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Abstract

Basing on the Interacting Quantum Atoms approach, we present herein a conceptual

and theoretical framework of short-range electrostatic interactions, whose accurate de-

scription is still a challenging problem in molecular modeling. For all the non-covalent

complexes in the S66 database, the fragment-based and atomic decomposition of the

electrostatic binding energies is performed using both the charge density of the dimers

and the unrelaxed densities of the monomers. This energy decomposition together

with dispersion corrections gives rise to a pairwise approximation to the total binding

energy. It also provides energetic descriptors at varying distance that directly ad-

dress the atomic and molecular electrostatic interactions as described by point-charge

or multipole-based potentials. Additionally, we propose a consistent definition of the

charge penetration energy within quantum chemical topology, which is mainly char-

acterized in terms of the intramolecular electrostatic energy. Finally, we discuss some

practical implications of our results for the design and validation of electrostatic po-

tentials.
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1 Introduction

Molecular mechanics (MM) simulations take advantage of simple potential energy functions

to tackle large molecular systems such as those involved in biochemical processes. These MM

potentials, which are also named as force fields (FFs), are built upon certain physical models

that lead to energy functions representing atomic or fragment contributions that provide

a reliable global description with affordable computational requirements and depend on a

set of parameters, which are commonly fitted to reference experimental and/or quantum

mechanical (QM) data.1

The employment of MM methods is rooted in a hierarchy of physical assumptions.2,3

First of all, the Born-Oppenheimer approximation is invoked to split electronic and nuclear

motion, the MM functions being dependent only on nuclear coordinates. Secondly, the

additivity assumption allows for the separation of the total energy into a sum of potentials

according to their different physical sources. For example, bonded atoms may be described

by two-body terms to account for stretching, three for bending or four for torsion. On the

other hand, interactions comprising non-bonded atoms are usually represented by pairwise

potentials such as the Lennard-Jones and the Coulomb ones. Finally, and probably one of the

most appealing attributes of MM methods, is their transferability, the ability to correctly

describe not only the set of model molecules/fragments, but also other different systems

provided they are built upon similar chemical units.

Among the different physical terms in the MM potentials, electrostatics deserves special

attention because it plays a key role, both at short and long range, on the stability and

activity of large systems such as proteins, nucleic acids or lipids, among others.4 Of course,

the MM treatment of electrostatics must follow some approximations, since the calculation

of the exact quantum mechanical electron density is intended to be avoided. The accuracy of

the available methods changes when dealing with the short- or the long-range regime in which

the intermolecular electrostatic interactions can be classified. At long range, the use of point

charges or higher order multipoles has resulted in accurate electrostatics with significant
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improvements to speed up and facilitate convergence of the calculations such as the Ewald

summation and its variants to perform, for example, molecular simulations in solution under

periodic boundary conditions.5–10 At short-range, however, the approximations taken for

long distances, which are mainly based on the multipole expansion, become less accurate or

invalid11 and a correct electrostatic description in this regime stills poses a challenge. Hence,

there is a growing interest in improving the short-range electrostatics (e.g., for troublesome

hydrogen-bonds), mainly focused on correcting the inherent error associated with the non-

negligible interpenetration of densities (the so-called charge penetration (CP) error) that

is not accounted for in traditional multipolar approximations. Thus, several investigations

have been devoted in the last years to incorporate charge penetration terms into the MM

electrostatic potentials.12–15

The separation of various physical terms as implemented in the MM potentials is somehow

paralleled by the energy decomposition analysis (EDA) methods,16–18 which either perform

QM calculations in the fragments and subsequently evaluate interaction energy terms basing

on perturbation theory or extract multiple energy terms from the full QM energy of molec-

ular clusters. As a matter of fact, a major goal of any EDA approach is to ascertain the

nature and type of the interactions among molecules as well as to rationalize their stabiliz-

ing or destabilizing roles, what may have implications for the design, parameterization and

validation of the MM methods, in general, and the MM electrostatic potentials, in partic-

ular. However, many EDAs have been developed rooted in different approaches.16 Hence,

the symmetry-adapted-perturbation-theory (SAPT) method makes use of a perturbative ap-

proach to differentiate the distinct nature of the intermolecular interactions,18,19 while the

orbital-based EDAs exploit a stepped scheme to calculate the different energies according

to some reference electronic states17,20,21 and the interacting quantum atoms (IQA) method

relies on a real space partition of the QM density matrices.22,23

According to recent studies, in spite of their crude approximations, it may be feasible to

improve the classical MM potentials by utilizing the information provided by EDAs. More
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specifically, it has been shown that the SAPT energy components (electrostatics, induction,

exchange-repulsion and dispersion) can be modelled with relatively simple MM functions.24,25

In particular, it has been demonstrated that the combination of empirical damping functions

accounting for the CP error with point multipoles results in electrostatic energies at short

range which are quite close to the SAPT ones. Actually, the SAPT electrostatic interactions

provide the required reference data to parameterize and validate the CP-corrected poten-

tials. However, different interpretations of short-range energetic effects involving the overlap

of the electron densities of two or more fragments may be possible depending on the par-

ticular EDA method.16 For this reason, we decided to reexamine the nature of electrostatic

interactions under the prism of the real-space decomposition pursued by the IQA approach,

which not only distinguishes between electrostatic or exchange-correlation components of

the interaction energy, but also between intra- or inter-atomic (or fragment) contributions.

Moreover, since IQA splits the total energy of a system and not only the interaction between

selected fragments, it is capable of reconstructing (or dissecting) the energy ascribed to both

covalent and non-covalent binding, unveiling, for instance, the critical role played by both

electrostatics and covalency in molecular bonds.26

Herein, we study in detail the electrostatic interactions involved in non-covalent com-

plexes with a twofold goal. One one hand, we aim to compare in a consistent and system-

atic manner the atomic and fragment contributions to the electrostatic energy as evaluated

throughout a hierarchy of QM and MM approximations and at varying intermolecular dis-

tances. In this way, we seek to identify the best correspondence between the IQA and MM

electrostatic terms. On the other hand, we critically examine the CP concept and propose

a novel definition relying on a joint orbital and real-space decomposition scheme, which can

give new insight into the CP energy. To help fulfill these goals, the rest of the manuscript is

structured as follows. First, we present and describe the theoretical scaffold that holds our

work, paying particular attention to the IQA —and its IQF variant— energy decomposition,

followed by subsections concerning the zeroth-order QM approximation, the classical multi-
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pole expansion, the electrostatic MM potentials, etc. The section on Theory and Methods

ends with our assessment of the charge penetration error and the alternative definition pro-

posed in this work. Subsequently, we describe some computational settings and the results

of our test calculations, which were carried out on the S66 and S66x8 datasets27,28 covering a

wide range of non-covalent interactions frequently found in biomolecules. The various levels

of description of the electrostatic interactions are then discussed basing on their statistical

correlation with benchmark data, their dependence with the intermolecular separation, etc.

The QM and IQA calculations yield further information, not only about the magnitude of

the CP error, but more importantly about its different role in the IQA descriptors. Finally,

we conclude that the aim of improving the electrostatic description in novel FFs is fulfilled

at the expense of accounting for intramolecular effects not included in the pairwise classical

MM potentials.

2 Theory and Methods

As stated in the Introduction, electrostatics in non-covalent complexes is the main con-

cern behind this manuscript. With the aim of connecting the full QM description of the

electrostatic energy with the classical MM potentials, we describe first the electrostatic con-

tributions in the framework of the IQA partitioning of absolute and relative energies. Then

the zeroth-order approximation and the multipole expansion commonly employed in the

study of intermolecular complexes are succinctly described, allowing thus to state the basic

approaches used by MM methods in order to evaluate short-range electrostatic energies. The

limitations of the classical potentials are partly ascribed to the CP error, which is also dis-

cussed in the light of recent advancements. Finally, basing on the IQA concepts, we propose

an alternative definition of the CP energy.
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2.1 IQA energy decomposition

The interacting quantum atoms method is a robust and physically-sound approach to de-

compose the total energy into chemically meaningful components.22,23 It is based upon

a given partition of the first- and second-order reduced density matrices (ρ1(r1; r′1) and

ρ2(r1, r2; r′1, r
′
2), respectively) such as the real space partition proposed by Bader and cowork-

ers,29 which is the most commonly used along with IQA (although other schemes may be

adopted). Thus, the three dimensional space is decomposed into atomic regions ΩI , which

are the attraction basins of the gradient field of the electron density.

Given a global energy E of a system, IQA permits its decomposition into atomic compo-

nents and pair interaction energies according to

E =
∑
I

EI
net +

∑
I<J

EIJ
int. (1)

where EI
net is called the atomic net energy and, under the Born-Oppenheimer approximation,

represents the energy due to the kinetic energy of electrons plus all the interactions involved

(i.e., electron-electron and electron-nucleus) inside the atomic basin of each atom I. Similarly,

each EIJ
int term comprises the interaction energy between the electrons (e) and nucleus (n)

located in atom I with those ascribed to the other atoms, which can be separated into n-e,

e-e and n-n contributions. In order to compute the the kinetic and n-e interaction energies

the first-order reduced density, ρ1(r1; r′1), is required while only the diagonal ρ2(r1, r2) is

needed for the e-e energy terms.

The pair density ρ2(r1, r2) can be decomposed into two contributions as

ρ2(r1, r2) = ρ(r1)ρ(r2) + ρxc(r1, r2), (2)

where ρ(r1)ρ(r2) is the non-correlated product of densities and ρxc(r1, r2) is exchange-correlation

(xc) correction. Equation 2 gives thus rise to two kinds of interatomic interaction energies
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stemming from either the classical eletrostatic interaction EIJ
ele or the quantum mechanical

exchange-correlation EIJ
xc as

EIJ
int = EIJ

ele + EIJ
xc . (3)

Such a decomposition of EIJ
int is particularly relevant when assessing the nature of a given

bond or interaction, since the electrostatic term is associated with ionicity and the exchange-

correlation contribution with covalency.23

2.2 D3-IQF: the dispersion-corrected fragment version of IQA

The IQA decomposition admits the grouping of atomic terms into fragment contributions

(e.g., functional groups, molecules). For practical purposes, the distinction between the

atomic level analyses and the fragment-based ones was introduced as IQA for the former

and IQF (interacting quantum fragments) for the latter.

In previous work,30 it has been shown that IQF may be useful, for instance, to either re-

construct or dissect the formation energy of non-covalent complexes. Moreover, the IQA/IQF

terms retrieved from the wave function have been augmented with the dispersion correction

(D3) by Grimme in DFT and HF methods.31 D3 is a semiclassical pairwise potential inspired

by the London model than can, in turn, be corrected by a damping function to reproduce the

correct asymptotic behavior of the dispersion. In this work, the pure D3 potential is com-

bined with the Becke-Johnson damping function32 (for the sake of simplicity, the potential

is dubbed as D3).

Using D3-IQF, the formation energy of a molecular aggregate constituted by two frag-

ments A and B (A + B −−→ A···B) is split as

∆Eform = ∆EA
net + ∆EB

net + EAB
ele + EAB

xc + EAB
dis = EA

def + EB
def + EAB

int , (4)

where the deformation term Edef corresponds to the net energy variation ∆Enet, which

collects both the intra- and interatomic IQA energies belonging to the corresponding frag-
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ment. The interfragment interaction energy comprises the electrostatic (EAB
ele ), exchange-

correlation (EAB
xc ) and the empirical dispersion (EAB

dis ), the latter being thus separated from

the whole exchange-correlation interaction energy. Overall, the contribution of electrostatics

and exchange-correlation to ∆Eform is actually split between the fragment deformation and

the inter-fragment interactions.

2.3 Electrostatic energy

Let us now consider the purely electrostatic energy for a given system with total charge

density ρ(r), which can be readily computed using the Coulomb law,

Eele =
1

2

∫
∞

∫
∞

ρ(r1)ρ(r2)

r12

dr1dr2. (5)

The total charge density, that includes both the electron density ρe derived from the

electronic wave function and the nuclear charges ZI , is

ρtot(r) ≡ ρ(r) =
∑
I

ZIδ(r−RI)− ρe(r), (6)

in which the positions of the nuclei RI are fixed under the Born-Oppenheimer approximation.

The real space partition proposed by Bader results in the following atomic decomposition

of the electrostatic energy

Eele =
1

2

[∫
ΩI

dr1

∫
ΩI

dr2
ρ(r1)ρ(r2)

r12

+

∫
ΩJ

dr1

∫
ΩJ

dr2
ρ(r1)ρ(r2)

r12

(7)

+

∫
ΩJ

dr1

∫
ΩJ

dr2
ρ(r1)ρ(r2)

r12

+

∫
ΩJ

dr1

∫
ΩI

dr2
ρ(r1)ρ(r2)

r12

]
= EI

ele + EJ
ele + EIJ

ele.

Similarly, the fragment-based decomposition of Eele is straightforward and analogous to

the atomic one, that is, the electrostatic energy can be readily expressed in terms of intra-

8



and inter-fragment contributions. This allows a specific assessment of the total electrostatic

component of the formation energy ∆Eele in a two-fragment system AB as

∆Eele = ∆EA
ele + ∆EB

ele + EAB
ele , (8)

where the intra-fragment variation in electrostatic energy (∆EA
ele and ∆EB

ele) and the inter-

fragment electrostatic interaction EAB
ele may yield an insightful decomposition of electrostatic

effects.

2.4 Zeroth-order electrostatic energy

In principle, equation 8 is evaluated over a continuous quantum electron density that can be

obtained from the fully-relaxed wave function. However, within the context of MM method-

ologies, the electrostatic energy of non-covalent complexes formed by weakly-interacting

molecular species is normally estimated at the zeroth-order level, that is, neglecting the

mutual relaxation of the isolated molecular densities. Thus, for a complex AB composed

of molecules A and B, ρ0(r) = ρ0
A(r) + ρ0

B(r). As a consequence, the zeroth-order electro-

static contribution to the formation energy ∆E0
ele equals the Coulomb interaction between

the zeroth-order densities:

∆E0
ele =

1

2

∫
∞

∫
∞

ρ0
A(r1)ρ0

B(r2)

r12

dr1dr2. (9)

This energetic term corresponds to the so-called first-order polarization energy (or sim-

ply electrostatic energy) defined in the Symmetry-Adapted Perturbation Theory (SAPT),19

which has been adopted as a benchmark electrostatic energy for the validation of short-range

electrostatic potentials recently developed.
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2.5 Multipole expansion

To avoid the usage of continuous charge distributions, the multipole expansion can be invoked

to calculate (and interpret) electrostatic energies as well as to guide the development of

various MM electrostatic potentials. Using spherical coordinates, the multipole expansion

transforms Eq. 9 as

∆E0
ele,mp =

∞∑
l1m1

∞∑
l2m2

Cl1m1l2m2(R̂)
Q0,A
l1m1

Q0,B
l1m1

Rl1+l2+1
AB

, (10)

where Q0,A
l1m1

and Q0,B
l2m2

are the multipoles of the respective unrelaxed densities ρ0
A(r1) and

ρ0
B(r2).33 In Eq. 10, mi runs from −li to +li, RAB = |RB −RA| is the separation between

the centers of both charge distributions and R̂ is the angular coordinate that determines

the orientation. Cl1m1l2m2(R̂) are known coefficients calculated for each (l1m1, l2m2) quartet.

The set of multipoles Q0
lm is obtained from the continuous charge density through the real

spherical harmonics Slm following the integral

Q0
lm = Nl

∫
∞
rlSlm(r̂)ρ0(r)dr, (11)

being Nl a constant dependent on l, and r and r̂ denote the radial and the angular coordi-

nates, respectively.

The usage of the multipole expansion to estimate the electrostatic energies and forces

between non-bonded molecules is affected by a certain error with two different sources. On

the one hand, the Taylor expansion that originates (10) must be truncated at some order.

On the other one, when two or more molecules interact closely their electronic densities can

overlap to a significant extent, regardless of whether or not their densities are allowed to

relax. The energetic effect of the density overlap, which is entirely omitted by the multipole

expansion, is generally associated with the charge penetration error.

Although the Taylor expansion would not be applicable whenever the densities over-
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lap (i.e., when the distances from the origin of each multipole series intercept each other,

r1 + r2 ≥ RAB), it is still largely useful in many cases as long as it converges. In fact, con-

vergence of the multipole expansion can be enhanced by distributing multipoles throughout

the molecule (e.g., located at atomic sites) instead of calculating them at a single molecu-

lar origin.11,34,35 Therefore, the most typical strategies for the calculation of intermolecular

electrostatic interactions using classical potentials rely on the use of distributed multipolar

expansions at the expense of being affected by a certain error, which is normally assumed to

be dominated by the CP error.

Within the Quantum Theory of Atoms in Molecules (QTAIM) by Bader and coworkers,29

each atomic multipole is calculated using Eq. 11, but delimiting the integral to the bound-

aries of each basin. These atomic basins are, by definition, non-overlapping. However, this

does not mean that ∆E0
ele,mp calculated for those topological atoms is free from CP errors.

In fact, the atomic basins are often sharp and the previous condition that RAB > r1 + r2

becomes no longer fulfilled if the outermost distances r1 from RA and r2 from RB, that define

the convergence spheres, intercept each other. This explains the good agreement between

the multipolar interatomic energies and those calculated by integration for relatively distant

atoms, but not for bonded or very close pairs.33,36,37

2.6 Molecular mechanics electrostatic potentials

Given that a vast literature exists about the classical electrostatic problem,1 we merely out-

line some basic features of the short-range potentials currently implemented in the most pop-

ular molecular simulation packages. We note first that the MM electrostatic potentials can

be classified into two main families according to whether they rely exclusively on truncated

multipolar expansions or they incorporate additional terms to mitigate their limitations.
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2.6.1 Multipolar-based MM approaches

Regarding the order at which the multipole expansion is truncated —which is determined by

lmax—, the MM electrostatic potentials are readily split into two groups. On one side, MM

methods such as AMBER,38 CHARMM,39 GROMOS,40 OPLS,41 adopt simple electrostatic

formulas with point charges (i.e., monopoles, with lmax = 0). It is important to remind that,

in this approach, the values of the atomic charges are not derived directly from the charge

density, but obtained upon fitting procedures against the molecular electrostatic potential

(ESP) computed with QM methods. On the other, more sophisticated methods, such as

NEMO,42 AMOEBA43 or the QTAIM-based FFLUX,44,45 include higher order multipoles

(frequently up to the quadrupoles, lmax = 2) in order to capture the anisotropy of the distri-

bution of electrons in space. These potentials are generaly built from the QM density matrix

of the molecule of interest by means of the distributed multipole analysis (DMA) or similar

methods that derive first all the multipolar contributions from the products of Gaussian basis

set functions and, subsequently, apply geometric criteria to reallocate them throughout the

molecule at the atomic sites and, sometimes, other points of interest such as bond centers. In

addition, some methods (e.g., AMOEBA or NEMO) refine the DMA multipoles35 to better

reproduce the QM ESP values. In this way, the resulting charges/multipoles may include

in an effective way both high-order multipolar effects and CP effects. Actually, the perfor-

mance of the MM potentials is examined statistically as a whole (i.e., using the full MM

potential including all bonded and non-bonded terms) by various energetic and structural

validation tests. A quite different approach is followed by the FFLUX force field. It makes

use of QTAIM multipoles —as those corresponding to the Bader’s atomic basins previously

commented— in contrast to the more widespread DMA methodologies, and estimates them

by means of a machine learning thechnique depending on each atom’s environment.
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2.6.2 CP-corrected potentials

In comparison with the atomic/multipolar methods that are massively employed in current

simulation packages, the electrostatic MM potentials that go beyond the multipolar approx-

imation are much less consolidated. In this category, we find different methodologies as

SIBFA (Sum of Interactions between fragments ab initio computed),46 EFP (Effective Frag-

ment Potential)47 and AMOEBA+24 that complement the parent electrostatic multipolar

formulas with other functions that are primarily designed to capture very-short range elec-

trostatics and to remove the CP error. Thus, they usually apply a damping function to the

multipolar Vmp potential to estimate a CP-corrected electrostatic potential Ṽele as

Ṽele = Vmp · fdamp(r). (12)

The functional form of the damping function is generally based on the correction to the

hydrogen-like atomic potential that the expansion of r−1 does not include11,12,15,48

fdamp(r) = 1− ce−αr, (13)

where c may be a constant or even a polynomial13 dependent on the atomic separation

r, and α is another parameter. To determine these parameters, a different paradigm in

the parameterization strategy is required with respect to the multipolar-based methods.

Thus, the newest potentials Vele seek to reproduce ∆E0
ele as evaluated by SAPT or similar

methodologies on a set of test molecules.24

2.7 Charge Penetration Energy

The literature defines the electrostatic CP energy (Epen) between two molecules A and

B as the difference between their zeroth-order electrostatic energy ∆E0
ele computed with

the continuous charge densities and its analogue ∆E0
ele,mp computed by means of multipole
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expansion,

Epen = ∆E0
ele −∆E0

ele,mp. (14)

Conceptually, this straightforward definition of Epen is satisfactory. It also shows that

Epen is not only an inter-fragment quantity, but rather an energy that presents also in-

tramolecular contributions according to the IQA partitioning of the whole ∆E0
ele. In this

respect, the energetic definition suggests that the CP error is not limited to the change in

the electrostatic interaction between two atoms due to their electron cloud overlap and the

associated loss of nuclear screening.48

The rigorous evaluation of Epen for different systems at varying intermolecular separa-

tions would allow a deeper analysis of electrostatics and, eventually, the development of

more accurate potentials. However, as noticed by Dominiak et al.,49 different methods of

obtaining multipole moments lead to different radii of (pseudo)convergence, different levels of

multipole expansions at which (pseudo)convergence is achieved and different values of pene-

tration energy. Therefore, the value of the CP energy as evaluated with Eq. 14 may depend

on the particular method used to derive the multipoles. Moreover, the usage of truncated

expansions introduces some truncation error in equation 14 so that both truncation and pen-

etration effects become somewhat mixed in the resulting Epen values, unless a well converged

multipolar energy is available, what depends on the intermolecular separation.49

An alternative to evaluate Epen has been roposed by Kayris and Jensen.50 Having no-

ticed the relationship between the CP error and the magnitude of the orbital overlap, they

attempt to recover such effect from scratch, with a derivation of Epen independently from

the multipolar model used to estimate electrostatics at first stage. However, the authors find

that the inherent dependence on the set of molecular orbitals used may lead to different CP

values.
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2.7.1 A novel IQA-like definition of Charge Penetration Energy

Within the IQF formalism, it is possible to combine both the Bader partitioning scheme

(R3 = ΩA + ΩB) with a total zeroth-order density decomposition (ρ0
AB = ρ0

A + ρ0
B) in order

to obtain the following energy terms:

i) the interaction due to the same monomer density (ρ0
A or ρ0

B ) inside a given molecular

basin (ΩA or ΩB) leading to EA
ele(ρ

0
A, ρ

0
A), EB

ele(ρ
0
A, ρ

0
A), EA

ele(ρ
0
B, ρ

0
B) and EB

ele(ρ
0
B, ρ

0
B).

ii) the interaction between ρ0
A and ρ0

B in either ΩA or ΩB basins (EA
ele(ρ

0
A, ρ

0
B) and

EB
ele(ρ

0
A, ρ

0
B)).

iii) the electrostatic energy between the two basins comprising the same density (EAB
ele (ρ0

A, ρ
0
A)

and EAB
ele (ρ0

B, ρ
0
B)).

iv) the interaction between ρ0
A and ρ0

B densities, each one being located in a different

molecular basin (EAB
ele (ρ0

A, ρ
0
B) and EBA

ele (ρ0
A, ρ

0
B)).

Hence, the total IQF electrostatic energy of a complex AB can be written as

E0
ele = EA

ele(ρ
0
A, ρ

0
A) + EA

ele(ρ
0
B, ρ

0
B) + EA

ele(ρ
0
A, ρ

0
B) (15)

+ EB
ele(ρ

0
A, ρ

0
A) + EB

ele(ρ
0
B, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B)

+ EAB
ele (ρ0

A, ρ
0
A) + EAB

ele (ρ0
B, ρ

0
B) + EAB

ele (ρ0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B).

In the notation used above the two interacting densities are encompassed by parentheses,

while the basins they are integrated in are identified by the corresponding superscripts in the

given order. Hence, for instance, the termEBA
ele (ρ0

A, ρ
0
B) stands for

∫
ΩB
dr1

∫
ΩA
dr2ρ

0
A(r1)ρ0

B(r2)r−1
12 .

Note that only one superscript signifies a double integration over the same basin, according

to which EB
ele(ρ

0
A, ρ

0
A) corresponds to

∫
ΩB
dr1

∫
ΩB
dr2ρ

0
A(r1)ρ0

A(r2)r−1
12 .

When the above double decomposition is applied to the electrostatic energies of the

separate fragments, such as A, in the final complex, the electrostatic energy of the original
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species becomes

Eele(ρ
0
A, ρ

0
A) = EA

ele(ρ
0
A, ρ

0
A) + EB

ele(ρ
0
A, ρ

0
A) + EAB

ele (ρ0
A, ρ

0
A) + EBA

ele (ρ0
A, ρ

0
A). (16)

Note that this partitioning is achieved by using the real space decomposition into two

molecular basins derived from the AB wave function and that geometry relaxation effects

are not considered. By subtracting from Eq. 16 the fragment energies, the corresponding

electrostatic contribution to the formation energy of the complex is obtained,

∆E0
ele = EA

ele(ρ
0
A, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B) + EAB

ele (ρ0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B). (17)

Among the surviving terms in Eq. 17, EAB
ele (ρ0

A, ρ
0
B), which accounts for the purely inter-

action energy between the ρ0
A density located in ΩA and the ρ0

B density located in ΩB, reveals

itself as the ordinary interaction term between the two monomers A and B. It matches ∆E0
ele

at long distances, while the other three terms would present a similar behavior of increasing

in magnitude when shortening the intermolecular distances RAB and cancelling out in the

opposite situation. Thus, those three terms can be directly related with the interpenetration

of molecular densities and grouped in an IQF-like electrostatic charge penetration energy

EIQF
ele,pen = EA

ele(ρ
0
A, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B), (18)

that collects the electrostatic energy coming from the penetration of each molecular density

into the opposite molecular basin. This term fulfils limRAB→∞E
IQF
ele,pen = 0 (and so its three

components), while limRAB→∞E
AB
ele (ρ0

A, ρ
0
B) = ∆E0

ele. Figure 1 represents the previous four

terms between the partitioned ρ0
A and ρ0

B adding up to ∆E0
ele, and compares them to the

zeroth-order pairwise term E0,AB
ele between the total density in each basin.

We will see that this alternative definition of the charge penetration energy, in the context

of the quantum chemical topology, constitutes an insightful description of the electrostatic
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effects played by the mutual interpenetration of molecular charge densities.

Figure 1: Graphical scheme of the four contributions giving rise to ∆E0
ele, where three of

them (in dark blue) comprise the IQF electrostatic penetration term and the remaining one
(dark green) accounts for the interaction of ρ0

A and ρ0
B lying in the molecular basins ΩA

and ΩB, respectively. The zeroth-order IQF pairwise term E0,AB
ele has been also included

to remark its difference with the previous EAB
ele (ρ0

A, ρ
0
B), as it accounts for an interaction

between total densities inside each basin (the original ρ0
A or ρ0

B and the tail from the other
that has penetrated into another domain).

3 Computational details

3.1 Molecular geometries and reference interaction energies

All the QM and classical electrostatic calculations were performed on the molecular geome-

tries retrieved from the S66 database,27 which contains a set of 66 complexes featuring the

most common non-covalent interactions in biomolecules. In addition, a selection of 12 repre-

sentative complexes from the S66x8 database,28 which is an extension of 66 to eight different

fractions of the equilibrium intermolecular distance, were also considered. The benchmark

CCSD(T)/CBS interaction energies collected in S66 were employed as the reference values

for comparative purposes.
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3.2 HF-D3 calculations

Single-point Hartree-Fock (HF) calculations with the triple-zeta cc-pVTZ basis set51 were

carried out on the S66 and the S66x8 geometries using the GAMESS-US package.52 The

Grimme’s dispersion potential (D3) as implemented in the DFT-D3 code53 was employed to in-

corporate the dispersion energy. Additionally, in order to correctly reproduce the asymptotic

behavior of the dispersion energy at small distances, the Becke-Johnson damping function

was chosen.54

We selected HF as the QM method of choice because it lacks entirely of dispersion

energy and thereby yields a straight physical partitioning of energy in combination with the

D3 potential. We also note in passing that HF-D3 has been shown to describe correctly and

efficiently the structure and energetics of biomolecules55 and that a variant of the DFT-SAPT

EDA method has been also developed in which the costly ab initio dispersion calculations

are replaced by a reparameterized D3 potential.56

3.3 IQA calculations

The IQA energetic analyses were performed with the PROMOLDEN code.57 The settings com-

prised β-spheres with radii of a 60% of the distance between each nucleus and its closest

critical point. Within them, high-quality Lebedev angular grids with 974 points were used,

along with Euler-McLaurin radial quadratures with 382 radial points. A bipolar expansion

of r−1
12 was selected, being its Lmax of 6. On the other hand, the outer part of the basins

(i.e., outside the β-spheres) employed same angular and radial quadratures, albeit increasing

their respective angular and radial points up to 5810 and 512, with a maximum radius of 15

au. In this case, r−1
12 was expanded by means of a Laplace expansion with Lmax = 10.
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3.4 Point-charge and multipolar calculations

Atomic charges were computed for the separate monomers in the S66 structures by means

of the restrained electrostatic potential (RESP) method following the General Amber Force

Field (GAFF)58 prescriptions. Thus, the electrostatic potential in the gas-phase was com-

puted at the HF/6-31G* level using the Gaussian0359 suite while the antechamber pro-

gram60 was used to derive the RESP atomic charges.

Two different sets of atomic multipoles were employed in the classical multipolar cal-

culations. On one hand, atomic multipoles were derived up to the quadrupoles (lmax = 2)

following the AMOEBA Force Field parameterization protocol.43,61 The molecular geome-

tries of the S66 monomers were optimized at the MP2/6-311G(d,p) level of theory using

the Gaussian09 package.62 The GDMA program63 was employed to perform a distributed

multipole analysis of the MP2/6-311G(d,p) density from which an initial set of atom type

multipoles was extracted. The initial multipoles were refined in a two-step process by fitting

to reference electrostatic potentials calculated at the MP2/6-311G(d,p) and MP2/aug-cc-

pVTZ levels of theory with Gaussian09. This task was done with the software utilities

POLEDIT and POTENTIAL, which are included in the TINKER toolbox for molecular model-

ing.64 On the other hand, using the PROMOLDEN program, the charge multipoles within each

QTAIM atomic basin were computed according to the spherical harmonic formalism up to

the specified lmax = 10. In this way, we also derived the HF/cc-pVTZ QTAIM atomic multi-

poles of the S66 monomers. All the electrostatic interaction energies for the AMOEBA and

the QTAIM multipoles were obtained using the MPOLINT code.65

Additionally, a set of S66x8 complexes was tested under the AMOEBA+ CP-corrected

potentials.24 For this, TINKER was again invoked to calculate the respective CP energies as

the difference between the CP-corrected multipoles and the multipolar energies previously

derived. In this case, the parameters of the dumping functions were directly taken from

reference [24].
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3.5 Graphs and statistical analyses

Octave66 and GNUplot67 have been used to perform the statistical analyses and the correla-

tion plots, while Python’s Matplotlib68 has been chosen for the rest of the representations.

4 Results and Discussion

4.1 S66 dataset

According to the main interaction governing binding, the S66 complexes can be classified into

three main groups, namely H-bond (with 23 complexes), dispersion-dominated (23 dimers)

and mixed complexes (the remaining 20 systems). For further details about their specific

classification, see Table S1 in the Supporting Information (SI). Similarly, the interactions

between pairs of atoms can be grouped in polar, non-polar and mixed basing on the GAFF

atom types. According to this, in Figures 1-4 each type of complex/interaction is color

coded: pink for H-bond/polar, yellow for mixed and blue for dispersion/non-polar.

Regarding the level of theory chosen for our QM calculations, it has been shown in previ-

ous work30 that the HF/cc-pVTZ formation energies in conjunction with the D3 dispersion

energy correlate satisfactorily with the benchmark CCSD(T)/CBS energies from the S66

database (see also Figure S1). Not only is the global correlation quite suitable (R2 = 0.991)

but also the three categories are in good agreement with the reference values, the root mean

square (RMS) errors lying in a small range from 0.82 to 1.80 kcal mol−1. Besides being

computationally efficient, another major advantage of using HF-D3 is the fact that it per-

mits, when applying IQA, a trustworthy distinction of the relative classical and non-classical

contributions. Since HF is a correlation-free method, HF-D3 also provides a pure split of

the dispersion energy from other sources. For all these reasons we selected HF-D3/cc-pVTZ

for our study.
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4.2 Electrostatic contributions to binding energies

As non-covalent binding processes are in multiple cases strongly influenced by electrostatics,

we analyzed first the intra- or inter-fragment character of the electrostatic contributions to

the formation energy ∆Eele basing on the IQF assessments (Eq. 8). In this analysis, we opted

to augment the electrostatic energy with the pairwise D3 dispersion so as to compare the

benchmark binding energies ∆Eref
form with the dispersion-augmented electrostatic formation

energies (∆Eele +D3) and the intermolecular electrostatic interactions (EAB
ele +D3).

Table 1: Comparison between the benchmark formation energies and the IQF electrostatic
contributions to formation, enhanced with D3 dispersion. It comprises the coefficient of
determination R2, the Spearman correlation coefficient (ρ) and the root mean square error
(RMS/kcal mol−1)

.

Energy term Complex type R2 ρ RMS
Global 0.888 0.719 17.2
H-bond 0.970 0.930 23.9

∆Eele +D3
Mixed 0.593 0.820 12.8

Dispersion 0.851 0.910 11.7
Global 0.990 0.982 5.7
H-bond 0.993 0.978 8.4

EAB
ele +D3

Mixed 0.863 0.902 3.0
Dispersion 0.991 0.993 3.7

Figure 2: Correlation between ∆Eref
form and the pairwise term EAB

ele + D3 (energies in kcal
mol−1).
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As can be appreciated in Table 1, the global electrostatic formation energy together with
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the D3 dispersion shows a moderate correlation (R2 = 0.880) with the reference formation

energies. Among the three classes of systems, the H-bond complexes exhibit the best fitting

(R2 = 0.970), although being accompanied by the highest root mean square (RMS) error

(RMS = 23.9 kcal mol−1). The dispersion complexes show a poorer agreement, with the

mixed group having a low R2 value of 0.593. In contrast, the IQF pairwise energies in

conjunction with the D3 dispersion EAB
ele + D3 are quite well correlated (see Figure 2), not

only globally (R2 = 0.990) or in the case of the H-bond group, but also within the dispersion

complexes (R2 = 0.991), and with better performance than ∆Eele + D3 in the case of the

mixed class (R2 = 0.863). Also, the RMS errors are remarkably lower (8.4 kcal mol−1 for

H-bond complexes, 3.0 and 3.6 kcal mol−1 for mixed and dispersion, respectively).

The reasonable correlation of the EAB
ele + D3 terms with the reference energies can be

considered as an IQF validation of the additive & pairwise approximations adopted by clas-

sical potentials. As a matter of fact, the IQF partitioning shows that the adoption of such

approximation for the electrostatic contribution does not require any perturbation-theory

treatment. Combining the global electrostatics with the pairwise D3 energy yields an un-

balanced description given that ∆Eele comprises also the intramolecular electrostatic defor-

mation energies, which, in turn, tend to cancel to a large extent with the intramolecular

exchange-correlation effects (absent in ∆Eele) as shown in the detailed IQF analysis of the

S66 binding energies.30 Therefore, EAB
ele arises as the most relevant IQF descriptor of the

electrostatic effects determining non-covalent binding.

4.3 Zeroth-order approximation in IQF electrostatics

As stated in the Theory section, for treating weakly-interacting non-covalent complexes, the

zeroth-order approximation is generally invoked. The ∆Eele + D3 and EAB
ele descriptors,

which were also evaluated using the unrelaxed charge densities of the monomers (Table 2),

allow us to further assess this approach.

Comparing Tables 1 and 2, we see that the trends in the correlation coefficients and in
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the RMS errors between the IQF terms and the reference energies are similar. The zeroth-

order approximation improves the overall performance of the ∆Eele+D3 energies, increasing

their R2 coefficients and reducing the RMS errors to a large extent. However, the degree

of accordance of the mixed complexes (R2=0.121 in Table 2) is significantly deteriorated

by using the zeroth-order density, what may be indicative of the particular importance of

charge-relaxation and polarization effects in such kind of complexes. More importantly, the

unrelaxed monomer densities result in purely-pairwise E0,AB
ele descriptors that correlate in a

similar fashion with the benchmark binding energies than their EAB
ele counterparts, reducing

also the RMS errors. Therefore, the inter-fragment E0,AB
ele energy raises again as the most

trustful electrostatic descriptor.

Table 2: Comparison between ∆Eref
form and the D3 dispersion-corrected zeroth-order IQF

electrostatic energies.

Energy term Complex type R2 ρ RMS
Global 0.956 0.898 7.090
H-bond 0.994 0.983 9.442

∆E0
ele +D3

Mixed 0.121 0.684 5.109
Dispersion 0.862 0.888 5.692

Global 0.971 0.956 3.101
H-bond 0.989 0.971 3.469

E0,AB
ele +D3

Mixed 0.755 0.845 2.241
Dispersion 0.988 0.992 3.346

A direct comparison between the corresponding EAB
ele energies derived from a full QM

calculation and a zeroth-order one (Figure 3) reveals a good agreement between them, with

a global R2 value of 0.987 that ranges from 0.925 to 0.994 when addressing the complex type.

The errors are of a few kcal mol−1 due to the higher RMS of 5.2 kcal mol−1 for H-bond

complexes, which have relatively large energies and present wider oscillations, whereas the

other two groups show RMS < 1 kcal mol−1. On the other hand, the same comparison for

the full electrostatic contribution ∆Eele shows a weaker correlation (still successful in the case

of the H-bond complexes), with much higher errors and worse correlation coefficients (being

the global R2 of 0.852 and RMS of 10.649 kcal mol−1). Therefore, the full QM relaxation
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Figure 3: Electrostatic descriptors according to the zeroth-order approximation as compared
with the QM relaxed energies (all in kcal mol−1).
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(deformation) of the charge density at the dimer geometry mainly affects the intramolecular

electrostatics that collects the majority of the polarization and charge penetration effects.

For the sake of completeness, we also tested an intermediate description obtained from

the antisymmetrized product of the monomer wave functions. The results can be found in the

Supporting Information (Table S2). The IQF pairwise energies are approximately equivalent

to those provided by the zeroth-order description. Consequently, the simpler zeroth-order

approximation suffices to roughly describe the electrostatic effects in the weakly interacting

dimers.

4.4 Performance of classical electrostatic potentials

The previous results point out that the interfragment IQF’s EAB
ele in combination with a

dispersion potential explains quite well the binding energy of the non-covalent S66 complexes.

Moreover, this electrostatic term can be reasonably approximated by the corresponding

interaction energy between unperturbed fragments (i.e., E0,AB
ele ). Hence, we propose the

latter quantity as the most suitable IQF descriptor at which approximated potentials can be

addressed in order to assess their ability to capture the pairwise electrostatics of continuous

charge distributions.
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As noticed in Theory and Methods, the approximate MM potentials rely on the multi-

polar expansion of the charge density of the separate monomers, but the way of establishing

the set of multipoles in a molecule is not unique. Hence, we considered on the one hand two

widely-used electrostatic potentials: the AMOEBA potential based on the DMA method35

up to the quadrupoles (lmax = 2), and the Coulombic potential evaluated with the RESP

atomic charges as those used in the GAFF force field. The two potentials share the con-

straint of reproducing the molecular electrostatic potential. Additionally, we evaluated the

performance of the regular QTAIM multipoles, which result from the multipole expansion

carried out in each atomic basin at each nuclear position and are directly linked with the

IQF energetic quantities. As commented previously, the requisite for multipolar convergence

(i.e., the maximum radius from the origin of one multipolar distribution must not enter an-

other one) is not always fulfilled.33,36 Thus, only QTAIM monopoles (l = 0), dipoles (l = 1)

and quadrupoles (l = 2) were used (an expansion up to l = 10 was also tested, but with

dramatically differing results for strongly interacting complexes; see SI). This selection of

lmax = 2 is also congruent with the AMOEBA electrostatic potential.

Table 3: Statistical measurements of the correlation between either the zeroth-order in-
termolecular electrostatic energy E0,AB

ele and the electrostatic interaction energies between
monomers approximated by the QTAIM multipoles (truncated at l = 2), AMOEBA multi-
poles (also lmax = 2) and RESP point charges.

Multipolar approximation Complex type R2 ρ RMS
Global 0.970 0.958 1.0
H-bond 0.956 0.904 1.4

QTAIM
Mixed 0.644 0.768 0.9

Dispersion 0.955 0.795 0.5
Global 0.953 0.972 1.3
H-bond 0.904 0.841 2.0

AMOEBA
Mixed 0.800 0.845 0.7

Dispersion 0.939 0.893 0.4
Global 0.974 0.962 0.8
H-bond 0.981 0.918 0.7

RESP
Mixed 0.456 0.687 1.1

Dispersion 0.948 0.831 0.3
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We see in Table 3 that either the QTAIM or the AMOEBA multipoles show an R2 >

0.9 for the full S66 set and for the H-bond/dispersion subsets. Their performance is less

satisfactory for the case of the mixed complexes (R2 > 0.6 − 0.8). The RMS errors, in

turn, become higher for H-bonded systems having stronger interactions. Nevertheless, the

RMS errors are, in general, close to 1 kcal mol−1. The RESP charges (monopoles) give

again electrostatic energies that are quite close to the reference E0,AB
ele values for the H-

bond/dispersion structures, albeit they exhibit worse correlation for the mixed complexes

(R2 = 0.4).

With respect to the set of RESP charges, our calculations indicate that the multipolar

potentials tend to moderately improve the electrostatic description of the mixed complexes,

but not for the more abundant H-bond and dispersion-dominated complexes. The good

agreement between multipolar and RESP energies is probably due to the fact that the RESP

charges incorporate in an effective way higher order effects due to the the parameterization

procedure. The QTAIM multipoles, which are derived directly from the charge density within

each atomic basin without further assumptions, allow us to assess in detail the performance

of strict multipolar electrostatics. In this respect, it is interesting to note that the QTAIM

and AMOEBA multipoles result in a quite similar performance, showing thus that the use

of pure QTAIM multipoles in the construction of electrostatic potentials —an idea already

considered in the FFLUX force field— yields accurate electrostatics free from the inclusion

of other effects that can be introduced when fitting the set of the DMA multipoles to the

molecular electrostatic potential. In fact, as shown by Kosov and Popelier,36 these multipoles

readily reproduce the ESP without the need of any constraint.

4.5 Electrostatic interactions at the atomic level

IQA permits an unambiguous decomposition of the intermolecular interaction energy into a

sum of interatomic terms that enables a thorough analysis of the global molecular properties

and an assessment of their atomic origins.
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Concerning the error sources and the level of coincidence between the zeroth-order ener-

gies E0,IJ
ele with those calculated with the fully-relaxed wave function EIJ

ele, Figure 4 reveals

a high agreement between them at the atomic level. Only in the case of polar contacts the

RMS error is relatively high (>10 kcal mol−1), but the overall RMS remains about 3 kcal

mol−1 due to the larger abundance of weak contacts. Figure 4 also displays the error plot of

each E0,IJ
ele with respect to its corresponding counterpart EIJ

ele as a function of the interatomic

distance. In accordance with prior results showing higher errors in H-bonded complexes, the

IQA partitioning emphasizes which specific polar contacts (e.g., short O-H···O H-bonds) are

the major source of error. In fact, the atom-atom interactions are sometimes a few orders of

magnitude higher than the inter-fragment energies, what highlights the well-known relevance

of error cancellation in computing a global quantity. In this respect, Tables S3-S5 contain

the atomic decomposition of EAB
ele in the case of the acetic acid dimer to further illustrate

this effect.

Figure 4: Left: Correlation between the exact atomic interactions EIJ
ele and those subject to

the zeroth-order approximation E0,IJ
ele displaying also the statistical measurements. Right:

Deviation of E0,IJ
ele with respect to EIJ

ele as a function of the interatomic distance RIJ . Energies
are given in kcal mol−1 and distances in Å.
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Although the molecular quality of the QTAIM-based multipolar energies is similar to

those of the AMOEBA-multipoles/RESP-charges, we also examined their pairwise contri-

butions in order to analyze the convenience of using one or another scheme to decipher the

atomic origins of the global electrostatic effects.
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As expected, the IQA interatomic terms correlate almost perfectly with the QTAIM

multipolar ones E0,IJ
ele,mp (R2 = 1.000 and RMS = 0.6 kcal/mol; see Figure S4), confirming

thus that these are the natural heir of the parent E0,IJ
ele . On the other hand, however, the

AMOEBA and RESP energies are much less correlated (R2 of 0.7 and 0.4, respectively) with

the E0,IJ
ele values as shown in Figure 5, where the correlation plot between the AMOEBA

atomic-pair energies EIJ
ele,AMOEBA and the corresponding E0,IJ

ele value (left), along with the

distance-dependence of the associated differences (right) are depicted. The RMS errors

of the energy differences are quite high (' 34 kcal mol−1) and some error values become

dramatic for strong polar contacts while others are reduced for weak interactions at the

expense of loosing any evidence of correlation. Considering again the example of the acetic

acid dimer, the largest differences between E0,IJ
ele and the QTAIM-multipole E0,IJ

ele,mp (about

6 kcal/mol) arise in the atoms involved in the OH···O bonds, the rest of pair interactions

having much lower differences (< 0.5 kcal mol−1; see Tables S6-S8). When comparing E0,IJ
ele

and EIJ
ele,AMOEBA (or EIJ

ele,RESP ), the largest discrepancies amount to hundreds of kcal mol−1

and they involve not only the atom pairs in the OH···O moiety, but the methyl C atoms too.

Clearly, the dissimilarity between the IQA E0,IJ
ele,mp energies and the EIJ

ele,AMOEBA/EIJ
ele,RESP

values was not entirely unexpected given that the RESP charges are derived from the molec-

ular ESP and the AMOEBA multipoles are obtained by the DMA protocol. In fact, a

difference of one order of magnitude between the atom-atom electrostatic interactions from

IQA and MM potentials has also been noticed previously.69 The data in Figure 5 and in

Tables S6-S8 show in further detail the actual discrepancies between the various atomic rep-

resentations of electrostatic effects and suggest that, although the diverse atomic multipoles

employed in classical potentials may yield molecular electrostatic energies that resemble

to each other to a large extent, the atomic decomposition of those energies may be more

questionable, what, in turn, can negatively affect the interpretation of local electrostatic

interactions and/or result in artefacts while dealing with QM and MM short-range electro-

statics in hybrid QM/MM methodologies. In this respect, a comparison of IQA-like E0
ele,mp
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energies with those produced by classical pairwise potentials may be useful to guide the

construction of new potentials more consistent with QM atomic energy contributions and/or

to select a particular potential.

Figure 5: Comparison between the AMOEBA atomic electrostatic interactions EIJ
ele,AMOEBA

and the IQA unrelaxed atomic terms E0,IJ
ele (all in kcal mol−1). On the left is the correlation

plot, and on the right, the differences as a function of the distance (Å).
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4.6 Assessment of short-range electrostatics at varying distances

A subset of complexes from the S66x8 dataset was selected to reassess at varying intermolec-

ular separations the validity of the previous results, which were obtained at the equilibrium

geometries. In particular, we reexamined the comparative performance of the zeroth-order

approximation with regard to the fully-relaxed QM electrostatic energies as well as the var-

ious multipolar descriptions with respect to the zeroth-order energies.

Figures 6 a-c show that the unrelaxed interfragment energies E0,AB
ele follow the same

trends than the relaxed ones EAB
ele . As expected, they start diverging as the intermolecular

separation is decreased, most likely due to the strengthening of charge polarization, charge-

penetration and charge-transfer effects that attenuate the pairwise electrostatic forces. The

magnitude of these effects is clearly system-dependent, being almost negligible in the case of

the non-polar, dispersion complexes like the benzene or neopentane dimers. The shape and

slope of the EAB
ele and E0,AB

ele curves is also indicative of the type of complexes. Thus, the
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Figure 6: Intermolecular electrostatic interactions computed either exactly (EAB
ele ; dashed

lines) or from frozen isolated molecular wave functions (E0,AB
ele ; solid lines) as a function of

the intermolecular distance relative to the equilibrium one (RAB/Req). The systems comprise
H-bond complexes, mixed species and dispersion-dominated complexes.

electrostatic stabilization of the four H-bond complexes and others (e.g., the π-complex of

the uracil dimer) is continuously reinforced upon shortening the monomer-monomer distance,
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Figure 7: Comparison between E0,AB
ele , as well as ∆E0

ele, and the multipolar energies E0,AB
ele,mp,

EAB
ele,AMOEBA and EAB

ele,RESP for the set of 12 S66x8 complexes selected herein. Systems a-
d belong to the H-bond group, whereas e-h and i-l are part of the mixed and dispersion
categories, respectively.

reflecting the major electrostatic control of these systems. In contrast, the T-shaped benzene

complexes with methanol or acetamide reach an electrostatic minimum at a distance longer
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than the equilibrium one while the small electrostatic energies of the dispersion dimers (i.e.

+1,-1 kcal/mol) change very little along the curves (some small leaps in these curves are due

to residual errors arising in the numerical integration over the atomic basins). This behavior

signals the interplay of electrostatics and QM effects and the minor role of electrostatics in

determining the stability of these systems.
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Let us now analyze the variation with intermolecular distance of ∆E0
ele and its inter-

fragment component E0,AB
ele in comparison with the QTAIM/AMOEBA/RESP multipolar

descriptions (see Figures 7). The continuous charge density electrostatics and the classical

potentials coincide at the longest intermolecular distance (given by the ratio RAB/Req = 2

between the intermolecular separation and the equilibrium one) for all the complexes. The

deviation between ∆E0
ele and E0,AB

ele seems particularly interesting because it reveals somehow

the underlying charge penetration effects associated to the density overlap (see below). For

the H-bond and some mixed complexes, the two curves decrease with lowering separation,

but they split gradually from RAB/Req < 1.6. The global ∆E0
ele stabilization nearly doubles

E0,AB
ele at Req, showing thus the large impact of intramolecular electrostatics as defined in

the IQF framework. Besides the smaller magnitude and relevance of electrostatics, the inter-

vs. intramolecular balance is differently modulated in the dispersion π complexes and in the

T-shaped ones, in which the deviation between the global and interfragment electrostatics

becomes significant only at very close distances, the global ∆E0
ele energy being suddenly re-

inforced with density overlap whereas the interfragment component remains nearly constant

or becomes slightly repulsive.

The plots of the classical energies (QTAIM/AMOEBA/RESP) with RAB/Req show that

their values and distance-dependence are basically those of the interfragment E0,AB
ele energy.

A closer inspection reveals that the QTAIM/AMOEBA/RESP energies tend to overesti-

mate/underestimate the E0,AB
ele for the H-bond/dispersion dimers, respectively. Neverthe-

less, their overall similarity further supports the identification of E0,AB
ele as the reference IQF

descriptor for analyzing and assessing the performance of the various pairwise potentials.

Furthermore, Figure 7 shows again that the QTAIM/AMOEBA multipolar terms behave in

a similar fashion, no matter the scheme employed for developing the atomic multipoles. It

is also remarkable that the use of RESP charges yields similar intermolecular electrostatics

even at short distances.
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5 Charge penetration under the QTAIM scrutiny

Following the prescriptions introduced in Theory and Methods, the zeroth-order electrostatic

formation energy ∆E0
ele of each S66 complex was decomposed by combining its real-space de-

composition into non-overlapping atomic basins with the charge density approximation (i.e.,

ρ0
AB = ρ0

A + ρ0
B). This strategy leads to the IQF-based charge penetration energies, EIQF

ele,pen,

composed by the mutual interaction between densities inside the same basin (EA
ele(ρ

0
A, ρ

0
B)

and EB
ele(ρ

0
A, ρ

0
B)) and an inter-basin interaction EBA

ele (ρ0
A, ρ

0
B) between ρ0

A lying in basin B

and the opposite ρ0
B inside basin A, as described in Eq. 18. This constitutes an effective pen-

etration energy in the sense that the molecular identity between two overlapping fragments

becomes necessarily blurred so that fragment properties are dependent upon the scheme fol-

lowed to dissect the global charge density into its constituents. Nevertheless, the topological

analysis of ρ0
AB yields a consistent identification of molecular fragments so that the associ-

ated charge-penetration analysis can give useful insight into the electrostatics of non-covalent

complexes.

Figures 8 a-c display the various energy contributions to ∆E0
ele resulting from apply-

ing Eq. 18 to each S66 complex. On the one hand, the interfragment energy EAB
ele (ρ0

A, ρ
0
B)

between the ρ0
A in ΩA and ρ0

B in ΩB, is formally not affected by charge penetration and

plays a stabilizing role in all the H-bond complexes (slightly repulsive in the dispersion com-

plexes). On the other hand, the EIQF
ele,pen term resulting from the sum of the three IQF terms

(EA
ele(ρ

0
A, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B)) turns out to be of equal importance in H-bond

complexes or even more relevant in dispersion complexes for which penetration energy de-

scribes the major part of ∆E0
ele. The decomposition of the penetration energy shows that it

arises mainly from the mutual attraction between the ρ0
A fraction penetrating into ΩB and

the ρ0
B density (including the B nuclei) populating the same ΩB basins (i.e., EB

ele(ρ
0
A, ρ

0
B))

as well as the counterpart effect (EA
ele(ρ

0
A, ρ

0
B)). This relevant effect arises from the pen-

etration of hundredths e in the opposite molecular basin at the equilibrium geometries of

the complexes. As shown by the integration of ρ0
A or ρ0

B in the corresponding basins, the
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mutual charge penetration value ranges, for instance, from 0.035 e in the neopentane dimer

to 0.099 e in the case of the acetic acid dimer. There is also a minor repulsive contribution

owing to the purely electronic repulsion between the penetrating ρ0
A into ΩB and the ρ0

B

tail in ΩA, which is measured by EBA
ele (ρ0

A, ρ
0
B). Therefore, this CP energy decomposition

and the conventional IQF intra- and interfragment partitioning of ∆E0
ele stress the relevant

role of the intrafragment electrostatics, what may be somewhat at odds with the intuitive

perception that the classical electrostatic energy of the interacting ρ0
A ··· ρ0

B is dominated by

interfragment terms.

Further insight can be gained by analyzing the distance dependence of the various en-

ergy terms as shown in Figures 9 for the selected complexes. The plots confirm that the

three components of EIQF
pen tend to zero when RAB/Req > 1.5. The same plots further high-

light the role of the intrafragment terms due to the mutual attraction between the nuclei

associated with one fragment and the tail of the opposite electron density located in the

same basin, which largely overcomes the concomitant e-e repulsion between the ρ0
A and ρ0

B

electronic parts. Interestingly, the EAB
ele (ρ0

A, ρ
0
B) energy term, formally lacking penetration

effects, is modulated by the degree of the interfragment overlap so that the decreasing trend

in EAB
ele (ρ0

A, ρ
0
B) is damped out or inverted at the shorter distances. This is not entirely un-

expected given that, as two initially-separated atomic basins (e.g, ΩI∈A and ΩJ∈B) approach

one another, their volume, shape and electron population evolve along the RAB/Req curve in

response to the density overlap. We note, however, that the deviation of EAB
ele (ρ0

A, ρ
0
B) with

respect to the interfragment electrostatic energy E0,AB
ele may constitute a useful index about

the specific impact of penetration effects on the pairwise electrostatics. Actually, within

the QTAIM-IQF framework, it turns out that the zeroth-order interfragment E0,AB
ele energy

includes a fraction of stabilizing penetration energy for RAB/Req < 1.2 given that, for ex-

ample, the loss of some electronic ρ0
A density from the basins of the monomer A is partially

compensated by the penetration of ρ0
B into the same basin. The fixed multipole values in

the classical potentials somehow mimic this behavior so that they remain closer to the E0,AB
ele
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descriptors than to EAB
ele (ρ0

A, ρ
0
B) around the equilibrium distance.

Figure 10 compares the IQF penetration term and other relevant energetic quantities

with the analogue derived from the AMOEBA+ model for the same set of 12 complexes.

Thus, the AMOEBA+ CP correction24 EAMOEBA+
pen attempts to mimic the reference SAPT’s

∆E0
ele when added to the corresponding multipolar EAB

ele,AMOEBA. In the present analysis, we

have used previously optimized damping functions in conjunction to our derived multipoles,

leading to the approximate ∆EAMOEBA+
ele energy. As can be appreciated in the different

figures, ∆EAMOEBA+
ele presents the same trend than ∆E0

ele with very close values. Concerning

the sought CP quantities, although the AMOEBA+ reference is different to that provided by

the QTAIM-IQF approach, the two penetration energies exhibit a similar behavior with RAB,

particularly for the more stable polar complexes. According to the IQF-QTAIM partitioning,

this relationship is dominated by the intramolecular terms (EA
ele(ρ

0
A, ρ

0
B) and EB

ele(ρ
0
A, ρ

0
B)),

pointing out again that the penetration correction incorporates intramolecular effects to a

large extent.
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Figure 8: Decomposition of the S66 complexes’ ∆E0
ele into EAB

ele (ρ0
A, ρ

0
B) and the three IQF

penetration terms EA
ele(ρ

0
A, ρ

0
B), EB

ele(ρ
0
A, ρ

0
B) and EBA

ele (ρ0
A, ρ

0
B).
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Figure 9: Evolution of the energy terms from Eq. 17, along with the E0,AB
ele IQF pair term

as a function of the distance for the set of S66x8 systems chosen. Complexes a-d, e-h and i-l
belong to H-bond, mixed and dispersion groups, respectively.
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Figure 10: Comparison between the AMOEBA+ model and the zeroth-order IQF energies.
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6 Concluding remarks

In this work we have made extensive use of the atomic and molecular descriptors defined by

the IQA/IQF energy decomposition method in order to characterize the electrostatic contri-

butions to the formation energy of selected non-covalent complexes relevant to biomolecular

systems. Besides obtaining the various inter-/intra- fragment/atomic terms, the considera-

tion of both the fully relaxed density ρAB and the zeroth-order (unperturbed) density ρ0
AB,

allow us to analyze a hierarchy of approximations to the electrostatic description of those

complexes, including classical potentials commonly used in MM methods.

The interfragment (pair interaction) IQF electrostatic energies EAB
ele augmented with

the pairwise D3 dispersion energy give overall binding energies that are close to the QM

benchmark values. This observation indicates that EAB
ele is the electrostatic descriptor that

best correlates and represents non-covalent binding. Furthermore, the proper evaluation of

the QM energies and the zeroth-order ones has determined that, indeed, E0,AB
ele is a good

approximation of EAB
ele at the equilibrium geometries of the complexes (R2 = 0.987, RMS =

3.124 kcal mol−1). Moreover, the agreement in the EAB
ele -E0,AB

ele terms is also significant at

shorter and longer separations. Since the interaction between unrelaxed fragments and the

pairwise approximations are common assumptions made in MM methodologies, the pair

interaction E0,AB
ele energy turns out to be the most appropriate descriptor to analyze and/or

compare with electrostatic MM potentials. In particular, we have considered two widely

used potentials relying on the RESP atomic point charges or the AMOEBA distributed

atomic multipoles, respectively, as well as the multipolar potential up to the quadrupoles

derived directly from the QTAIM basins. It has been found that the three MM pairwise

approximations correlate very similarly with the zeroth-order IQF electrostatic energy at

varying intermolecular distances and have small RMS errors (< 1-2 kcal mol−1), what

somehow validates them and further highlights their pairwise nature.

Despite the similarity of the various pair interaction terms at the molecular level, the IQA

partitioning of E0,AB
ele into diatomic contributions points out that the RESP or AMOEBA
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atom-atom interactions and their zeroth-order IQA counterparts differ widely (e.g., R2 of

0.413 for RESP and 0.690 for AMOEBA). Although this result is understandable in terms

of the specific details of the RESP/AMOEBA charge/multipole derivations, it contrasts

sharply with the nearly perfect match between the QTAIM atomic multipolar energies and

the zeroth-order IQA reference energies (R2 of 1.000 and an RMS of 0.6 kcal mol−1). Again

this is not surprising because of the direct relationship between the QTAIM multipoles

and the ρ0
AB density. However, taking into account that the QTAIM-multipole fragment

energies perform very similarly to the RESP/AMOEBA ones, our analysis suggests that

the development of MM electrostatic potentials based on the QTAIM multipoles —as the

novel FFLUX force field does— may provide a more complete description of the electrostatic

interactions, fully consistent with QM modeling at both the molecular and atomic levels.

We have also addressed the CP effect by means of a novel approach that does not re-

quire the adoption of an external reference to evaluate such effect and may shed light on

its interpretation. Thus, the IQF-like electrostatic penetration energy is defined in terms

of the interpenetration of the unperturbed ρ0
A and ρ0

B densities of the isolated monomers as

measured over the real space partition of the whole ρ0
AB density. In this way, the CP effect

is dissected into different contributions that emphasize the role played by the attraction

between the charge density associated with one fragment A and the fraction of the electron

density of B localized in the basins delimiting the fragment A (and reciprocally between frag-

ment B and A). Therefore, in the framework of IQA/IQF, charge penetration is essentially

an intramolecular electrostatic effect.

The separation between the inter- and intrafragment electrostatics complemented with

the QTAIM assessment of the CP effects illustrates a conceptual problem arising in some

EDA approaches. As pointed out by Francisco and Pendás,70 the use of interpenetrating

densities in SAPT and other orbital-rooted EDAs assumes that electrons in different frag-

ments are distinguishable, since those schemes differentiate between electrons described by

particular orbitals centered on a particular nucleus/fragment, but that extend over the do-

43



mains of other systems with which they interact. In contrast, the QTAIM real space partition

associates a portion of the whole electron density encompassed by well-defined boundaries to

a given atomic basin, regardless of the origins of the orbital contributions that build up the

final density ρ. This consideration does not pose an issue in the use of multipolar MM poten-

tials, since as our analysis has shown, the interfragment electrostatic energy remains largely

unaffected by the interpenetration effects in non-covalent complexes, but warns about the

appropriateness of considering the interaction between interpenetrating densities as a target

quantity in the development of MM potentials.

Finally, we note that our theoretical study may help clarify some practical issues related

with the relevance of the CP corrections for MM potentials. As previously noticed, the

IQF-D3 method shows that the basic pairwise approach requires only the zeroth-order in-

terfragment electrostatic energy, which is combined with empirical dispersion terms in order

to predict reasonable formation energies for non-covalent complexes. In this way, adding

charge-penetration corrections to MM potentials like RESP/AMOEBA, which only require

interfragment electrostatic energy, would result in an unbalanced description. This aspect,

which seems to have been overlooked in previous works,15,48 implies also that the electrostatic

energy employed in popular MM force fields (AMBER, CHARMM...) cannot be compared

with the global ∆E0
ele energy derived from continuous charge distributions, but with its

interfragment component.

On the other hand, charge penetration corrections have been derived to improve the

description of the QM-MM electrostatic interactions in hybrid QM/MM methodologies. In

this case, such corrections should mitigate short-range electrostatic artefacts, particularly

those associated to the QM-MM covalent linkages. However, considering the highly-dissimilar

interatomic electrostatic energies produced by the QM densities and the RESP/AMOEBA

potentials, the usage of electrostatic parameters more akin to the QM densities at the atomic

level may have a larger impact in improving the QM-MM electrostatics. Concerning the

novel MM potentials inspired by the QM SAPT methodology, it is clear that the multipolar
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electrostatics (interfragment) must be augmented by the CP potentials (intrafragment) if

one seeks to reproduce the global electrostatics ∆E0
ele. Nevertheless, the IQF/IQA approach

(and other EDAs) points out that the intramolecular electrostatic energy is closely related

with other energy changes induced by fragment overlap (e.g., intrafragment deformation

and interfragment exchange-correlation energy), suggesting thus that the separate treatment

of these effects by means of independent potential terms might be inefficient and hamper

parameter development and transferability.
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