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Abstract 

Heat shock protein 90 (HSP90) is known as one of the most potential target in cancer therapy. 
In this context, we have demonstrated that marine fungi derivatives can play as possible 
inhibitors for preventing the biological activity of HSP90 using  a combination of molecular 
docking and fast pulling of ligand (FPL) simulations. In particular, the computational approaches 
were validated since compared with the respective experiments. Based on a benchmark on 
available inhibitors of HsP90, GOLD docking package using ChemPLP scoring function was found 
to be dominated over both Autodock Vina and Autodock4 in preliminary estimation the ligand 
binding affinity and binding pose with the Pearson correlation, 𝑅 = −0.62. Moreover, FPL 
calculations were also indicated to be a suitable approach to refine docking simulations with a 
correlation coefficient with the respective experimental data of 𝑅 = −0.81. Therefore, the 
binding affinity of marine fungi derivatives to Hsp90 was evaluated. Docking and FPL calculations 
suggested that five compounds including 23, 40, 46, 48, and 52 are as highly potential inhibitors 
for HSP90. The obtained results probably enhance the cancer therapy.  

Introduction 

The heat shock protein family including Hsp27, Hsp70, Hsp90, etc are crucial elements in cell 
homeostasis.1-3 In particular, Hsp90 is a dedicated chaperone, occupies ca. 2% of total protein 
content, reacting with ca. 200 various proteins. These proteins are a vital part of constitutional 
cell signaling and accommodative reply to stress. The Hsp90 is thus characterized that it is 
probably associated with six stamps of cancer.3, 4 Consequently, the enzyme is associated with 
the cancer cell survival.4 Therefore, Hsp90 is distinguished as a target for cancer therapy.5 Several 
studies were thus executed to discover the highly potential inhibitors for preventing the biological 
activity of Hsp90.6-14 

Since the dawn of the human kind, nature has been considered as the main source providing 
folk remedies and therapeutics agents for the treatment of a wide spectrum of diseases. It is 
estimated that among all the medicines being provided on the international market, more than 
60% of them are derived from or inspired by natural products, mainly originated from terrestrial 
plants.15 On the other hand, in the last 50 years, with the advances in new technologies and 
engineering in marine science, scientists are increasing shift their focus toward marine organisms. 
Numerous publication in this field has proved that marine organisms provide many natural 
compounds with biological activities ranging from antiviral to anticancer for the pharmaceutical 
industries.16, 17 In addition, the uncommon and unique of marine chemical structures could be 
scaffold for developing new drugs with greater efficacy and specificity for the therapeutics.18 
During the last decades, a reduced number of novel compounds isolated from macro-organisms 
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were observed and microorganisms  such as marine fungi and bacteria represent promising 
sources with several hits have been found from the drug discovery.19, 20 In this light, marine fungi 
are important not only from the perspective of new drugs but also having the advantage of 
sustainable production of large quantities of compounds with reasonable costs and large scale 
cultivation. Based on information above, in this study, a set of compounds originated from marine 
fungi will be investigated to look for hits with Hsp90 potential inhibition activity.  

Recently, the computer-aided drug design (CADD) is widely used to decrease both cost and 
time for developing a novel therapy.21, 22 In CADD, the thermodynamics metric ∆𝐺, corresponds 
to the binding free energy between protein and ligand, is able to compute over atomistic 
simulations. This metric is associated with the experimental data via formula ∆𝐺bind = 𝑅𝑇𝑙𝑛(𝑘i), 
where 𝑅 is gas constant, 𝑇 is absolute temperature, 𝑘i is inhibition constant. Popularly, the 
experimental data IC50 is probably assumed to be equivalent to 𝑘i in order to characterize the 
experimental binding free energy ∆𝐺EXP.23-25 Because the metric discloses the inhibitor 
efficiency,21 accurate and speedy determination of the ∆𝐺 is very important in discovery of 
potential inhibitors for a protein target.26-31 In this work, we have first benchmarked the 
performance of the free energy approaches including molecular docking and FPL calculations. The 
obtained results in estimation the ∆𝐺 of marine fungi derivatives is thus more reliable. Compound 
23, 40, 46, 48, and 52 were suggest that they are highly possible inhibitors for preventing the 
biological activity of HSP90. The observation can boost the cancer treatment. 

Materials and Methods 

Structure of Ligands and HSP90 

The three-dimensional structures of HSP90 was downloaded from the Protein Data Bank (PDB) 
with the identify (ID) of 3K99.10 The resolution of HSP90 is relatively high with an among of 1.79 
Å.  The available inhibitors for HSP90 were also obtained via PDB database with ID: 2QF6,9 2QG0,9 
2QG2,9 3K97,10 3K99,10 3R4M,11 3R4N,11 3R4O,11 3RLR,12 4NH7,13 4NH8,13 4O05,14 4O07,14 4O09,14 
and 4O0B.14 The 3D structure of 63 ligands including compounds 1-52 were obtained via our 
previous investigations on marine fungi samples (Aspergillus sp. and Penicillium sp.)32-34 and 
compounds 53-63 in unpublished work by Cao et al. The structure of compounds are shown in 
the electronic supplementary (ESI) file. 
Molecular Docking Simulations 

The molecular docking simulations were employed to initial evaluation both binding affinity 
and pose of ligands to HSP90. Here we employed Autodock Vina (Vina) 1.1,35 Autodock4.2 
(AD4),36 and GOLD packages37 to finish the task force. The parameters of the docking simulations 
via AD4 and Vina were referred to the previous studies.24, 33 Whereas GOLD parameters were 
selected as default options. The best docking structure is selected as the docking configuration 
forming the highest binding affinity. 

Vina docking.35 The docking simulation was performed using parameters referred to the 
previous studies.33, 38, 39 In particular, the exhaustiveness is chosen as 8 and the maximum of 
different energy between docking configurations is selected as 7 kcal mol-1. The grid size of the 
Vina docking is selected as 20 × 20 × 20 Å with the center of grid is chosen as the center of mass 
of the experimental ligand (cf. Error! Reference source not found.). 

AD4 docking.36 AD4 was executed with docking parameters referred to the previous studies.33 
Particularly, grid size was selected as 60 × 60 × 60 with the spacing of 0.333 Å (cf. Error! 
Reference source not found.). The Autogrid4 was the executed to generate the grid map. Ligands 
were docked to the HSP90 with the genetic algorithm (GA)/ Lamarckian GA (LA)/Monte Carlo 
Simulated Annealing (SA) number of evaluations was 250.000, equivalent to short option. 
Moreover, the GA run is of 10, the population size is of 150, and the number of generations is of 
27.000. 

GOLD docking.37 The molecular docking simulation was executed using GOLD docking package 
referring to the previous work.40 The grid center was selected as well as the AD4/Vina parameters. 



All atoms within the range of 12 Å would be considered during docking simulations. The GOLD 
docking package was performed using two scoring functions as well as ChemScore and ChemPLP. 

Figure 1. Computational modelling of molecular docking and FPL simulations.  
Fast Pulling of Ligand (FPL) Simulations 

GROMACS version 5.1.541 was employed to mimic the unbinding process of a ligand, which was 
pulled via an external force, mobilizing out of the binding cavity of the HSP90. The HSP90 and 
counteracted ions were presented by using the Amber99SB-ILDN force field (FF).42 The TIP3P was 
engaged for treating water molecules.43 The general Amber force field (GAFF)44 was utilized to 
parameterize the ligand via AmberTools18 with the charged and geometric parameters obtaining 
via QM calculations using B3LYP functional and 6-31G(d,p) basis set.45 In particular, the atomic 
charge was evaluated using the restrained electrostatic potential (RESP) method.46 The ACPYPE47 
protocol was then utilized to convert the ligand topology to GROMACS formats. The combined FF 
was selected since they are high coincidence for free energy assessment.48, 49 

The HSP90 + ligand complex was initially inserted into a rectangular periodic boundary 
condition box with a size of 5.8 × 5.8 × 8.5 nm, which is large enough for unbinding ligand out of 
enzymic binding cavity (cf. Error! Reference source not found.). The soluble complex thus 
comprises of ca. 27 500 atoms involving the HSP90, ligands, water molecules, and ca. 7 Na+ ions. 
The steepest descent approach was initially utilized for energy minimizing the system. Then, NVT 
and NPT imitations were then followed to relax the system with a length of 0.1 ns each simulation. 
It should be noted that the 𝐶𝛼 atoms of HSP90 were positionally restrained using a weak harmonic 
potential. Finally, the inhibitor was stressed to mobilize out of the HSP binding cavity by utilizing 
an external harmonic force with a pulling speed of 𝑘 = 0.005 nm ps-1 and a spring constant of 
𝑣 = 600 kJ mol-1 nm-2. The metrics 𝑘 and 𝑣  were chosen as referred to the previous works.27 
During FPL calculations, the displacement of ligand and the value of pulling force, 𝐹, were 
recorded every 0.1 ps that would be used to estimate the ligand binding affinity.27 The FPL 
calculations were carried out 8 times each system. 
Analyzed Tools 

 The ligand protonation state was predicted by using the Chemicalize tools 
(www.chemicalize.com), a website application of the ChemAxon. The binding pose of ligand to 
HSP90 was analyzed using the free version of Maestro 2020,50 and PyMOL 2.4.0.51 

Results and Discussion 

http://www.chemicalize.com/


Molecular Docking Simulation 
In CADD, the binding pose and binding affinity of ligands to enzymic target are generally 

obtained via molecular docking simulation, a fast and low computing resources technique. In this 
work, we have tried Vina,35 an open-source docking protocol, which is widely used for this 
purpose to complete this task force. Unfortunately, Vina calculations adopted uncorrelated 
results in compared with the respective experimental data since the correlation coefficient 
𝑅Vina = 0.40 (Error! Reference source not found.). AD4 was thus employed to perform the 
docking simulation since they have a different scoring function to Vina.35, 36 Because Vina uses a 
full empirical scoring function, while AD4 uses a semi-physical/empirical based scoring function.35, 

36 We thus expected that AD4 probably is suitable for completing the task force that the obtained 
docking result would be appropriate. Unfortunately, the obtained correlation coefficient is poor 
with a value of 𝑅AD4

GA = 0.33 (Error! Reference source not found.). It is in good consistent with 
the previous work.33 Although we have changed search algorithms from GA to Lamarckian GA 
(LA) and Monte Carlo Simulated Annealing (SA), the poor correlated results were observed with 
a value of 𝑅AD4

LA = 0.35 and 𝑅AD4
SA = 0.25 (Error! Reference source not found.). 

The GOLD docking package,37 a commercial docking progam, was then utilized to evaluate the 
binding affinity and pose of ligands to HSP90 enzyme. Fortunately, the docking energy provided 
by GOLD docking package forms appropriate correlations with the respective experiment with a 
value of 𝑅GOLD

ChemScore = 0.51 and 𝑅GOLD
ChemPLP = −0.60 (cf. Error! Reference source not found. and 

Figure 1). Absolutely, ChemPLP scoring function is much better than ChemScore one and the 
ligand having higher ChemPLP score will form a higher binding affinity to Hsp90. Therefore, GOLD 
docking package with ChemPLP scoring function was executed to predict the binding affinity of 
marine derivatives toward Hsp90. 

Table 1. The obtained values of the docking simulations. 
N0 PDB ID ∆𝑮𝐕𝐢𝐧𝐚 ∆𝑮𝐀𝐃𝟒

𝐆𝐀  ∆𝑮𝐀𝐃𝟒
𝐋𝐀  ∆𝑮𝐀𝐃𝟒

𝐒𝐀  ∆𝑮𝐆𝐎𝐋𝐃
𝐂𝐡𝐞𝐦𝐒𝐜𝐨𝐫𝐞 ChemPLP ∆𝑮𝐄𝐗𝐏a 

1 2QF6 -10.2 -8.8 -8.8 -8.8 -8.8 74.7 -8.91 

2 2QG0 -9.6 -8.7 -9.2 -10.4 -7.0 66.4 -7.85 

3 2QG2 -10.2 -9.9 -9.4 -10.0 -7.9 75.2 -7.41 

4 3K97 -8.3 -7.7 -7.9 -8.1 -7.3 68.3 -10.98 

5 3K99 -9.2 -8.2 -8.2 -8.2 -7.9 61.4 -9.91 

6 3R4M -7.8 -6.6 -6.6 -7.5 -5.1 49.7 -8.13 

7 3R4N -8.3 -7.1 -7.4 -7.6 -5.4 61.2 -9.45 

8 3R4O -10.1 -8.8 -8.7 -9.2 -6.0 73.2 -11.19 

9 3RLR -9.6 -8.2 -8.2 -8.2 -6.4 70.5 -10.33 

10 4NH7 -11.3 -10.0 -9.9 -10.6 -11.8 98.9 -11.53 

11 4NH8 -10.7 -9.7 -9.8 -10.0 -11.8 98.3 -11.70 

12 4O05 -12.5 -11.5 -11.4 -11.5 -11.4 96.4 -10.20 

13 4O07 -12.5 -11.9 -11.9 -12.0 -11.5 95.5 -10.13 

14 4O09 -11.6 -10.7 -10.7 -10.8 -11.0 93.8 -10.57 

15 4O0B -12.3 -11.5 -11.7 -11.7 -11.1 94.2 -11.39 

 

 

 

 

 

 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Association between the ChemPLP score and the experimental binding free energy 
∆𝐺EXP. 

FPL Simulations 
Although the docking simulation adopted well-appropriate results compared with the 

respected experimental data,52-54 the docking results are required to refine via a more accurate 
approach.39, 55, 56 Because the molecular docking approach normally uses many constraints to 
enhance the computing speed. The popular constraints of molecular docking simulations are 
known as lacking receptor dynamics, limiting number trial position of ligands, using implicit water 
model, etc. Normally, molecular dynamics and/or steered-molecular dynamics simulations were 
thus utilized to refine the docking outcomes.28, 57, 58 In this context, FPL simulations were 
employed to validate the docking results since is a very efficient free energy approach, which 
normally form appropriate results compared to the respective experiments with low computing 
resources.59 FPL were thus successfully applied on various targets before.27, 39, 59  

In this context, we first benchmarked the performance of FPL scheme over 15 available 
inhibitors-Hsp90 complex systems. The obtained results were shown in the Error! Reference 
source not found. and Table S2 of the ESI file. In particular, the mean of pulling work (𝑊) diffuses 
in the range from 58.3 to 208.5 kcal mol-1, whereas the mean of rupture force (𝐹Max) adopts in 
the range from 580.7 to 1566.1 pN. The graph of 𝑊 and 𝐹Max in time revolution was described in 
the electronic supplementary (ESI) file. The computed metrics are in good consistent with the 
respective experimental data,9-14 because Pearson correlation coefficient is of 𝑅W = −0.78 and 
𝑅F = −0.81 (Error! Reference source not found. and Figure 2). Although the difference between 
𝑅W and 𝑅F is quite small, the rupture force was selected to rank the ligand-binding affinity to 
Hsp90. Therefore, using linear regression, the predicted binding free energy ∆𝐺FPL

Pre can be 
calculated via the rupture force as follow :  

 

     ∆𝐺FPL
Pre = −0.3345 ∗

𝐹Max

100
− 6.523                   (1) 

 
The metric ∆𝐺FPL

Pre was investigated by the RMSE with linear regression, forming 𝑅𝑀𝑆𝐸F = 0.77 
kcal mol-1, which imply that FPL calculation can categorize ligands having similar binding affinity 
to Hsp90. Overall, FPL simulation is an efficient approach to predict the ligand-binding free energy 
of Hsp90. 

Table 2. The obtained values of the FPL calculations in comparison with the respective 
experiments. 

N0 Name 𝑭𝐌𝐚𝐱a 𝑾b ∆𝐆𝐄𝐗𝐏c 

1 2QF6 580.7 ± 90.9 67.7 ± 12.3 -8.91 

2 2QG0 764.3 ± 119.3 76.5 ± 12.9 -7.85 

3 2QG2 676.2 ± 78.5 71.1 ± 8.7 -7.41 



4 3K97 1065.5 ± 66.3 113.9 ± 10 -10.98 

5 3K99 831.4 ± 52.5 82.7 ± 4.5 -9.91 

6 3R4M 605.7 ± 81.7 58.3 ± 9.4 -8.13 

7 3R4N 651.0 ± 37.6 69.8 ± 4.4 -9.45 

8 3R4O 1140.8 ± 128.1 126.3 ± 17.2 -11.19 

9 3RLR 910.8 ± 88.1 98.8 ± 8.6 -10.33 

10 4NH7 1357.1 ± 146.7 167.6 ± 28 -11.53 

11 4NH8 1566.1 ± 124.2 208.5 ± 26.1 -11.70 

12 4O05 1313.2 ± 88.2 164.4 ± 20.3 -10.20 

13 4O07 1363.3 ± 131.0 175.7 ± 25.9 -10.13 

14 4O09 1348.6 ± 102.6 163.9 ± 18.6 -10.57 

15 4O0B 1318.9 ± 112.6 157.5 ± 20.8 -11.39 

aThe obtained value of the mean rupture force 𝐹Max and bthe recorded metric of the pulling work 

𝑊. cThe experimental binding free energy ∆𝐺EXP was estimated via the reported 𝐾i. The 

calculated error was the standard error of the average. The unit of force and energy is in pN and 

kcal mol-1, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Association between the average of the 𝐹Max and the experimental binding free 

energy ∆𝐺EXP. 

Marine fungi derivatives inhibit Hsp90 
As mentioned above, marine fungi derivatives are vital compounds that probably plays as 

promising candidates preventing the biological activity of Hsp90. The GOLD docking package 
using ChemPLP scoring function was thus utilized to estimate the binding affinity and binding 
pose of marine fungi derivatives were preliminarily calculated using this application. The obtained 
results were reported in Table 1 and Table S1 of the ESI file. In particular, the ChemPLP scores of 
these compounds vary in the range from 31.99 to 77.8. The compounds having ChemPLP scores 
higher than 70.0 would be proposed as potential inhibitors for preventing Hsp90 (cf. Table 1). 

Table 1. The obtained values of the molecular docking and FPL calculations. 
N0 Name ChemPLP 𝑭𝐌𝐚𝐱a 𝑾b ∆𝑮𝐅𝐏𝐋

𝐏𝐫𝐞 c 𝒌𝐢
𝐏𝐫𝐞 

1 48 86.3 627 ± 127.1 70.6 ± 9.2 -8.62 0.29 

2 25 77.8 555.3 ± 60.5 61.7 ± 8.2 -8.38 1.25 



3 40 76.9 711.7 ± 77.9 75.7 ± 13 -8.90 0.54 

4 23 72.6 827.6 ± 195 95.9 ± 22.3 -9.29 0.67 

5 46 71.7 669.9 ± 97.2 78.1 ± 9.8 -8.76 0.85 

6 52 70.6 753.3 ± 110 77.5 ± 10.5 -9.04 0.43 

aThe obtained value of the mean rupture force 𝐹Max and bthe recorded metric of the pulling work 

𝑊. cThe predicted binding free energy ∆𝐺FPL
Pre was estimated via formula (1). The calculated error 

was the standard error of the average. The unit of force, energy, and inhibition constant is in pN, 

kcal mol-1 and µM, respectively. 

The binding poses between six top-lead docking compounds and Hsp90 enzyme were analyzed 
using PyMOL 2.4.0 and Maestro 2020 package (cf. Figure 4). Interestingly, there is only ligand 23 
forming one hydrogen bond to Hsp90, whereas the other compounds just adopt hydrophobic 
contacts only. The observation implies that the hydrophobic interaction dominates over 
electrostatic interaction in the binding process of ligands to Hsp90. It is consistent with the 
correlation between experimental binding free energy with the metric ClogP, 𝑅 = −0.64, which 
meaning that more hydrophobic inhibitors cruel stronger binding ligands. 

Figure 4. Binding poses of top-lead marine fungi compounds to Hsp90, which was estimated 
using the GOLD docking program with ChemPLP scoring function.   

FPL calculations were then applied to refine the docking results of 63 marine fungi derivatives 
to Hsp90. The obtained results were shown in Table 1 and Table S3 of the ESI file. The average of 
𝐹Max falls in the range from 555.3 to 827.6 pN, whereas the mean 𝑊 falls in the range from 57 to 



94 kcal mol-1. Using linear regression via formula (1), the predicted binding free energy of six top-
lead marine compounds were obtained as mentioned in Table 1. The predicted metrics ∆𝐺FPL

Pre  
diffuse in the range from -8.38 to -9.23 kcal mol-1, which is equivalent to the predicted inhibition 
constant 𝑘i

Pre arranging from 0.29 to 1.25 µM. Interestingly, five ligands adopts a sub-micromolar 
inhibition constant implying that they probably a promising inhibitors for blocking the biological 
activity of Hsp90. Additional evaluation using in vitro and/or in vivo studies should be executed 
to validate the obtained results. 
CPU Time Consumption 

Each Hsp90 + inhibitor system was mimicked over 8 independent FPL calculations as well as 
the performed calculations of the different targets.39, 56 In particular, different FPL calculations 
have the same starting structure and one FPL simulation involves 0.1 ns of NVT, 0.1 ns of NPT, 
and 0.5 ns of SMD simulations. 5.6 ns of MD simulations was thus carried out to predict the 
binding free energy of a ligand to Hsp90 target. It should be denoted that a dual Xeon E5-2683 
V3 server is able to perform ca. 90 ns of MD simulation each day for Hsp90 + inhibitor complex. 
Therefore, FPL approach can be used to estimate the binding free energy of a ligand to Hsp90 
within 1.5 hours. It is quite low computing resource requirements allowing us to be able to 
accurately and rapidly evaluate the binding free energy of several ligands to Hsp90. 

Conclusions 

In this context, we have established that a amalgamation of GOLD docking and FPL simulations 
can accurately and rapidly calculate the binding free energy of a ligand to Hsp90. The ChemPLP 
scoring function is better than ChemScore one in docking a molecule to Hsp90 since 𝑅GOLD

ChemScore =
0.51 is significantly smaller than 𝑅GOLD

ChemPLP = −0.60. Besides that, although, we also tried AD4 
and Vina docking to complete the task force, the poor correlation to the respective experiments 
was observed. Moreover, FPL calculation is an efficient protocol to refine the docking result since 
forming a good correlation coefficient 𝑅F = −0.81 and 𝑅𝑀𝑆𝐸F = 0.77 kcal mol-1 with a low 
computing resource requirement. Furthermore, based on the efficient of the approaches, a short 
list comprising five compounds from marine fungi derivative including 23, 40, 46, 48, and 52 were 
indicated that they are promising inhibitors for preventing the biological activity of Hsp90 
because they adopt a sub-micromolar inhibition constant. Further evaluation using in vitro and/or 
in vivo studies should be executed to validate the obtained results. 
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