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Abstract

We present a systematic analysis of the accuracy of a series of SCANα functionals for

water, with varying fractions (α) of exact exchange, which are constructed through the adia-

batic connection formula. Our results indicate that that all SCANα functionals exhibit sub-

stantial errors in the representation of the water 2-body energies. Importantly, the inclusion

of exact exchange is found to have opposite effects on the ability of the SCANα functionals

to describe the interaction energies of water clusters with 2-dimensional and 3-dimensional

hydrogen-bonding arrangements. These errors are found to directly affect the ability of the

SCANα functionals to describe the structure of liquid water at ambient conditions, which is

investigated using explicit many-body models (MB-SCANα) derived from the corresponding

SCANα data. In particular, it is found that all MB-SCANα models predict a more compact
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first hydration shell, which results in a denser liquid with a more ice-like structure. These ap-

parent opposite trends can be explained by the inability of all SCANα functionals to provide

a balanced description of the water 2B and 3B energies at the fundamental level. The analyses

presented in this study provide new insights that can guide future developments of improved

exchange-correlation functionals for water.

1 Introduction

Density functional theory (DFT) approaches have been used to simulate molecular systems rang-

ing from small molecules to liquids and solids when more expensive, post-Hartree-Fock methods

become prohibitively inefficient.1–4 Originally built upon the Hohenberg and Kohn theorems,5

DFT was later formulated in its modern version by Kohn and Sham who introduced the exchange-

correlation energy functional in the expression of the total energy functional, thus reducing the

original many-body problem of interacting electrons to solving for the ground-state energy and

density of a fictitious system of non-interacting electrons.6 Although in principle exact, the solu-

tion of the Kohn-Sham equations becomes approximate in practice because the exact exchange-

correlation energy functional is unknown.7

The earliest approximation to the exact density functional, known as the local density approx-

imation (LDA), was inspired by work by Slater who, a decade before, had proposed an approx-

imation to the exact exchange term in Hartree-Fock theory based on a functional of the electron

density.8 Formally, the LDA is derived from the corresponding terms of the homogeneous electron

gas, and assumes that the electron density is purely “local". This assumption of locality implies

that the LDA approximation holds only for systems with very slowly varying densities as, at every

point, the density is assumed to be uniform.6 Besides its tendency to overestimate atomization

energies,9 the LDA also tends to overestimate the strength of hydrogen bonds in aqueous systems,

predicting shorter oxygen-oxygen distances in small water clusters.10,11 First order corrections

to the LDA, initially proposed in 1969 by Herman, Van Dyke, and Ortenburger, were based on

an analytic approach that eventually became the modern-day generalized gradient approximation
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(GGA).12

Modern GGA functionals, such as the PBE functional,13 perform relatively better than the

LDA functional for aqueous systems, but still result in broad disagreement with various experi-

mental data, including the over-structuring of liquid water at ambient conditions.14,15 These GGA

functionals were further extended to incorporate second order corrections to the LDA using the

Laplacian of the electron density, leading to meta-GGA functionals.16,17 By the late 90s, several

meta-GGA functionals had been developed,16,18–20 which eventually evolved into more recent im-

plementations, such as B97M-V21 and SCAN22 functionals. Both SCAN, which satisfies all 17

known constraints on the exact meta-GGA functional, and B97M-V are able to partially overcome

the over-structuring of liquid water and provide better agreement to experiment for various prop-

erties,23–26 albeit often the comparisons with the experimental data are made with results obtained

from simulations carried out at higher temperature.23,25

In an attempt to improve the accuracy of DFT models, hybrid exchange-correlation functionals

were developed starting from the the adiabatic connection formula,,27

Exc[ρ] =
∫ 1

0
Exc,λ dλ (1)

In practical applications, the hybrid exchange-correlation functionals approximate the integral in

eq 1 as a fractional sum of the non-interacting limit, which is described by the exact exchange,

and the fully interacting limit, which is described by the exchange-correlation energy calculate

with the a GGA or meta-GGA density functional (DFA).27 The original expression for Exc[ρ] of

hybrid functionals was later refined into a 3-parameter fractional sum, with separate coefficients

for the exact exchange, and the exchange and correlation terms represented by GGA or meta-

GGA functionals.28 Following the rationale introduced by Perdew and Ernzerhof in 1996,29 PBE0

and later on, SCAN0 were proposed as hybrid versions of the corresponding base functionals

(i.e., PBE and SCAN, respectively) without using any fitted parameters and adopting 25% exact

exchange.30,31 Bundled with SCAN0, the double-hybrid SCAN0-2 functional was also shown to
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provide an accurate description of various test systems.31

Recently, the SCAN functional has been gaining popularity as a functional suitable for studies

of liquid water. Yao and Kanai studied the temperature dependence of nuclear quantum effects in

liquid water.26 Sharkas et. al. used small water clusters to show that the self-interaction error in the

SCAN functional primarily affects the two-body term of the many-body expansion (MBE) of the

energy.32 Other studies used SCAN to analyze the equilibrium of high and low density liquid water

at negative pressure.33,34 More recently, Xu et. al. studied the isotope effects in liquid H2O and

D2O using a deep neural network potential (NNP) trained on the SCAN functional.35 A similar

NNP was used to investigate the properties of supercooled water,36 as well as the equilibrium

between liquid water and ice Ih and Ic,37 and the ice Ih/XI transition.38

Building upon these previous studies, particularly the many-body analysis reported in ref 32,

we provide here an assessment of the accuracy of the SCAN functional in predicting the properties

of water. Our analysis uses the adiabatic connection formula to systematically investigate the

effects of the exact exchange on the individual terms of the MBE as well as on the structure of

liquid water at ambient conditions and the description of hydrogen bonding in the water dimer.

We demonstrate that by modulating the fraction of exact exchange, small, and even negligible

errors in the representation of the low-order terms of the MBE can lead to substantial changes

in the structure of liquid water. Interestingly, our analysis indicates that the inclusion of exact

exchange has opposite effects on the description of different hydrogen-bonding motifs, improving

the accuracy of SCAN for 3-dimensional structures, while deteriorating its performance for 2-

dimensional arrangements of water molecules.

2 Theory and Computational Details

All electronic structure calculations were performed with the Q-Chem software package39 using

the SCAN functional22 with the aug-cc-pVQZ basis set.40,41 The amount of exact exchange was

specified using the “general” exchange functional section in Q-Chem. All molecular dynamics
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(MD) simulations were carried out in the isobaric-isothermal (NPT) ensemble for 1 ns with a 0.2

fs timestep using in-house software based on the DL_POLY2 simulation package,42 which was

modified to include the MB-DFT models.43 The temperature was controlled via Nosé–Hoover

chains (NHC) of four thermostats coupled to each degree of freedom.44 The NPT ensemble was

generated according to the algorithm described in ref. 45. A radial atom– atom cutoff distance

of 9.0 Å was applied to the nonbonded interactions and the Ewald sum was used to treat the

long-range electrostatic interactions.46 The reference structures for the water hexamers, with their

associated many-body interaction energies calculated at the CCSD(T)/CCSD(T)-F12 level of the-

ory within the SAMBA scheme47 are taken from Ref. 48.

2.1 Hybrid Density Functionals

Hybrid density functionals are derived from the adiabatic connection formula:49–53

Exc[ρ] =
∫ 1

0
Exc,λ dλ (2)

In eq 2, the electron-electron coupling goes through a continuum of partially interacting states,

where the integration variable, λ , varies from 0 to 1, changing the system from a non-interacting

Kohn-Sham reference system to a fully interacting system, with each intermediate state having the

same ground-state electron density. The integrand in eq 2 is formally expressed as the exchange-

correlation potential energy at a given λ ,

Exc,λ = 〈Ψλ |Vee|Ψλ 〉−
e2

2

∫ ∫
ρ(r)ρ(r′)
|r− r′|

dr dr′ (3)

At the non-interacting limit (λ = 0), the integrand becomes the exact exchange energy of the

Kohn-Sham orbitals, while at the fully interacting limit the integrand is calculated using a density

functional approximation (DFA). As discussed in the introduction, the integral in 2 is approximated

by a linear interpolation of the λ = 0 and λ = 1 states, and becomes a fractional sum of the two.27
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The most general formulation of this sum is given by

Exc = αEexact
x +(1−α)EDFA

x +EDFA
c (4)

where Eexact
xc is the exact exchange, and EDFA

x and EDFA
c are the DFA exchange and correlation

terms. Eq. 4 can be rewritten as29

Exc =
1
n

Eexact
x +

(
1− 1

n

)
EDFA

x +EDFA
c (5)

for an integer n corresponding to the lowest order of Moller-Plesset perturbation theory needed

to reproduce the atomization energies. Given the overall good performance of 4th order Moller-

Plesset perturbation theory (MP4), PBE0 and SCAN0 use n = 4 (corresponding to α=0.25).30,31

In this work, we refer to the hybrid SCAN functionals with varying fractions of exact exchange,

α , as SCANα .

2.2 Explicit Many-Body Models: MB-pol and MB-DFT

MB-pol54–56 and MB-DFT43 are explicit many-body models derived from the many-body expan-

sion (MBE) of the energy, which represents the energy of a system of N “bodies" (i.e., distinct

atoms or molecules) as the sum of all the individual n-body contributions, with n≤N.57 The MBE

is formally expressed as

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (6)

where ε1B represents the distortion energy of an individual monomer from its equilibrium geome-

try, and each εnB with n > 1 represents the n-body energy which is defined recursively as

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1). (7)
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The MBE converges quickly for atoms and molecules with localized electron densities and suffi-

ciently large band gaps, such as water47 and other molecular fluids.58,59

The MB-pol and MB-DFT models include explicit representations for the first three terms of

the MBE, implicitly accounting for all higher order, n > 3, body terms via classical polarization,

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (8)

The 1B term in both MB-pol and MB-DFT models is described by the Partridge-Schwenke po-

tential energy surface calculated at the configuration interaction level of theory and subsequently

refined to quantitatively reproduce the experimental rovibrational transitions of a water molecule.60

The 2-body term consists of three contributions:

ε2B = Esr
2B +Eelec +Edisp (9)

where Esr
2B is a 4th-degree permutationally invariant polynomial (PIP)61 representing the short-

range interactions within a water dimer. Eelec is described by a Coulomb potential between ge-

ometry dependent point charges that reproduce the ab initio dipole moment surface of a water

molecule.60 Finally, the 2-body dispersion interaction is expressed as

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(10)

where i and j are indices for two atoms on two separate water molecules, f (δi j) is the Tang-

Toennies damping function with a fitted parameter δi j,62 and C6,i j are the dispersion coefficients

calculated from the asymptotic reference energies of the water dimer as originally introduced in

the CC-pol model.63 The explicit 3-body term,

ε3B = Esr
3B (11)
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describes short-range 3-body interactions and is represented by a 4th-degree PIP.61 In MB-pol, the

2B and 3B PIPs are fitted on top of an implicit many-body polarizable potential (Epol in Eq. 8) in

order to reproduce 2B and 3B energies calculated at the CCSD(T) level of theory in the complete

basis set (CBS) limit.54,55 Similarly, the explicit ε2B and ε3B terms of the MB-DFT models are

fitted to 2B and 3B energies calculated with a given DFA, using the same procedure described in

ref 43.

In this study, we introduce a series of MB-DFT models for water, denoted as MB-SCANα ,

fitted to 2B and 3B energies calculated with the SCANα functionals, including different fractions

(α) of exact exchange. The accuracy of each MB-SCANα model is assessed through a systematic

analysis of the MBE, the structure of liquid water at ambient conditions, and the potential energy

profile along the hydrogen bonding coordinate in the water dimer.

3 Results and Discussion

3.1 Many-Body Analysis of the Water Hexamer

As a first demonstration of the role played by exact exchange in determining the strength of the

interactions between water molecules, figure 2 plots the errors relative to the CCSD(T)/CBS ref-

erence values which are associated with the n-body (with n = 2−6) energies calculated using the

SCANα functionals for the first eight low-energy isomers of the water hexamer displayed in figure

1. Figure 3 shows the corresponding total interaction energies (panel a) and the relative interaction

energies (panel b) as a function of α . The relative interaction energies are calculated by minimiz-

ing the total signed error with respect to the corresponding CCSD(T)/CBS reference values. By

removing energy contributions due to monomer distortions, the analysis of the interaction energies

allows for the direct comparison of the molecular interactions specific to each fraction of exact

exchange. As discussed in section 2, the interaction energies were calculated at the SCANα/aug-

cc-pVQZ level of theory with varying fractions of exact exchange corresponding to α=0.00 (pure

SCAN functional), 0.05, 0.10, 0.15, 0.20, and 0.25 (hybrid SCAN0 functional).
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Isomer 1 Isomer 2 Isomer 3 Isomer 4

Isomer 5 Isomer 6 Isomer 7 Isomer 8

Prism Cage Book 1 Book 2

Bag Cyclic Chair Cyclic Boat 1 Cyclic Boat 2

Figure 1: Structures of the first eight low-energy isomers of the water hexamer, (H2O)6.

In the analysis of the MBE for the prism isomer shown figure 2a, the 2B term calculated with

α=0.00 exhibits an error of -5.74 kcal/mol. The error progressively decreases with increasing α ,

reaching a value of -4.96 kcal/mol at α=0.25. The 2B term for the cage isomer displays errors

ranging from -5.69 kcal/mol for SCANα with α=0.00 to -4.98 kcal/mol for SCANα with α=0.25.

Both book isomers display similar 2B errors of -4.83 and -4.90 kcal/mol for α=0.00, and reduced

errors of -4.65 and -4.66 kcal/mol when α=0.25. Interestingly, the lowest errors (-4.63 and -

4.65 kcal/mol for book-1 and book-2, respectively) are obtained when α=0.20. The bag isomer

displays a 2B error of -4.95 kcal/mol when α=0.00, with an error of -4.63 kcal/mol when α=0.25.

The cyclic isomers display opposite behavior as a function of α . Specifically, the 2B error in the

cyclic chair is the smallest (-3.95 kcal/mol) at α=0.00 and the largest (-4.31 kcal/mol) at α=0.25.

Similarly, the two cyclic boat isomers exhibit errors of -3.92 and -3.87 kcal/mol at α=0.00, and

-4.22 and -4.19 kcal/mol at α=0.25. This general trend indicates that the accuracy of the 2B

term in the SCANα functionals increases with α in isomers that display 3-dimensional hydrogen-

bonding arrangements (i.e., the prism and cage isomers). The opposite trend is observed for ring-

like structures (i.e., the cyclic isomers) for which the addition of any fraction of exact exchange

deteriorates the accuracy of the 2B term relative to the pure SCAN functional.
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Figure 2: Errors in the individual terms of the MBE for the first eight low-energy isomers of the
water hexamer calculated with the SCANα functionals relative to the CCSD(T)/CBS reference
values of ref 48. The alternating grey and white shaded sectors separate each individual nB term
of the MBE, with the corresponding errors associated with each SCANα functional shown as bars
with varying shades of blue.

All SCANα functionals provide significantly smaller errors for all higher-body terms, which

systematically decrease in magnitude as α increases. In particular, both the prism and cage iso-

mers, which are characterized by fully 3-dimensional hydrogen-bonded structures, display max-

imum errors of -0.08 and -0.12 kcal/mol for the 3B term, and a similarly small maximum error

of -0.04 kcal/mol for the 4B term at α=0.00. Relatively larger 3B and 4B errors (on the order of

-0.5 kcal/mol and 0.15 kcal/mol, respectively) are found for the book-1, book-2, and bag isomers

described by the pure SCAN functional, with errors decreasing as α increases. All cyclic iso-

mers exhibit 3B and 4B errors of approximately -0.8 kcal/mol and -0.25 kcal/mol when α = 0.00,

with errors decreasing as the fraction of exact exchange increases from α=0.00 to α=0.25. For all

isomers, independently of α , the 5B and 6B errors are always small, ranging from 10−4 to 10−2

kcal/mol.

This analysis highlights the limitations of the pure SCAN functional (α=0.00) in providing a

balanced representation of 2B and higher-body energies, with the former being largely overesti-

mated. Importantly, this “asymmetry" is not corrected by including any fraction of exact exchange
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Figure 3: Total (panel a) and relative (panel b) interaction energies of the first eight low-energy
isomers of the water hexamer calculated with the SCANα functionals. The CCSD(T)/CBS refer-
ence values are taken from ref 48. The relative interaction energies for each SCANα functional
are aligned to the CCSD(T)/CBS reference values by minimizing the total signed error.

(up to α = 0.25). In particular, while it is found to improve the description of 2B energies in

the hexamer isomers with 3-dimensional hydrogen-bonding arrangements, the inclusion of any

fraction of exact exchange deteriorates (approximately by the same amount) the description of 2B

interactions in cyclic structures.

The errors in the individual terms of the MBE directly translate into the ability of the SCANα

in predicting the relative stability of the hexamer isomers. With respect to the total interaction

energies, figure 3a shows the total interaction energy for all isomers as a function of α . Starting

from the prism isomer, the 3-dimensional isomers display substantially distinct interaction energies

which become less negative with increasing α . Moving from the cage to the book and bag isomers,

the interaction energies become progressively more clustered, and closer to the values obtained

with α=0.25. Once the 2-dimensional isomers (the cyclic chair and boat isomers) are reached, all

SCANα functionals effectively predict the same interaction energy obtained with α=0.25.

As shown in figure 3b, the SCANα functional with α=0.25 predict relative interaction energies

that closely follow the CCSD(T)/CBS reference values, while all other values of α display progres-
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sively divergent curves as α decreases. Importantly, the SCANα functionals with al pha< 0.25 are

found to progressively overbind the low-energy isomers and underbind the high-energy isomers.

This lead the pure SCAN functional (α = 0.00) to predict an energy difference of ∼4 kcal/mol

between the prism and cyclic-boat-2 isomers, which is ∼1 kcal/mol larger than the corresponding

CCSD(T)/CBS value.

The similarity of the total interaction energies between all values of α found in figure 3a for

the three cyclic isomers may be explained by the opposing trend displayed by the corresponding

2B and higher-body terms. For these isomers, figure 2 shows that the lower error in the 2B term

found for small values of α is countered by higher errors in the 3B and 4B terms, and vice versa

as α increases. Finally, it should be noted that the 2B terms for the isomers with 3-dimensional

structures show the largest variance in the associated errors, which correspondingly elicits the

relatively wider distribution of interaction energies seen in figure 3b. These results suggest that the

fraction of exact exchange included in the SCANα functionals acts primarily on the 2B term of

the MBE, leaving all other (higher-order) terms less dependent on α .

3.2 Liquid Water

While the previous section examines the effects of modulating the fraction of exact exchange

within the SCAN functional on the energetics of small water clusters, this section seeks to connect

the differences amongst the SCANα functionals to the ability of these functionals to describe the

structure of liquid water at ambient conditions. For this purpose, MD simulations were carried out

at 298.15 K and 1 atm in the isothermal-isobaric (NPT) ensemble with the MB-SCANα models

fitted to the corresponding SCANα 2B and 3B energies. Based on the analysis in the previous

section, as the errors in the SCANα 4B and higher terms are effectively equivalent to those asso-

ciated with MB-pol,48 the MB-SCANα models provide an accurate representation of the SCANα

functionals, despite only the corresponding 2B and 3B energies are explicitly used in their pa-

rameterization (see Figure S1 in the Supporting Information). Following ref 43, three distinct

MB-SCANα models are constructed for each SCANα functional by progressively replacing the

12



MB-pol 2B and 3B terms with the SCANα counterparts. The MB-SCANα models are thus labeled

as (2B+3B)-MB-SCANα , (2B)-MB-SCANα , and (3B)-MB-SCANα to indicate that both the 2B

and 3B, only the 2B, and only the 3B terms are represented by fits to the corresponding SCANα

2B and 3B energies, with all other terms being represented as in MB-pol. As demonstrated in ref

43, the MB-DFT models are able to reproduce, at a fraction of the associated computational cost,

the results obtained from the corresponding ab initio MD simulations.

Figure 4 displays the oxygen-oxygen (O-O) radial distribution functions (RDFs) calculated

with the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα (panel b), and (3B)-MB-SCANα

(panel c) models. All (2B+3B)-MB-SCANα models (panel a) predict O-O RDFs that are sys-

tematically shifted (by ∼0.3Å) to the left of the corresponding experimental curve,64,65 indicating

overly attractive interactions between the water molecules. This is a direct consequence of all

SCANα functionals overestimating, especially at the 2B level, the strength of the low-order many-

body interactions between water molecules as shown in figures 2 and 3. Besides this common

feature, significant variation exists in the ability of the different (2B+3B)-MB-SCANα models to

reproduce the experimental O-O RDF. In particular, the (2B+3B)-MB-SCANα model with α=0.00

predicts a significantly less structured second solvation shell. As α increases, the (2B+3B)-MB-

SCANα models predict an increasingly more structured liquid. In this context, a value of α=0.15

appears to be the “optimal" compromise, leading to an O-O RDF that is in closer agreement with

2 3 4 5 6 7
rOO (A)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g O
O
(r)

a) 2B+3B =0.00
=0.05
=0.10
=0.15
=0.20
=0.25

MB-pol
Exp

2 3 4 5 6 7
rOO (A)

b) 2B

2 3 4 5 6 7
rOO (A)

c) 3B

Figure 4: O-O RDFs calculated from NPT MD simulations carried out at 298 K and 1 atm using
the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα (panel b), and (3B)-MB-SCANα (panel
c) models. The experimental RDFs at 295 K are taken from refs 64 and 65.
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the experimental curve, although the peaks of the solvation shells are consistently higher and the

“valleys" between consecutive shells are consistently deeper than in the experimental RDF.

The general trend observed in the O-O RDFs calculated with the (2B+3B)-MB-SCANα mod-

els is also reproduced by the O-O RDFs calculated with the (2B)-MB-SCANα models (figure 4b),

where only the 2B term of MB-pol is replaced with the 2B term fitted to the corresponding SCANα

2B energies. On the other hand, all (3B)-MB-SCANα models, which replace only the 3B term of

MB-pol with the corresponding SCANα 3B, closely reproduce the experimental O-O RDF (fig-

ure 4c), effectively achieving the same accuracy of the MB-pol model. The close correspondence

between the O-O RDFs calculated with the (2B+3B)-MB-SCANα and (2B)-MB-SCANα mod-

els combined with the agreement between the (3B)-MB-SCANα and experimental RDFs provide

clear evidence that the inability of the pure SCAN functional (α = 0.00) to reproduce the shape

of the experimental RDF is primarily due to intrinsic deficiencies of the SCAN functional in cor-

rectly predicting the 2B energies as shown in Figure 2. Similar conclusions can be drawn from the

analyses of the O-H and H-H RDFs reported in the Supporting Information.

The differences in the O-O RDFs calculated with the three sets of MB-SCANα models directly

translate in the differences seen in the corresponding O-O cumulative distribution functions (CDFs)

shown in Figure 5 and densities listed in Table 1. In particular, both the (2B+3B)-MB-SCANα and

2.75 3.25 3.75 4.25
r (A)

0

2

4

6

8

10

N O
(r)

2B+3Ba)

=0.00
=0.05
=0.10
=0.15
=0.20
=0.25

MB-pol
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2.75 3.25 3.75 4.25
r (A)

2Bb)

2.75 3.25 3.75 4.25
r (A)

3Bc)

Figure 5: O-O CDFs calculated from NPT MD simulations carried out at 298 K and 1 atm using
the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα (panel b), and (3B)-MB-SCANα (panel
c) models. The experimental RDFs at 295 K are taken from refs 64 and 65, and 66 at 295K.
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Table 1: Density (in g/cm3) of liquid water calculated from NPT MD simulations carried out at
298 K and 1 atm using the three sets of MB-SCANα models. As a reference, the experimental
density is 0.997 g/cm3, while the MB-pol density is 1.007 g/cm3.48

α (2B+3B)-MB-SCANα (2B)-MB-SCANα (3B)-MB-SCANα

0.00 1.14 1.16 1.00
0.05 1.12 1.14 1.00
0.10 1.10 1.12 1.00
0.15 1.08 1.09 1.01
0.20 1.07 1.08 1.01
0.25 1.04 1.04 1.01

(2B)-MB-SCANα models predict CDFs that deviate significantly from the experimental and MB-

pol curves, systematically overestimating the coordination number between 2.5 Åand 4.5 Å. On

the contrary, all (3B)-MB-SCANα models are effectively indistinguishable from each other and

in quantitative agreement with the experimental and MB-pol curves. As a consequence, both the

(2B+3B)-MB-SCANα and (2B)-MB-SCANα models predict significantly higher densities, which

systematically decrease as the fraction of exact exchange increases. On the other hand, all (3B)-

MB-SCANα models predict densities that are in quantitative agreement with the experimental

value of 0.997 g/cm3, independently of α .

It should be noted that, while the density calculated with the (2B+3B)-MB-SCANα model

with α = 0.00 is in line with the value obtained in ref 23 using ab initio MD simulations carried

out with the pure SCAN functional at 330 K, it differs from the value of 1.00 g/cm3 that has been

reported from MD simulations carried out with a DNN model trained on SCAN data.37 In this

context, it has recently been shown that DNN models based on short-range representations display

some limitations in describing the underlying molecular interactions.67 While the neglect of long-

range interactions in the DNN model of ref 37 may be a possible reason for the differences with the

(2B+3B)-MB-SCANα model with α = 0.00, further investigations are needed to systematically

determine both differences and similarities between DNN and MB-DFT models.

While the RDFs report on the distributions of inter-atomic distances between pairs of atoms,

direct insights into the 3-dimensional arrangement of the water molecules in the liquiid can be
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gained from the analysis of the tetrahedral order parameter, qtet , defined as68

qtet = 1− 3
8

3

∑
j=1

4

∑
k= j+1

(
cos(ψ jk)+

1
3

)2

(12)

Here, ψ jk is the angle between the O atom of the central water molecule and the O atoms of two

neighboring water molecules. A qtet value of 1 indicates a perfectly tetrahedral arrangement, while

smaller values correspond to more disordered arrangements.

The analysis of qtet calculated with the (2B+3B)-MB-SCANα models and shown in figure 6a

demonstrates that these models predict a progressively more tetrahedral structure as α increases,

as indicated by leftward shift and heightening of the main peak at qtet ∼ 0.75. For small values of

α , the observed larger values of qtet relative to MB-pol can be explained by the larger coordination

numbers predicted by the MB-SCANα models (figure 5a) and the higher densities (up to 1.14

g/cm3 for α = 0.00) reported in Table 1. Since, by definition, qtet only consider the four nearest

water molecules, without accounting for any additional molecule in the solvation shell, the qtet

distribution for the MB-SCANα model with α = 0.00, which corresponds to the pure SCAN

functional, indicates a more compact, but geometrically ice-like structure of liquid water at ambient

temperature. The results shown in figure 5a also indicate that, as α increases, the (2B+3B)-MB-

SCANα models approach a less compact structure, which is accompanied by a decrease in density
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Figure 6: Distributions of the tetrahedral order parameter, qtet , calculated from NPT MD simula-
tions carried out at 298 K and 1 atm using the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα

(panel b), and (3B)-MB-SCANα (panel c) models.
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and, at the same time, a more pronounced ice-like signature. These results are in line with MD

simulations carried out with a DNN model trained on SCAN data which predicts the melting point

of SCAN to be ∼310 K.37

While an analogous trend is predicted by the (2B)-MB-SCANα models (figure 6b), the (3B)-

MB-SCANα models (figure 6c) closely reproduce the MB-pol distribution. The close correspon-

dence between the qtet distributions for the (2B+3B)-MB-SCANα and (2B)-MB-SCANα models,

along with the agreement between the (3B)-MB-SCANα and the MB-pol data further suggests

that the compact, ice-like structure predicted by the (2B+3B)-MB-SCANα models with α = 0.00

is rooted in the inability of the SCAN functional to correctly reproduce the 2B energies of the MBE

for water (Figure 2).

3.3 Hydrogen Bonding in the Water Dimer

In an attempt to rationalize the differences seen in the O-O RDF, density, and tetrahedral order pa-

rameter calculated with the three sets of MB-SCANα models, this section examines the ability of

the SCANα functionals to describe hydrogen bonding in the water dimer. To this purpose, Figure 7

shows the deviations, ∆ν̃ , associated with the harmonic frequencies of the water monomer and

dimer calculated with the SCANα functionals relative to the reference CCSD(T):MP2 harmonic

frequencies reported in refs 69 and 70. This analysis indicates that the deviations associated with

the OH harmonic frequencies (marked in blue) of both H2O and (H2O)2 systematically move from

negative to positive values as α increases In particular, for the water monomer, the pure SCAN

functional (α=0.00) predicts a redshift of ∼30 cm−1, while a blueshift of ∼75 cm−1 is associated

with SCAN0 (α=0.25). While the same shifts are effectively found for harmonic vibrations in-

volving the free OH bonds in the water dimer, the harmonic frequency of the hydrogen bonded OH

(labeled as OH∗ in the figure) is appreciably underestimated by the pure SCAN functional, result-

ing in ∆ν̃ = 75 cm−1. This redshift, indicative of a relatively stronger hydrogen bond compared

to the reference CCSD(T):MP2 value, directly correlates with the higher liquid density obtained

from NPT simulations carried out with the (2B+3B)-MB-SCANα model with α = 0.00. The
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Figure 7: Deviations from reference 2-body:many-body harmonic frequencies of (H2O)n clusters,
with n = 1−2,69,70 calculated using α=0.00-0.25. The light red and blue backgrounds correspond
to red and blue shifts relative to the reference values. Each harmonic mode, indicated by a stick
line, is colored according to the associated frequency according to the colorbar displayed at the
bottom of the figure. For each value of α the harmonic frequency for the hydrogen bonded OH is
highlighted with a yellow box, as indicated by the inset graphic.

progressive blueshift observed in the harmonic frequency of the hydrogen-bonded OH parallels

the decrease in the liquid density predicted by the corresponding (2B+3B)-MB-SCANα models.

Importantly, Figure 7 shows that the closest agreement between the CCSD(T):MP2 and SCANα

harmonic frequency of the hydrogen-bonded OH is obtained with α = 0.15, which is the same

fraction of exact exchange that provides the closet agreement with the experimental RDFs in the

analysis of the (2B+3B)-MB-SCANα models (Figure 4).

4 Conclusion

In this study, we presented a systematic analysis of the role played by the exact exchange in de-

scribing the water interactions by investigating the accuracy of a series of SCANα functionals,

with varying fractions (α) of exact exchange, which are constructed through the adiabatic con-

nection formula. Our analysis demonstrates that all SCANα functionals are unable to correctly
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represent the 2B energies between water molecules, with errors relative to the CCSD(T)/CBS ref-

erence values that are on the order of 4-5 kcal/mol. Importantly, we show that the inclusion of exact

exchange has opposite effects on the ability of the SCANα functionals to describe the interaction

energies of water clusters with 2-dimensional and 3-dimensional hydrogen-bonding arrangements.

Specifically, while the errors relative to the CCSD(T)/CBS reference values decrease going from

α = 0.00 (pure SCAN functional) to α = 0.25 (hybrid SCAN0 functional) for the prism and cage

isomers of the water hexamer, the opposite trend is found for the planar isomers (i.e., cyclic chair

and cyclic boat isomers). These deficiencies are found to directly related to the ability of the

SCANα functionals to describe the structure of liquid water at ambient conditions, which is in-

vestigated through MD simulations carried out with the corresponding MB-SCANα models. In

particular, we have found that the MB-SCANα model with α = 0.00, which corresponds to the

pure SCAN functional, predicts a significantly denser liquid, with a more compact first hydration

shell. On the other hand, the MB-SCANα model with α = 0.25, which corresponds to the hybrid

SCAN0 functional, predicts a more ice-like structure. These differences can be explained by the

different accuracy with which the SCANα functionals describe hydrogen bonding and the indi-

vidual many-body contributions to the interaction energies at the fundamental level as determined

from the analysis of the harmoniic frequencies of the water dimer and the energetics of the hex-

amer isomers. The analysis of the dimer and hexamer clusters and the structure of liquid water at

ambient conditions indicates that the SCANα functional with α=0.15 provides the closer agree-

ment with the CCSD(T)/CBS reference energies and experimental O-O RDFs. However, it should

be noted that “optimal" MB-SCANα model with α = 0.25 still provides a more attractive O-O

RDF, which results in an appreciably higher density, although the overall structure of liquid water

is predicted to be more ice-like. These apparent opposite trends can be explained by the inability

of all SCANα functionals to provide a balanced description of both 2B and 3B energies. While

these findings suggest that some caution should be exercised when the SCAN functional are used

in computer simulations of liquid water, ice, and other aqueous solutions,23,26,35,37,38,71 they also

provide fundamental insights in both merits and shortcomings of the SCAN functional which can
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guide future theoretical developments.32,72
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