(20) 0.045(14) 0.030(23) 0.015(13)
C16 0.007(14) 0.006(18) 0.016(28) 0.005(19)
C17 0.008(21) 0.006(14) 0.030(20) 0.005(13)
C18 0.019(17) 0.027(21) 0.028(7) 0.008(20)
C19 0.025(21) 0.015(20) 0.031(8) 0.012(19)
C20 0.022(16) 0.027(16) 0.015(7) 0.006(14)

During data merging, correlation coefficients of the common reflection intensities (CCI)
between two datasets are calculated by XSCALE, which indicate the degree of intensity similarity
between  the  datasets  (Table  4).  The  correlation  among  the  datasets  1-8 are  very  high,  as
indicated by the CCI values (> 0.95). In contrast, datasets  9 and 10 are rather poorly correlated
with the other datasets with the CCI values are mostly below 0.80. Combining the additional
datasets 9 and 10 to the merged dataset M_ABC increased the data completeness from 89.1% to
92.0%. However, this led to a significant increase of the R1 values for all reflections, from 0.193



to 0.250. This indicates that intensities of weak reflections are mostly affected. On the other
hand, very little changes are observed in the electrostatic potential maps (Figure 5). Therefore,
there  would  be  little  benefit  to  add  more  datasets  with  low  intensity  correlations,  after  a
reasonable data completeness has already reached.  

Figure 4.  The effect of (a) data completeness and (b) number of total unique reflections on the ADRA
values.  The structural  model  refined against  the merged data from the eight  cRED datasets with the
highest CCI was used as the reference model. The ADRA values are reduced with the increase of the data
completeness. 

Table 4. The CCI values between each two datasets.

Datase
t no.

Dataset
no.

No. of common
reflections

CCI
Dataset

no.
Dataset

no.
No. of common

reflections
CCI

1 2 2077 0.973 3 8 1181 0.979
1 3 1572 0.967 4 8 944 0.983
2 3 1323 0.964 5 8 870 0.985
1 4 2904 0.986 6 8 1305 0.982
2 4 1783 0.975 7 8 867 0.982
3 4 1274 0.981 1 9 536 0.695
1 5 2096 0.972 2 9 398 0.660
2 5 1018 0.961 3 9 359 0.783
3 5 1220 0.991 4 9 432 0.617
4 5 1620 0.988 5 9 221 0.684
1 6 2463 0.953 6 9 346 0.456
2 6 1663 0.978 7 9 193 0.927
3 6 1606 0.952 8 9 218 0.772
4 6 1999 0.981 1 10 580 0.826
5 6 1962 0.962 2 10 508 0.775
1 7 684 0.961 3 10 592 0.856
2 7 898 0.977 4 10 477 0.556
3 7 934 0.995 5 10 410 0.722
4 7 504 0.954 6 10 475 0.748



5 7 484 0.990 7 10 312 0.369
6 7 747 0.975 8 10 406 0.449
1 8 1317 0.967 9 10 141 0.948
2 8 1642 0.974

Figure 5. Electrostatic potential maps calculated based on datasets (a and c)  M_ABC,  and (b and d)
M_ABCD  viewed along  (a and b) the  a-axis and (c and d) the c-axis. The refined structural model is
superimposed in the map and used for calculating the structure factor phases. The electrostatic potential
maps are drawn at the same contour level. Atom color codes: Grey: C; blue: N; red: O; cyan: Zn.

Due to the development of continuous rotation setup for collecting cRED data, software
for X-ray crystallography can be easily adapted to process 3DED data.  Thus, we investigate
different algorithms adapted from X-ray crystallography for data merging and evaluate the data
quality.  Besides  XSCALE,  XPREP45 and  AIMLESS46 are  among  the  other  programs that  are
commonly applied for merging datasets. We chose datasets 1-8 for merging because they have a
high  correlation  among each other.  Using different  algorithms for scaling and merging data,
XSCALE,  XPREP, and  AIMLESS resulted in slightly different completeness of 89.1, 85.1, and
90.4%, respectively (Table 5). The R1 values are also similar (0.192-0.213), and the electrostatic
potential maps exhibit well defined and spherical peaks (Figure 6). Although using kinematical
assumption, this indicates that different merging algorithms in X-ray crystallography programs
can be adapted to process cRED data for a high data completeness.  

Table 5. Refinement details for merging datasets 1-8 using different methods.

Software used for merging
XSCAL
E

XPRE
P

AIMLESS

No. of reflections (all unique) 5093 5046 5116

Completeness (%) 89.1 85.2 90.4

Resolution (Å) 0.78 0.78 0.78

No. of reflections (I > 2 sigma(I)) 3933 3964 3879



R1 (I > 2 sigma(I)) 0.172 0.193 0.187

R1 (all reflections) 0.192 0.210 0.213

Goof 1.676 1.956 1.536

Figure 6. Electrostatic potential maps calculated based on datasets 1-8 merged by (a and c) XSCALE, (b
and  d)  XPREP, and (c  and  e)  AIMLESS. The refined structural model is superimposed in the map and
used for calculating the structure factor phases. The electrostatic potential maps are drawn at the same
contour level. Atom color codes: Grey: C; blue: N; red: O; cyan: Zn.

As 3DED revealed  the  accurate  structure  of  ZIF-EC1,  ZIF-EC1 has  been utilized  as
precursor to generate carbon materials  for catalyzing electrochemical reaction due to its high
density of metal ions40. Here, we added Co(II) ions in the synthesis to further take advantage of
the  highly  dense  structure  of  ZIF-EC1,  and use its  pristine  form for  electrocatalytic  oxygen
reduction reaction (ORR). The electroactivity  of  ZIF-EC1(Zn,Co) was tested in 0.1 M KOH
solution  using  rotating  disk  electrode  (RDE).  The  cyclic  voltammetry  (CV)  data  of  ZIF-
EC1(Zn,Co) showed  that  a  strong  electrocatalytic  oxygen  reduction  peak  near  0.74  V  was
observed in O2-saturated solution, while there was no reduction peak in Ar-saturated solution
(Figure 7). Linear sweep voltammetry (LSV) further confirmed the good catalytic performance
of ZIF-EC1, showing an onset potential (Eonset) of 0.85 V and a half-wave potential (E1/2) of 0.78
V. In addition, the electrocatalytic ORR limiting current density can reach 4.7 mA cm 2. The
efficiency  of  ZIF-EC1(Zn,Co) for  ORR is  among  one  of  the  best  MOF  electrocatalysts  in
comparison with the others 47–50.



Figure 7. (a) CVs of ZIF-EC1(Zn,Co) catalyst in 0.1 M KOH by Ar/O2-saturated. (b) LSV curves of ZIF-
EC1(Zn,Co) catalyst in 0.1 M KOH by O2-saturated at 1600 rpm.

Conclusions
From the studies of the influence of data completeness on the structural analysis of ZIF-EC1, we
show that the structure could be solved and refined to a high precision from cRED data with
different  completeness,  even as  low as  44.5% collected  at  various  resolution  (0.70-0.93 Å).
Importantly, we demonstrate that the completeness of 3DED data can be improved by merging
data obtained from a series of individual crystals. The increased data completeness led to an
improved  structural  model,  which  is  indicated  by  the  little  changed  R1 values  despite  the
increased  number  of  unique  reflections.  In  addition,  the  increased  data  completeness  also
resulted in decreasing of the ADRA values.  More importantly,  peaks  corresponding to atom
positions appear more spherical in the electrostatic potential maps, with similar peak heights for
the same atom types. On the other hand, a low data completeness results in large uncertainty and
variations in peak heights and elongation of the peaks. A completeness of >75% already gave a
low ADRA value (< 0.018 Å) and good electrostatic potential maps. The structural model may
be further improved by merging more datasets, but only when the datasets with high intensity
correlations (i.e. high CCI values) are used. Data merging using different algorithms implemented
in  X-ray  crystallographic  software  XSCALE,  XPREP,  and  AIMLESS gave  similar  refinement
results, showing the high quality of cRED data. Finally, we show that ZIF-EC1(Zn,Co) is an
efficient electrocatalyst for ORR. With improved data quality, we anticipate that more structural
details can be uncovered, which could promote discovery of novel properties of MOFs.

Conflicts of interest

There are no conflicts to declare.

Supporting Information

The crystallographic data for the datasets  1,  M_A1,  M_A2,  M_A3,  5,  M_B,  7,  M_C,  M_BC,
M_ABC and  M_ABCD have been deposited at the Cambridge Crystallographic Data Centre
(CCDC,  free  for  charge  at  https://www.ccdc.cam.ac.uk)  under  deposition  number  CCDC
2063943-2063953.

Acknowledgements



This work was supported by the Swedish Research Council (VR, 2016-04625, Z.H and 2017-
04321,  X.Z.),  the  Swedish  Research  Council  Formas  (2020-00831,  Z.H.),  and  the  National
Natural Science Foundation of China (Grant No. 21975148, and 21601118). 

Notes and references

1 M. Gemmi, E. Mugnaioli, T. E. Gorelik, U. Kolb, L. Palatinus, P. Boullay, S. Hovmöller and J. P. Abrahams, 
ACS Cent. Sci., 2019, 5, 1315–1329.

2 Z. Huang, E. S. Grape, J. Li, A. K. Inge and X. Zou, Coord. Chem. Rev., 2021, 427, 213583.
3 Z. Huang, T. Willhammar and X. Zou, Chem. Sci., 2021, 12, 1206–1219.
4 Z. Huang, M. Ge, F. Carraro, C. Doonan, P. Falcaro and X. Zou, Faraday Discuss., 2021, 225, 118–132.
5 U. Kolb, T. Gorelik, C. Kübel, M. T. Otten and D. Hubert, Ultramicroscopy, 2007, 107, 507–513.
6 P. Boullay, L. Palatinus and N. Barrier, Inorg. Chem., 2013, 52, 6127–6135.
7 D. Zhang, P. Oleynikov, S. Hovmöller and X. Zou, Z Krist., 2010, 225, 94–102.
8 W. Wan, J. Sun, J. Su, S. Hovmöller and X. Zou, J. Appl. Crystallogr., 2013, 46, 1863–1873.
9 M. Gemmi and P. Oleynikov, Z. Für Krist. - Cryst. Mater., 2013, 228, 51–58.
10 M. O. Cichocka, J. Ångström, B. Wang, X. Zou and S. Smeets, J. Appl. Crystallogr., 2018, 51, 1652–1661.
11 M. Gemmi, M. G. I. La Placa, A. S. Galanis, E. F. Rauch and S. Nicolopoulos, J. Appl. Crystallogr., 2015, 48, 

718–727.
12 S. Plana-Ruiz, Y. Krysiak, J. Portillo, E. Alig, S. Estradé, F. Peiró and U. Kolb, Ultramicroscopy, 2020, 211, 

112951.
13 B. L. Nannenga, D. Shi, A. G. W. Leslie and T. Gonen, Nat. Methods, 2014, 11, 927–930.
14 I. Nederlof, E. van Genderen, Y.-W. Li and J. P. Abrahams, Acta Crystallogr. D Biol. Crystallogr., 2013, 69, 

1223–1230.
15 J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb and A. Corma, Science, 

2011, 333, 1131–1134.
16 T. Willhammar, A. W. Burton, Y. Yun, J. Sun, M. Afeworki, K. G. Strohmaier, H. Vroman and X. Zou, J. Am. 

Chem. Soc., 2014, 136, 13570–13573.
17 J. Simancas, R. Simancas, P. J. Bereciartua, J. L. Jorda, F. Rey, A. Corma, S. Nicolopoulos, P. Pratim Das, M. 

Gemmi and E. Mugnaioli, J. Am. Chem. Soc., 2016, 138, 10116–10119.
18 P. Guo, J. Shin, A. G. Greenaway, J. G. Min, J. Su, H. J. Choi, L. Liu, P. A. Cox, S. B. Hong, P. A. Wright and 

X. Zou, Nature, 2015, 524, 74–78.
19 L. A. Villaescusa, J. Li, Z. Gao, J. Sun and M. A. Camblor, Angew. Chem., 2020, 132, 11379–11382.
20 Z. Huang, S. Seo, J. Shin, B. Wang, R. G. Bell, S. B. Hong and X. Zou, Nat. Commun., 2020, 11, 3762.
21 Y. Yun, W. Wan, F. Rabbani, J. Su, H. Xu, S. Hovmöller, M. Johnsson and X. Zou, J. Appl. Crystallogr., 2014, 

47, 2048–2054.
22 E. Buixaderas, M. Kempa, V. Bovtun, C. Kadlec, M. Savinov, F. Borodavka, P. Vaněk, G. Steciuk, L. Palatinus 

and J. Dec, Phys. Rev. Mater., 2018, 2, 124402.
23 A. E. Lanza, M. Gemmi, L. Bindi, E. Mugnaioli and W. H. Paar, Acta Crystallogr. Sect. B Struct. Sci. Cryst. 

Eng. Mater., 2019, 75, 711–716.
24 J. Li, C. Lin, Y. Min, Y. Yuan, G. Li, S. Yang, P. Manuel, J. Lin and J. Sun, J. Am. Chem. Soc., 2019, 141, 

4990–4996.
25 S. Samuha, E. Mugnaioli, B. Grushko, U. Kolb and L. Meshi, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. 

Mater., 2014, 70, 999–1005.
26 O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–714.
27 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334–2375.
28 C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. 

Mater., 2016, 72, 171–179.
29 M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos and N. 

Stock, Angew. Chem. Int. Ed., 2012, 51, 10373–10376.
30 N. Portolés-Gil, A. Lanza, N. Aliaga-Alcalde, J. A. Ayllón, M. Gemmi, E. Mugnaioli, A. M. López-Periago and 

C. Domingo, ACS Sustain. Chem. Eng., 2018, 6, 12309–12319.
31 S. Yuan, J.-S. Qin, H.-Q. Xu, J. Su, D. Rossi, Y. Chen, L. Zhang, C. Lollar, Q. Wang, H.-L. Jiang, D. H. Son, H. 

Xu, Z. Huang, X. Zou and H.-C. Zhou, ACS Cent. Sci., 2018, 4, 105–111.



32 T. Rhauderwiek, H. Zhao, P. Hirschle, M. Döblinger, B. Bueken, H. Reinsch, D. D. Vos, S. Wuttke, U. Kolb and
N. Stock, Chem. Sci., 2018, 9, 5467–5478.

33 B. Wang, T. Rhauderwiek, A. K. Inge, H. Xu, T. Yang, Z. Huang, N. Stock and X. Zou, Chem. – Eur. J., 2018, 
24, 17429–17433.

34 E. S. Grape, J. G. Flores, T. Hidalgo, E. Martínez-Ahumada, A. Gutiérrez-Alejandre, A. Hautier, D. R. Williams,
M. O’Keeffe, L. Öhrström, T. Willhammar, P. Horcajada, I. A. Ibarra and A. K. Inge, J. Am. Chem. Soc., 2020, 
142, 16795–16804.

35 T. He, Z. Huang, S. Yuan, X.-L. Lv, X.-J. Kong, X. Zou, H.-C. Zhou and J.-R. Li, J. Am. Chem. Soc., 2020, 142, 
13491–13499.

36 M. O. Cichocka, Z. Liang, D. Feng, S. Back, S. Siahrostami, X. Wang, L. Samperisi, Y. Sun, H. Xu, N. Hedin, 
H. Zheng, X. Zou, H.-C. Zhou and Z. Huang, J. Am. Chem. Soc., 2020, 142, 15386–15395.

37 F. Carraro, M. de J. Velásquez-Hernández, E. Astria, W. Liang, L. Twight, C. Parise, M. Ge, Z. Huang, R. Ricco,
X. Zou, L. Villanova, C. O. Kappe, C. Doonan and P. Falcaro, Chem. Sci., 2020, 11, 3397–3404.

38 J.-H. Dou, M. Q. Arguilla, Y. Luo, J. Li, W. Zhang, L. Sun, J. L. Mancuso, L. Yang, T. Chen, L. R. Parent, G. 
Skorupskii, N. J. Libretto, C. Sun, M. C. Yang, P. V. Dip, E. J. Brignole, J. T. Miller, J. Kong, C. H. Hendon, J. 
Sun and M. Dincă, Nat. Mater., 2021, 20, 222–228.

39 J. T. C. Wennmacher, C. Zaubitzer, T. Li, Y. K. Bahk, J. Wang, J. A. van Bokhoven and T. Gruene, Nat. 
Commun., 2019, 10, 3316.

40 M. Ge, Y. Wang, F. Carraro, W. Liang, M. Roostaeinia, S. Siahrostami, D. M. Proserpio, C. Doonan, P. Falcaro, 
H. Zheng, X. Zou and Z. Huang, , DOI:10.26434/chemrxiv.13725817.

41 S. Smeets and W. Wan, J. Appl. Crystallogr., 2017, 50, 885–892.
42 W. Kabsch, Acta Crystallogr. D Biol. Crystallogr., 2010, 66, 125–132.
43 G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112–122.
44 L. Palatinus, C. A. Corrêa, G. Steciuk, D. Jacob, P. Roussel, P. Boullay, M. Klementová, M. Gemmi, J. Kopeček,

M. C. Domeneghetti, F. Cámara and V. Petříček, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2015, 
71, 740–751.

45
46 P. R. Evans and G. N. Murshudov, Acta Crystallogr. D Biol. Crystallogr., 2013, 69, 1204–1214.
47 E. M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath and M. Dincă, Nat. Commun., 2016, 7, 10942.
48 W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang and Q. Liu, Nat. Energy, 2019, 4, 115–122.
49 E. M. Miner, S. Gul, N. D. Ricke, E. Pastor, J. Yano, V. K. Yachandra, T. Van Voorhis and M. Dincă, ACS 

Catal., 2017, 7, 7726–7731.
50 H. Zhong, K. H. Ly, M. Wang, Y. Krupskaya, X. Han, J. Zhang, J. Zhang, V. Kataev, B. Büchner, I. M. 

Weidinger, S. Kaskel, P. Liu, M. Chen, R. Dong and X. Feng, Angew. Chem. Int. Ed., 2019, 58, 10677–10682.


