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Abstract 

Temperature dependence of vaporization enthalpy is one of the most important thermophysical 

properties of compounds with extensive applications in chemistry and chemical engineering. In 

the present study, we theoretically developed relationships for evaluation of vaporization enthalpy 

of pure compounds from diverse chemical families for a wide temperature range from melting 

point to the critical temperature. Applying the derived relationships for predicting vaporization 

enthalpy of 767 compounds yielded an accuracy comparable to the most successful empirically 

derived models. One major outcome of the proposed method is a relationship describing the 

correlation between the surface tension and vaporization enthalpy which outperforms the 

extensively applied Kabo method empirically developed for the same purpose. To achieve higher 

accuracies, we also developed machine learning predictive models which yielded the most accurate 

evaluation of vaporization enthalpy at various temperatures to date. A C++ code is provided for 

user-friendly and convenient implementation of the developed machine learning models. 

 

1- Introduction 

Temperature dependence of vaporization enthalpy is one of the key properties of chemicals with 

numerous important applications in chemistry and chemical engineering, including but not limited 

to estimation of saturation vapor pressure (highly required in major chemical processes such as 

distillation, evaporation, drying, humidification and dehumidification1), calculation of Hildebrand 

solubility parameter (required for evaluation of liquid-liquid equilibriums as well as evaluation of 

the solubility of solids, gases and other liquids 2-4), evaluation of fire hazards 5, prediction of 

miscibility of polymer blends as a function of temperature and calculations of liquid-liquid 

separation processes such as leaching 6-7. 

Experimental measurement of vaporization enthalpy for a wide temperature range is not always 

feasible, e.g., due to safety concerns or operational limitations. This has been the motivation of 

numerous scientific works in the past decades aiming at predicting vaporization enthalpy at various 

temperatures in silico. Although various approaches such as molecular dynamics 8 or Monte Carlo 

simulation 9, group contributions and QSPR based methods 10 have been exploited for this purpose, 

still the most straightforward and successful models are correlations which predict vaporization 
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enthalpy as a function of temperature and usually some additional more readily available 

thermophysical properties.  

Some of the most successful previously proposed correlations and a comparison of their 

performances are reported in table 1. 

Despite almost a century of research on this specific topic, almost all of the successful correlations 

applicable for predicting vaporization enthalpy of diverse compounds at wide temperature ranges 

have been developed empirically. In a previous study, a correlation was derived for this purpose 

entirely on a theoretical basis, and it was demonstrated that its accuracy is comparable to that of 

empirically derived models for a limited temperature range 1. In the present study we provide an 

update on our theoretically derived correlation, resulting in a substantial improvement in its 

accuracy for a much wider temperature range.  

In addition to predictive correlations, we also studied predictability of vaporization enthalpy via 

machine learning models as a widely accepted and powerful tool for finding dependency between 

model inputs and the target variable. We have recently employed machine learning for remarkably 

improving predictability of solvation free energy 11 and flash point 12.  

Noteworthy, employing machine learning to predict vaporization enthalpy has been previously 

proposed in a number of studies before. Nevertheless, the currently available machine learning 

models are mainly limited to evaluating vaporization enthalpy at a single temperature which is 

commonly either room temperature 13-14 or normal boiling point 15-16. In the present study we 

present machine learning models applicable for evaluating vaporization enthalpy at various 

temperatures.  

2- Methods 

2.1- predictive correlation 

In the previous study, it was shown that the temperature dependence of vaporization enthalpy 

follows 1: 

 Δℎ𝑣𝑎𝑝 =  Δ𝜀𝑏𝑠 −
𝑘𝐵

2
 𝑇. ln(𝑇) − 𝑇 ∫

Δ𝜀𝑏𝑠

𝑇2 𝑑𝑇 +  𝐶𝑇, (1) 

 

where 𝐶 is a constant and Δ𝜀𝑏𝑠 is the energy required for moving one molecule from the bulk of 

the liquid to the surface. Via the fundamental thermodynamics relationships between energy (𝜀), 

Helmholtz free energy (𝑓 ) and entropy (𝑠), which for our problem imply 1:  

 Δ𝜀𝑏𝑠 = Δ𝑓𝑏𝑠 + 𝑇Δ𝑠𝑏𝑠, (2) 

 

 𝛥𝑠𝑏𝑠 = −
𝑑(𝛥𝑓𝑏𝑠)

𝑑𝑇
, (3) 

 

and exploiting the thermodynamics relationship among the free energy change for moving one 

molecule from the bulk of liquid to the surface (Δ𝑓𝑏𝑠), surface tension (γ) and contribution of each 

molecule into the interfacial surface (𝑎𝑠) which is defined as1: 
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 Δ𝑓𝑏𝑠 = 𝑎𝑠γ, (4) 

 

 we get: 

 Δ𝜀𝑏𝑠 = 𝑎𝑠(γ − 𝑇
𝑑γ

𝑑𝑇
). (5) 

By substituting (5) in (1) and using 
𝑑(

γ

𝑇
)

𝑑𝑇
=

𝑇
𝑑γ

𝑑𝑇
−γ

𝑇2  and multiplying both sides by Avogadro’s 

number, the correlation between the surface tension and molar vaporization enthalpy (𝛥𝐻𝑣𝑎𝑝) is 

obtained as : 

 𝛥𝐻𝑣𝑎𝑝 =  𝑎 (2 𝛾 − 𝑇 
𝑑𝛾

𝑑𝑇
 ) −

𝑅

2
 𝑇. 𝑙𝑛(𝑇) +  𝛽𝑇, (6) 

 

in which 𝑎 and 𝛽 are constants. 

For a constant temperature, (6) reduces to the Kabo method which describes correlation between 

vaporization enthalpy and surface tension as: 

 𝛥𝐻𝑣𝑎𝑝 =  𝒜 ( 𝑁𝐴

1

3 𝑉
2

3 𝛾) +  ℬ, 
(7) 

 

and has already been extensively applied in numerous works specially in studying ionic liquids 17. 

 

In the previous study, the constant 𝑎 in eq.(6) was approximated via the liquid molar volume and 

assuming liquid phase molecules as true spheres, while the constant 𝛽 was determined using a 

single item of reference data. Despite all these simplifying approximations, for a limited 

temperature range (between 50K below the normal boiling point up to 100 K below the critical 

temperature) the derived correlation yielded accuracies comparable with those of the most 

successful empirically developed models. Nevertheless, we noticed remarkable inaccuracies for 

the previously derived correlation when applied for wider temperature ranges, especially close to 

the critical temperature, which is mainly attributed to the assumption of true spheres for liquid 

molecules 1. 

To overcome the above-mentioned shortcomings, in the present study and in contrast to the 

previous work, we calculate the constant 𝑎 using a single reference data while the constant 𝛽 is 

determined analytically and using the boundary condition at critical temperature. Accordingly, 

knowing that at critical temperature both vaporization enthalpy and surface tension approach zero, 

and due to continuity of the surface tension the 
𝑑𝛾

𝑑𝑇
 term also approaches zero, the constant 𝛽 is 

found as: 

 𝛽 =  
𝑅

2
 ln (𝑇𝑐), (8) 
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which by substitution into eq.(6) results in: 

 𝛥𝐻𝑣𝑎𝑝 =  𝛼 (2 𝛾 − 𝑇 
𝑑𝛾

𝑑𝑇
 ) −

𝑅

2
 𝑇. 𝑙𝑛(𝑇) +  

𝑅

2
 𝑇 ln (𝑇𝑐),  (9) 

 

The constant 𝛼 in eq.(9) as the only remaining unknown constant can be determined using a single 

reference data. 

To obtain a more straightforward relationship describing temperature dependence of vaporization 

enthalpy, we also exploit the Guggenheim–Katayama relationship stated as 18: 

 
𝛾 =  𝛾∘ (1 −

𝑇

𝑇𝑐
)

11/9

, 
(10) 

 

which after substitution in eq.(9) results in: 

 
𝛥𝐻𝑣𝑎𝑝 =  𝛼 (2 (1 −

𝑇

𝑇𝑐
)

11/9

+
11

9

𝑇

𝑇𝑐
 (1 −

𝑇

𝑇𝑐
)

2/9

) −
𝑅

2
 𝑇. 𝑙𝑛(𝑇) +

 
𝑅

2
 𝑇 ln (𝑇𝑐). 

(11) 

 

 

2.1- machine learning 

In the present study we employed artificial neural networks to map the dependency between the 

vaporization enthalpy and potential input variables. We studied 9 potentially relevant 

thermophysical properties commonly employed in vaporization enthalpy predictive models, 

namely critical temperature (𝑇𝑐), critical pressure (𝑃𝑐), normal boiling point (NBP), liquid molar 

volume (V), acentric factor (𝜔), radius of gyration (𝑅𝑔), van der Waals area (𝑣𝑑𝑊𝐴) and volume 

(𝑣𝑑𝑊𝑉) and dielectric constant (ε).  

After trying various models, we noticed that the most successful neural network models are 

achieved for non-dimensionalized target and input variables. Accordingly, we employed reduced 

temperature (
𝑇

𝑇𝑐
) as an additional model input and 

𝛥𝐻𝑣𝑎𝑝

𝑅𝑇𝑐
 as the target variable.  

Considering that for many compounds not all of the studied model inputs might be readily 

available, we studied models which take only 2 to 6 of the studied thermophysical quantities. To 

that end, we exploited the Minimum Redundancy and Maximum Relevance (MRMR) algorithm 
19 as a highly efficient algorithms for selecting most effective sets of variables for developing 

robust machine-learning-based models 20. 

We developed neural network models based on the guidelines proposed in the previous study12. 

Accordingly, we used only 60% of the dataset for training the neural network models and assigned 

15% and 25% of the dataset for validation and test of the models, respectively. We only studied 

neural networks with one hidden layer. For each model, maximum numbers of neurons were 
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determined in a way to yield models for which at least 10 training samples exist per model constant, 

as proposed in the previous study 12. For each model we studied Levenberg-Marquardt 

backpropagation and Gradient descent backpropagation training algorithms, and hidden layer 

transfer functions of the logarithm-sigmoid and tangent-sigmoid types 21. For each model yielding 

higher accuracy compared to the best found result for the same neural network configuration, we 

evaluated its reliability by a 100-fold cross-validation proposed in the previous study. Accordingly, 

these models were retrained using the found neural network weight and bias constants as the initial 

guess under 100 different randomly selected training, validation and test sets. The models which 

in at least 80% of the iterations yielded test and training set error with the same mean and standard 

deviation as evaluated by the t-test method were selected as reliably trained models.  

 

3.1- dataset 

To benchmark the new model, we use thermophysical data of the DIPPR801 database 22. Screening 

the dataset and selecting only the compounds with maximum uncertainty of 5% results in 767 

compounds from diverse chemical families. The names of these compounds are provided as 

supplementary material. 

For each compound, the experimentally determined data of vaporization enthalpies for 25 points 

linearly distributed between the melting point and the critical temperature were evaluated using 

the provided relationships in the DIPPR database.  

Although the performance of vaporization enthalpy predictive correlations is commonly reported 

as average absolute relative error, in the present study we use Average Absolute Deviation (AAD) 

defined as  

 𝐴𝐴𝐷 =  
1

𝑁
 ∑(|𝑦𝑖

𝑒𝑥𝑝 − 𝑦𝑖
𝑝𝑟𝑒𝑑|). (12) 

 

as a more appropriate parameter to evaluate the performance of the models. It is because at 

temperatures close to the critical point, the vaporization enthalpy approaches zero and as a result, 

small deviations in predicted data yield a very large relative error, resulting in an inappropriate 

inference about the performance of the studied models. 

 

3- Result and discussion 

 

3.1- predictive correlation results 

In describing the correlation between the vaporization enthalpy and surface tension, the most 

obvious difference between the proposed relationship in eq.(6) and the widely accepted Kabo 

method is the existence of the 𝑇
𝑑𝛾

𝑑𝑇
 term in our newly derived relationship. To evaluate the 

significance of this term on improving predictability of the vaporization enthalpy via surface 
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tension, we calculated the constants of eq.(6) by regression using vaporization enthalpy data of the 

whole temperature range for two cases: once with and once without the 𝑇
𝑑𝛾

𝑑𝑇
 term included.  

According to the results, while for eq.(6) in its original form, estimating the constants by regression 

results in an AAD of 905.7 Joule/mol, removing the 𝑇
𝑑𝛾

𝑑𝑇
 term and recalculating these constants 

yields an AAD of 2672.2 Joule/mol. This confirms the importance of the 𝑇
𝑑𝛾

𝑑𝑇
 term in substantially 

improving predictability of the vaporization enthalpy. Similarly, calculating the constants without 

the 
𝑅

2
 𝑇. 𝑙𝑛(𝑇) term also results in increasing the AAD by 19.34 Joule/mol. All these findings 

imply the veracity of the developed method 

For eq.(9), estimating 𝛼 using the enthalpy of vaporization at normal boiling point (𝛥𝐻𝑛𝑏𝑝) as the 

only reference point yielded an AAD of 1077.1 Joule/mol, while for the same compounds and 

temperature range, finding the two constants of the Kabo method (eq. 7) by regression using all 

data points of the whole temperature range yielded an AAD of 1714.8 Joule/mol.  

These results show that our newly derived relationship between vaporization enthalpy and surface 

tension (eq. 9) clearly outperforms the Kabo method as it requires only one adjustable parameter, 

does not require data of liquid molar volume and for the constant determined using only a single 

reference data yields much higher accuracy at other temperatures compared to the Kabo method 

even when its constants are determined using reference data at all temperatures. 

For direct evaluation of vaporization enthalpy without requiring surface tension data, we examined 

the performance of the proposed relationship eq. (11). Accordingly, for the constant 𝛼 calculated 

via experimentally determined data of vaporization enthalpy at normal boiling point, an AAD of 

1150.7 Joule/mol for the whole temperature range was achieved.  

Although experimental data at other temperatures can also be used to determine the constant 𝛼, 

using vaporization enthalpy at normal boiling point would be more advantageous due to  

convenience of its experimental measurement on one hand and existence of several accurate and 

straightforward to implement correlations for predicting 𝛥𝐻𝑛𝑏𝑝 on the other hand. In the present 

study we used and compared three such predictive correlations proposed by Chen 23, Vetere24 and 

LIU25 which provide accurate prediction of 𝛥𝐻𝑛𝑏𝑝 using critical temperature and critical pressure 

and normal boiling point as the only required data. Accordingly, calculating 𝛼 in eq.(11) via 𝛥𝐻𝑛𝑏𝑝 

predicted via these correlations yielded vaporization enthalpies predicted for the whole 

temperature rage with AADs of 1321.8, 1351.7 and 1470.2 Joule/mol, respectively. These results 

are compared with those obtained for the same dataset via the most successful empirical models 

in table 1. 

As can be seen in table 1, the theoretically derived relationships proposed in the present study yield 

accuracies comparable to those of the most successful empirically developed models. 

Nevertheless, it should be noted that as for the experimentally determined data, inaccuracies up to 

5 percent are expected as reported by DIPPR, slight differences in accuracies of different models 

do not allow a certain judgment about their performances. Specifically, most of the empirically 

developed models are parameterized to reproduce DIPPR data, which might result in higher 
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accuracies for those models. For example, the higher accuracy of the model developed by Morgan 

compared to other empirical models might be due to employing the same relationship as the one 

provided by the DIPPR database to provide reference data at various temperatures, which was used 

in the present study to get reference data as well.  

The distribution of AAD obtained via eq. (11) over major chemical families is depicted in figure 

1 and shows a rather smooth variability for the AAD which is not so dramatically influenced by 

the chemical families. In our previous study we reported an obvious increasing pattern between 

the observed average absolute relative errors (AARE%) and molecular weights, especially in 1-

alkenes, n-alkanes, methyl alkanes and dimethyl alkanes, which was attributed to a proportional 

increase in deviation from the true sphere assumption used in calculating the constant 𝛼 with 

increasing molecular weight1. Nevertheless, as depicted in figure 2, the alternative 

parameterization approach used in the present study to overcome inaccuracies due to the true 

sphere assumption clearly results in an almost uniform distribution of AARE% over molecular 

weight for the same groups, as expected. 

 

  

Figure 1- distribution of AAD among various chemical families 
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Figure 2- distribution of AARE(%) over molecular weights 

 

 

 

 

Table 1- comparison of the results predicted via various models 

 Model inputs AAD (Joule/mol) 

   

Machine learning 𝑆𝑒𝑒 𝑡𝑎𝑏𝑙𝑒 2 𝑓𝑜𝑟 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 865.383- 1066.57 
New relationship (eq. 11) 

(𝛼 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑖𝑎 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑑𝑎𝑡𝑎) 

𝑇𝑛𝑏𝑝, 𝑇𝑐, 𝛥𝐻𝑛𝑏𝑝 1158.99 

New relationship (eq. 11) 

(𝛼 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑖𝑎 𝑡ℎ𝑒 𝐶ℎ𝑒𝑛 𝑚𝑜𝑑𝑒𝑙23
) 

𝑇𝑛𝑏𝑝, 𝑇𝑐 , 𝑃𝑐 1321.8 

New relationship (eq. 11) 

 (𝛼 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑖𝑎 𝑡ℎ𝑒 𝑉𝑒𝑡𝑒𝑟𝑒 𝑚𝑜𝑑𝑒𝑙24
) 

𝑇𝑛𝑏𝑝, 𝑇𝑐 , 𝑃𝑐 1351.7 

New relationship (eq. 11) 

(𝛼 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑖𝑎 𝑡ℎ𝑒 𝐿𝑖𝑢 𝑚𝑜𝑑𝑒𝑙25
) 

𝑇𝑛𝑏𝑝, 𝑇𝑐 , 𝑃𝑐 1470.2 

Fish-Lielmezs26 𝑇𝑛𝑏𝑝, 𝑇𝑐, 𝛥𝐻𝑛𝑏𝑝 1085.4 

Morgan27 𝑇𝑐 , 𝜔 1021 

Morgan-Kobayashi28 𝑇𝑐 , 𝜔 1217.3 

Sivaraman et. al. 29 𝑇𝑐 , 𝜔 1218.6 

Carruth-Kobayashi 30 𝑇𝑐 , 𝜔 1350.1 

Meyra et al. 31 𝑇𝑛𝑏𝑝, 𝑇𝑐, 𝛥𝐻𝑛𝑏𝑝 1959.3 

   

 

3.2- results obtained via machine learning  

After training the neural network models and selecting the reliable ones based on the guidelines 

discussed in section 2-1 and screening out the models which for the same or additional input 

variables yielded lower accuracy, we obtained 26 models reported in table 2. Based on the number 

and type of input variables, the developed machine learning models yield different AAD ranging 

from 865.383 to 1066.57 Joule/mol. As implied from these results, one main advantage of 
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employing machine learning is achieving higher accuracies as well as flexibility in treating 

different input variables. Furthermore, for the same input variables the results obtained via the 

machine learning models still show higher accuracy compared to the most successful predictive 

correlations which are the outcome of several decades of developing such correlations. For 

example, for predicting the vaporization enthalpy via critical temperature and acentric factor as 

the only model inputs, the neural network model specified with ID 23 in table 2 can be used which 

results in an AAD of 992.158 Joule/mol. This result shows a higher accuracy compared to the 

predictive correlations reported in table 1 which require the same model inputs. Among the 

developed machine learning models, the most interesting results are those obtained via a model 

specified in table 2 with ID 26 which requires only experimental data at the critical point and yields 

an AAD of 1066.57 Joule/mol. In comparison to all predictive correlations reported in table 1, this 

model shows an obvious advantage because all those correlations in addition to experimentally 

determined data at the critical point also require at least one additional reference data item of 

vaporization enthalpy either at 0.7 𝑇𝑐 (required for calculating the acentric factor) or at normal 

boiling point, nevertheless resulting in lower accuracy compared to the machine learning model. 

Despite the remarkable advantage of machine learning models compared to empirical correlations, 

one drawback of those models is the requirement of having technical knowledge for their 

application. With that in mind, we provide a C++ code with detailed used instructions for a user-

friendly and straightforward application of the developed machine learning models.  

 

4- Conclusion 

 

 In the present study we proposed theoretically derived relationships and machine learning models 

for prediction of vaporization enthalpy of pure chemical compounds at wide temperature ranges. 

We have demonstrated the success of the theoretically derived relationship in predicting 

vaporization enthalpy with an accuracy comparable to the most successful correlations as well as 

in describing the correlation between the vaporization enthalpy and surface tension. We have also 

developed and provided neural network models which, unlike other machine learning models 

proposed elsewhere, are not limited to a single temperature and can be used to evaluate 

vaporization enthalpy at various temperatures. We emphasize significant advantages of machine 

learning models compared to the predictive correlations: They possess higher flexibility in input 

variables, which for some models are more readily available, and can yield a higher accuracy. 
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Table 2- Performance of the developed machine learning models 

Model ID AAD(Joule/mol) Model inputs: 

1 865.383 𝑇/𝑇𝑐 𝑇𝑐  𝜔  𝑣𝑑𝑊𝐴  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐  

2 867.641 𝑇/𝑇𝑐 𝜔  𝑣𝑑𝑊𝐴  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐   

3 868.492 𝑇/𝑇𝑐 𝑁𝐵𝑃  𝑉  𝜔  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐  

4 869.496 𝑇/𝑇𝑐 𝑁𝐵𝑃  𝜔  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐   

5 877.668 𝑇/𝑇𝑐 𝑇𝑐  Pc 𝜔  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐  

6 890.629 𝑇/𝑇𝑐 𝜔  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐    

7 897.208 𝑇/𝑇𝑐 𝑁𝐵𝑃 𝜔  𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐    

8 912.854 𝑇/𝑇𝑐 𝑃𝑐  𝑁𝐵𝑃  ε 𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐   

9 913.738 𝑇/𝑇𝑐 𝜔  𝛥𝐻𝑛𝑏𝑝/𝑅𝑇𝑐     

10 945.2 𝑇/𝑇𝑐 𝑇𝑐  𝑁𝐵𝑃  𝜔  𝑣𝑑𝑊𝐴  ε 

11 946.728 𝑇/𝑇𝑐 𝑁𝐵𝑃 𝑉  𝜔  𝑣𝑑𝑊𝑉   ε 

12 952.052 𝑇/𝑇𝑐 𝑇𝑐  𝑁𝐵𝑃  𝜔  ε  

13 952.575 𝑇/𝑇𝑐 𝜔  𝑣𝑑𝑊𝐴  ε   

14 957.393 𝑇/𝑇𝑐 Pc 𝑁𝐵𝑃  𝜔  ε  

15 958.143 𝑇/𝑇𝑐 𝑇𝑐  𝑃𝑐  𝜔  ε  

16 961.256 𝑇/𝑇𝑐 𝑁𝐵𝑃 𝜔  ε   

17 961.524 𝑇/𝑇𝑐 Pc 𝜔  ε   

18 970.587 𝑇/𝑇𝑐 𝜔  ε    

19 977.585 𝑇/𝑇𝑐 Pc 𝜔     

20 980.281 𝑇/𝑇𝑐 𝑁𝐵𝑃 𝑉  𝜔    

21 981.209 𝑇/𝑇𝑐 𝑇𝑐  𝑁𝐵𝑃  𝜔    

22 984.434 𝑇/𝑇𝑐 𝑁𝐵𝑃  𝜔     

23 992.158 𝑇/𝑇𝑐 𝜔      

24 997.771 𝑇/𝑇𝑐 𝑇𝑐  𝑃𝑐  𝑁𝐵𝑃  𝑣𝑑𝑊𝐴  ε 

25 1019.28 𝑇/𝑇𝑐 𝑃𝑐  𝑁𝐵𝑃  ε   

26 1066.57 𝑇/𝑇𝑐 𝑃𝑐  𝑁𝐵𝑃     
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