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ABSTRACT: A simple electrochemically mediated 
method for the conversion of alkyl carboxylic acids to 
their borylated congeners is presented. This protocol 
features an undivided cell setup with inexpensive carbon-
based electrodes and exhibits a broad substrate scope and 
scalability in both flow and batch reactors. The use of this 
method in challenging contexts is exemplified with a 
modular formal synthesis of jawsamycin, a natural 
product harboring five cyclopropane rings. 

Boronic acids are amongst the most malleable functional 
groups in organic chemistry as they can be converted into 
almost any other functionality.1 Aside from these versatile 
interconversions, their use in the pharmaceutical industry 
is 

  
Figure 1. (A) Prior approaches to access alkyl boronic 
esters from activated acids. (B) Inspiration for initiating 

single electron transfer events electrochemically to 
achieve borylation. (C) Summary of this work. 

gaining traction, resulting in approved drugs such as 
Velcade, Ninlaro, and Vabomere.2 It has been shown that 
boronic acids can be rapidly installed from simple alkyl 
carboxylic acids through the intermediacy of redox-active 
esters (RAEs) (Figure 1A).3 Our laboratory has shown that 
both Ni3a and Cu3b can facilitate this reaction. Conversely, 
Li and Aggarwal both demonstrated photochemical 
variations of the same transformation.3c,d While these 
state-of-the-art approaches provide complementary 
access to alkyl boronic acids, each one poses certain 
challenges. For example, the requirement of excess boron 
source and pyrophoric MeLi under Ni catalysis is not 
ideal. Although more cost-effective and operationally 
simple, Cu-catalyzed borylation conditions can be 
challenging on scale due to the heterogeneity resulting 
from the large excess of LiOH•H2O required. In addition 
to its limited scope, Li’s protocol requires 4 equivalence of 
B2pin2 and an expensive Ir photocatalyst. The simplicity 
of Aggarwal’s approach is appealing in this regard and 
represents an important precedent for the current study.  

At the heart of each method described above, the 
underlying mechanism relies on a single electron transfer 
(SET) event to promote decarboxylation and form an alkyl 
radical species. In parallel, the related borylation of aryl 
halides via a highly reactive aryl radical can also be 
promoted by SET. While numerous methods have 
demonstrated that light can trigger this mechanism 
(Figure 1B),4 simple electrochemical cathodic reduction 
can elicit the same outcome.5 It was postulated that 
similar electrochemically-driven reactivity could be 
translated to alkyl RAEs. This disclosure reports a mild, 
scalable, and operationally simple electrochemical 
decarboxylative borylation (Figure 1C) not reliant on 
transition metals or stoichiometric reductants. In 
addition to mechanistic studies of this interesting 
transformation, applications to a variety of alkyl RAEs, 
comparison to known decarboxylative borylation 
methods, and a formal synthesis of the polycyclopropane 
natural product jawsamycin ((–)-FR-900848) are 
presented.  

Initial experiments with RAE 1 were promising, 
delivering ca. 20% conversion to the borylated product. 
Extensive optimization of reaction conditions ultimately 
delivered 74% (64% isolated) yield of product 2 (Figure 
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2B). While the breadth of this experimentation can be 
found in the Supporting Information, outcomes from the 
screening of electron equivalents, solvent, electrolyte, 
current, electrode materials, and additives are showcased 
in Figure 2A. Experimentally, 1.8 F/mol of RAE were 
needed to reach peak yields of 2; however, prolonged 
electrolysis resulted in erosion in yield due to observed 
product consumption (see SI).  

 

 
Figure 2. (A) Graphical overview of electrochemical 
decarboxylative borylation optimization. Modifications 
listed as a function of yield. (B) Optimized reaction 
conditions. 

Solvent had the most profound influence on the reaction, 
as a balance of conductivity, Lewis-basicity, and polarity 
was needed to achieve high yields. In particular, the 
addition of DMF (e = 37) was vital, as it can act as a Lewis-
base with B2cat26 and undergo anodic oxidation7 making 
the overall reaction redox neutral, obviating the need for 
a sacrificial anode. A combination of two inexpensive 
graphite electrodes gave yields close to those obtained 
using a sacrificial Zn anode.   

The choice of electrolyte also impacted the reaction, with 
LiBr and LiBF4 facilitating the best outcomes. Optimum 
results were observed when the reaction remained strictly 
anhydrous; therefore, LiBr was chosen as it is inexpensive 
and easily dried immediately prior to the reaction setup. 
On the 0.1 mmol scale used for optimization, a current >15 
mA was required for high yields, with the added benefit 
that higher currents significantly shorten the reaction 
time. An optimum current density of 0.241 mA/mm2 was 
therefore identified, and holding this value constant was 
essential to achieving consistent yields when changing 

scale. The presence of any water during 
transesterification caused large inconsistencies in the 
yields, leading to a ~20% loss in product. Therefore, 
pinacol was thoroughly azeotroped with toluene prior to 
use. Finally, a slight excess of B2cat2 (1.5 equivalents) was 
found to be necessary to achieve high yields.   

With optimized conditions in hand, the scope of this 
transformation was explored on a wide range of acids 
(Figure 3A), often in yields equivalent to or higher than 
prior methods (comparative yields for Ni-,3a Cu-,3b hn-,3c,e 

and PET3d-based protocols are shown where reported). 
This method proved highly chemoselective towards 
borylation of RAEs, demonstrating a broad functional 
group tolerance including both aryl and alkyl halides (5–
7, 11, 16, 25), ketones (31, 34), esters (8, 10, 27–29), 
alkenes (14, 30, 32), alkynes (12), protected amines (2, 
15, 17, 18), and amino acids (10). RAEs derived from 
natural products and drug molecules smoothly 
underwent borylation, further highlighting the mildness 
of this method. Finally, bicyclic motifs commonly 
leveraged by medicinal chemists as phenyl bioisosteres8 
were smoothly borylated using the developed conditions 
(27–29). While this protocol proved successful on a range 
of substrates, there remained some limitations. In 
particular, conformationally flexible tertiary, benzylic, 
and a-heteroatom RAEs were nonproductive under these 
reaction conditions (see SI).  

The protocol is highly scalable in an undivided cell, and 
on smaller scales can be run using a commercial 
potentiostat. These conditions were easily translated to 
larger scales in batch using Erlenmeyer flasks, homemade 
electrodes, and a large DC power supply (vide infra, 
Scheme 1C). Furthermore, the reaction was conducted on 
100 g scale in a flow system, affording comparable yields 
to those obtained in batch (Figure 3B). 

Following the exploration of this method’s utility, 
preliminary studies were conducted to gain insight into 
the reaction mechanism. Cyclic voltammograms (CVs) 
were performed to ascertain the identity of the species 
undergoing cathodic reduction (Figure 4A). Interestingly, 
B2cat2 and the RAE independently exhibit reduction 
potentials in DMF at –2.98 V and –1.57 V respectively 
(relative to Ag/AgCl). However, when a 3:2 ratio of B2cat2 
and RAE are premixed in DMF, a single reduction is 
observed at –1.96 V. This shift provides evidence for the 
existence of complex 37, initially proposed to be the active 
species under similar photochemical conditions.3c 

Temporal measurements of reaction progress (Figure 4B) 
reveal that the reaction exhibits zero-order kinetics in 
[B2cat2] and in [RAE] at higher concentrations.9 The 
slower rate at lower [RAE] may to be due to its 
consumption in unproductive reactions (N–O cleavage 
leading to acid and decarboxylation/protodeborylation). 
Zero-order kinetics in both substrates suggests that the 
RAE rapidly complexes with B2cat2 in solution to form 
species 37 prior to electron transfer, with the subsequent 
electron transfer at the cathode being rate-determining 
(first-order).10 The observation of positive rate 
dependence on current, a feature that we have observed 
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in previous electrochemical reactions,11 supports the 
proposal that the transfer of electrons at the cathode is 
rate limiting. 

The presence of an intermediate alkyl radical was inferred 
by subjecting RAE 38 to the electrochemical borylation 
conditions (Figure 4C). This resulted in an 8:1 ratio of 

linear (39) to cyclic (40) borylated products, arising from 
5-exo trig cyclization of the ensuing radical (rate constant 
= 1.0 × 105 s−1).12 Additionally, when RAE 41 (Figure 4C) 
underwent electrochemical borylation, only the 
homoallylic boronic ester 14 was isolated (rate constant = 
1.3 × 108 s−1).12 

 
Figure 3. Scope and scale up of the electrochemical decarboxylative borylation. See Supporting Information for experimental 
procedures. Yields refer to isolated yields of products from corresponding RAE. *Refers to NMR yield of products that were 
directly oxidized to corresponding alcohol prior to isolation. 
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Taken together, this evidence supports the mechanistic 
picture shown in Figure 4D. To begin, DMF complexes 
with one equivalent of B2cat2 to form 42, which can 
coordinate with an RAE to form the ternary complex 37. 
This species then undergoes single-electron reduction in 
the rate-limiting step at the cathode, yielding 43. Rapid 
fragmentation of 43 results in the liberation of 1 
equivalent of CO2, 44, and alkyl radical 45. This radical 

can then react with another equivalent of 42, yielding the 
desired alkyl boronic ester 46. The liberated boron-
centered radical 47 is most likely quenched, but in a 
minor pathway propagates a radical chain reaction by 
attacking a second RAE leading to 48, whose 
fragmentation would complete the cycle (see SI for further 
experimental investigation). This mechanistic picture 
closely mirrors Aggarwal’s photochemical variant.3c 

 
Figure 4. (A–C) Experimental investigation of mechanism. (D) Proposed mechanistic picture.

The kinetic results suggest a rationale for the enhanced 
efficiency of this electrochemical pathway with certain 
substrates. Generation of the free radical 45 from 
decarboxylation of 43 serves as entry into the cycle shown 
at the bottom of Figure 4D, which can theoretically 
propagate by continuous regeneration of 45. However, in 
this scenario, the reaction at the cathode serves only to 
initiate this stand-alone cycle. For this scenario to hold, 
an induction period should be observed, as the slow step 

occurs off-cycle at the cathode, and it becomes difficult to 
rationalize the positive order dependence on current. 
More likely is that the dominant route to product 46 lies 
in the continual generation of radical 45 via cathodic 
reduction and the radical-chain cycle represents only a 
minor route. 

As a demonstration of the utility of this method, 
electrochemical borylation proved critical in accessing 
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large quantities of key intermediates for a unique modular 
strategy en route to the polycyclopropane natural product 
jawsamycin ((–)-FR-900848, 57, Scheme 1A).13 All 
previous syntheses of this structurally fascinating natural 
product have commenced from olefins and relied on 
asymmetric cyclopropanations to build the 
polycyclopropane backbone.14 In contrast, this strategy 
represents a complimentary approach, hinging on the 
systematic coupling of chiral cyclopropane modules. This 
alternative retrosynthetic logic obviates the need for any 
asymmetric cyclopropanation step, as commercial 
building blocks such as 49 are easily desymmetrized to 
the corresponding hemiester, giving two differentiated 
synthetic handles which can be readily diversified through 
decarboxylative cross-coupling reactions.15  

At the outset, borylation of the chiral RAE 50 proved 
incredibly challenging using prior methods (Scheme 1B). 

Almost no product could be detected under Ni catalysis, 
and only modest yields were observed when employing 
either Cu or photochemical conditions. Even with the 
original optimized electrochemical protocol, only ca. 13% 
of the desired alkyl boronic ester was formed, with the 
mass balance corresponding to either hydrolyzed acid or 
decarboxylated byproduct. However, by utilizing 
electrodes with much higher surface areas (i.e. reticulated 
vitreous carbon, RVC) and activating the acid with the 
more electron deficient tetrachloro N-
hydroxyphthalimide derivative, workable yields of the 
desired product 51 were obtained (43% by NMR, 35% 
isolated). More importantly, this reaction was easily 
scaled (Scheme 1C), and up to 40 mmols of RAE could be 
processed in a single pass using a homemade batch 
reactor, with isolated yields up to 40% of the desired 
product 51. 

 

 
Scheme 1. (A) Formal synthesis of jawsamycin. (B) Examination of decarboxylative borylation conditions. (C) Scale up 
of borylation. See Supporting Information for reagents and conditions.
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mixture to elevated temperatures, only protodeborylated 
product was observed. After extensive optimization (see 
SI), rigorous exclusion of water using a Cs2CO3/dioxane 
system, as well as utilizing the phosphine ligand P(o-Tol)3 
began to result in product formation. The addition of 
AgOAc proved crucial here, ultimately corresponding to 
54% of the desired tetramer 54. This dramatic 
improvement may arise from Ag serving dual roles by 
aiding the initial transmetalation of cyclopropyl boronic 
ester with Pd17 as well as functioning as an external 
oxidant.18 

Mono saponification of the tetramer 54 and activation 
with TCNHPI set the stage for a final decarboxylative 
alkenylation with cyclopropyl vinyl-Bpin 55 (prepared in 
3 steps, see SI). Using a slight modification to previously 
reported Ni-catalyzed Suzuki couplings of RAEs,15 45% of 

the desired vinylated product was obtained, which 
contained all five of the cyclopropane fragments of 
jawsamycin in place. A final reduction of the remaining 
ester completed the formal synthesis, intercepting the 
same strategic intermediate 56 used in both prior 
syntheses by Barrett and Falck.14a,b  

To summarize, a practical electrochemical 
decarboxylative borylation of alkyl redox-active esters has 
been developed.  The scope and mechanism of this 
transformation are similar to the photochemical variant 
and can be conveniently scaled up in batch or flow (100 
g). Finally, this newly developed method proved essential 
for the preparation of a key cyclopropane intermediate en 
route to the polycyclopropanated natural product 
jawsamycin. 
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