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Abstract 

Fourier Transform Infrared Spectroscopy (FTIR) is a ubiquitous spectroscopic technique. Spectral 

interpretation is a time-consuming process, but it yields important information about functional 

groups present in compounds and in complex substances. We develop a generalizable model via a 

machine learning (ML) algorithm using Convolutional Neural Networks (CNNs) to identify the 

presence of functional groups in gas phase FTIR spectra. The ML models will reduce the amount of 

time required to analyze functional groups and facilitate interpretation of FTIR spectra. Through web 

scraping, we acquire intensity-frequency data from 8728 gas phase organic molecules within the NIST 

spectral database and transform the data into images. We successfully train models for 15 of the most 

common organic functional groups, which we then determine via identification from previously 

untrained spectra. These models serve to expand the application of FTIR measurements for facile 

analysis of organic samples. Our approach was done such that we have broad functional group models 

that inference in tandem to provide full interpretation of a spectrum. We present the first 

implementation of ML using image-based CNNs for predicting functional groups from a 

spectroscopic method. 

 



 

Introduction 

The anthropogenic impact on the climate and environment has prompted the analysis and detection 

of pollutants or contaminants with Fourier Transform Infrared Spectroscopy (FTIR), such as 

microplastics in waters1,2 and table salts3, nitrates from agricultural fertilizers in soil4–6, and 

polyaromatic hydrocarbons in the ocean’s surface7,8. The diversity of the chemical composition of the 

pollutants and the central fundamental technique of FTIR underscores the importance of a 

computational method for improved throughput of spectral analysis. The bottleneck is most 

frequently the assignment of peaks to relevant functional groups.9,10  

Functional groups describe and define the physical and chemical properties of compounds.11,12 

Identification of many organic groups is accomplished via FTIR due to the associated unique 

vibrational frequencies.13,14 Large numbers of spectra are time consuming to analyze and require expert 

chemist analysis to determine present composition. This limits the application of FTIR spectral 

techniques as a sampling method for functional group elucidation. There is thus an unexplored, yet 

applicable field of FTIR spectra interpretation through statistical methods. Progress towards machine 

learning (ML) methods for environmental pollutant analysis has been explored for specific, targeted 

applications.9,15–17 Generalizable functional group ML models would increase the utility of FTIR 

sample screening in environmental and other chemistry applications.18,19 



 

In this study, we investigate the implementation of convolutional neural networks (CNNs)20 to identify 

functional groups present in FTIR spectra. By limiting spectral preprocessing, we explore a 

minimalistic approach to allow the network to learn spectral patterns for successful recognition of the 

fifteen most common organic functional groups (Table 1). 

Table 1. Functional groups for which successful models were trained. 

 

Machine learning (ML) serves to address a need for quick identification of spectral components.21 To 

date, the use of a CNN to broadly classify functional groups has not been reported. CNNs work by 

having layers of nodes called neurons, these neurons can be trained on data to identify spectral 

components that were observed in the training data in new spectra. The algorithm works to minimize 

a loss function; this is done by comparing answers given by the CNN to the true answers from a 

training data set. The difference between the reported and the true presence of a group constitute the 

loss function. The training data set is a randomly segmented subset of spectra that the CNN uses to 

learn and adjust neuron weights.  

CNNs expand upon artificial neural networks (ANNs) by using mathematical convolutions to provide 

convolved data to the following neuron. Each neuron has a receptive field for which it convolves the 

information, similar to how a human brain has regions of neurons designated for processing specific 



 

information. CNNs significantly reduce the number of neurons per pixel that a traditional feed-

forward network requires to capture the complexity of an image. Thus, CNNs are a sophisticated 

solution to the alternative complex network required to machine learn images by capturing the spatial 

and temporal uniqueness of images.  

We probe the effectiveness of image recognition ML as a facile solution to FTIR spectra 

interpretation. The information contained in a spectrum is most often presented to chemist as a 2D 

image, therefore it is desirable to develop models that learn via similar spectral visualization.22 Previous 

implementations of FTIR ML for functional group identification have limited,23 averaged,24 and 

segmented23,25 spectral data to reduce information used during training. The computational resources 

available today make this an unnecessary and limiting feature. We include all available spectral data 

from 4000 to 600 cm-1 to reduce any biases on the learning process.  

Current methods for spectral processing and interpretation are limited to library searching software26 

and highly specific questions using implementations of ML including: Support Vector Machines,9,27 k-

Nearest Neighbors,28,29 and Principal Component Analysis (PCA)9,27,28 or Factor Analysis30. Library 

searching methods require a pre-existing and transferrable database for searching spectra. The initial 

creation of libraries requires an intensive endeavor for collecting a large enough spectral repository. 

Once implemented, libraries cannot extrapolate beyond those included in the software. The size of 

libraries is not of significant concern for storage, but it is a cumbersome feature for application 

compatibility and relative use-to-memory consumption. ML does not require transfer of training data 

to the user and can predict beyond the data used for training. 

The use of ML to resolve challenging implementations of FTIR spectra (e.g., extremely large datasets, 

continuous analysis) has become of interest as increased processing power makes it possible to train 

and infer (interpret an unknown spectra) with complex algorithms.31–34 However, these highly specific 

models are only applicable in the setting in which they are developed because the training is completed 



 

on a narrow range of examples. To increase the amount of available training spectra or improve further 

calculations, ML algorithms in tandem with molecular dynamics have been explored.34–36  

Previous applications37–39 of ML have employed data preprocessing prior to training with unsupervised 

ML methods, such as PCA27, which reduces the information in the training data. Spectral 

preprocessing is an unnecessary strategy with the advances in ML and doing so would limit the 

transferability of the final model to broader applications. Selecting spectral regions of interest can lead 

to a reduction of learning to memorization by the computer, meaning that rather than making a general 

model that can make inferences on novel spectra the model overfits the training data, meaning that it 

does well on what it has seen before but performs poorly on new data. Showing select data based on 

human evaluation increases the time required by an expert and potentially introduces overfitting. 

These unintended consequences include not allowing the computer to learn important spectral 

features by evaluating the entire spectrum rather than regions. While there are regions of relative 

disinterest to the chemist, it is not sufficient to ignore them in training. The absence of a peak is equally 

as informative as the presence of another. A recent application of ML successfully implemented 

broader methods for functional group analysis, however the authors utilize a multilayer perceptron 

ML method with an autoencoder and train using two sources of data: FTIR and MS spectra.40 

In our work, we create separate functional group models that are run simultaneously resulting in 

complete analysis of FTIR spectra. The use of individual functional group models presents a robust 

approach to establish a broad but precise computational analysis of spectra. Training a model for each 

functional group improves the overall accuracy attainable because each model is focused on a binary 

question: is this functional group present? The training of individual models does not impede speed 

of spectrum analysis achieved and results are provided succinctly. By approaching the classification of 

spectra via the proposed method, we reduce the likelihood that the model learns a connection between 

functional groups that is not chemically relevant. In other words, one present functional group does 



 

not indicate another group’s presence or absence. Individually trained models reduce the potential for 

this and improve the overall accuracy by posing a simplified question. Here we develop effective and 

accurate FTIR ML models that apply to broader questions, limit spectral preprocessing, and provide 

the entire spectrum to the algorithm.  

Methods 

Python scripts. All Python scripts can be accessed from our repository at this address: 

https://github.com/Ohio-State-Allen-Lab/FTIRMachineLearning. The FTIR spectra are property of 

NIST and can be accessed through their website. The implementation of Inception V341 is modified 

for our use and the original source is linked on our repository with the published modified version. 

The computational procedure is described in detail in the SI and is documented in each Python script. 

Spectra collection. Data was obtained from the National Institute for Science and Technology Chemistry 

WebBook via a web scraping implementation in Selenium using the CAS number identifier from the 

official list of compounds in the WebBook.42 When a compound had an FTIR spectrum, the file, in 

jcamp-dx format, was retrieved and stored with the CAS number as the filename. A total of 8,728 

spectra from pure compounds in gas phase were obtained. Each spectrum’s InChI key was saved in a 

collective text file. 

Data pre-processing. Only spectra in absorbance and wavenumbers were used for training models. Each 

spectrum was evaluated to ensure it was in absorbance and wavenumbers via a Python script. Files in 

transmission or wavelength were relocated to a distinct directory to preserve all spectra obtained from 

web scraping. Files in the correct mode were converted from jcamp-dx to csv. Once converted, each 

spectrum was normalized so that the maximum peak height was 1. Normalized spectra were saved as 

jpg images. 

Labeling. Functional groups were identified via the InChI key. Using SMARTS functional group 

identifiers, each spectrum’s key was parsed to return binary indicators. Present functional groups are 



 

labelled as “1” and absent as “0”. Results were saved in one spreadsheet with CAS number’s as 

spectrum and file identifiers. Spectra were copied into directories based on presence or absence of a 

functional group. This method allows one compound with multiple functional groups present to be 

copied into the directory for each group. Each of the 17 functional groups had two directories: positive 

and negative cases. Positive cases include the functional group and negative cases do not contain the 

group. Randomly ten photos, five from positive and negative, for each functional group were reserved 

for validation. Then, the directory containing more instances for a given group was reduced randomly 

until both directories contained the same number of spectra. 

Machine learning. A convolutional neural network (CNN) for image recognition was employed. A 

unique model was trained for each functional group containing two classes. The functional groups 

and the number of images in the positive cases are presented in the SI. The architecture, Inception 

V3, was accessed from the available models on the Google TensorFlow library. Each model was 

trained for 10,000 steps at a learning rate of 0.01, using an initialized version of Inception V3 and 

training the last layer of the model graph. The initialized parameters reduce the time and computational 

power required to train a custom model. It took five hours to train the fifteen models and classification 

of an unknown spectrum requires one minute.

 



 

 

 

Figure 1. Number of spectra used to train each functional group model, (a) carbon-containing, (b) 

nitrogen-containing, (c) halide-containing, and (d) oxygen-containing. The number of images is 

equivalent for the positive and negative cases used in training and testing.

 

Accuracy and loss. Accuracy and cross entropy (loss) for both training and test models was obtained and 

saved as csv files. The final accuracies and entropies for training and test results from each model are 

investigated to identify any anomalies. 

Classification of Validation Data. When spectra were classified, the models were all called upon to infer 

(determine the functional groups present) and a final result was provided. The ten reserved spectra 



 

were analyzed via the respective models they were withheld from to examine the learning quality of 

the algorithm. Confusion matrices43 were used to represent the true and predicted functional group 

for the seventeen models.  

Results and Discussion 

Out of 17 functional group models trained, 15 effectively identify functional groups (Table 2). 

Accuracy and cross entropy results from the last step of training are reported for the train and 

validation process. The two functional group models that underperform are aldehyde and nitrile, based 

on model prediction of untrained spectra (as seen in the SI). We define underperforming as 

misidentifying more than 60% of test cases. The training accuracy is a measure of how well the model 

classifies the training data, which it used to train the network. A higher training accuracy indicates that 

the model is learning the training spectra. Validation accuracy expresses the ability of the model to 

generalize to untrained spectra, which is determined by the number of correctly classified validation 

spectra.  Thus, it is more meaningful to have a higher validation accuracy, albeit not a requirement for 

a successful inferencing model.  Cross entropy is the loss function used to evaluate the final model 

and is defined as the logarithm of the likelihood of a correct assignment. Smaller cross entropy values 

indicate a model is well trained. We observe cross entropy for training is less than validation. Models 

are more likely to correctly inference spectra that have been used to train and adjust weights, in 

comparison to the validation spectra. 

 

Table 2. Final accuracy and cross entropy for train and validation of each functional group model is 

presented in order of increasing number of training images. 



 

 

 

 

A confusion matrix for each model was created by using spectra that have been withheld from training 

and testing data (as seen in the SI). A confusion matrix compares model assignments to the actual 

identities of the samples; it shows correct assignments along the trace of a matrix and false assignments 

off of the trace. Four models have perfect confusion matrices from classification of ten withheld 

images, five containing and not-containing functional group spectra examples. The presence or 

absence of carboxylic acid, aromatic, methyl, and ester functional groups are correctly identified in the 

withheld spectra (Figure 2).  



 

 

Figure 2. Confusion matrix for carboxylic acid, aromatic, methyl, and ether functional group models.  

The number of instances of each functional group occurring in the spectra varies significantly, with 

aromatic-containing spectra occurring most frequently with 3,467 images. In contrast, acyl halide has 

85 spectra for training and testing the model. We explored the relationship between the number of 

images and the cross entropy and accuracy for training and testing results (Figure 3). Training accuracy 

decreases with increasing number of spectra (Table 3, SI). However, the final accuracy, determined by 

evaluating the unknown spectra for functional group identification, is not correlated to the number of 

images used for training. Our results indicate that the total number of training spectra does not affect 

the final performance of the models. The scattered, non-uniformity exhibited in Figure 3 (a) and (b) 

depict the deviation from a linear relationship between the number of spectra and accuracy and cross 

entropy for validation, confirming the number of images is not influencing the 

performance of the models. Training accuracy provides insight into how well the model has learned 

the training images for a functional group model. Counterintuitively, few spectra being trained for a 

functional group will result in a higher training accuracy because the model trains on the same spectra 

more frequently. The model memorizes or overfits functional groups resulting in a model incapable 

of extrapolating to new spectra. 



 

 However, from our results the challenge of limited training spectra does not implicate less accurate 

models. We confirmed this by investigating the relationship of number of images per class as a 

function of validation accuracy and cross entropy (Table 2). Models that have more spectra to train 

on have lower overall training accuracy but still perform well when analyzing unknown spectra. To 

investigate the linear correlation between the number of spectra used for training and the final accuracy 

and cross entropy, the Pearson’s correlation coefficient is used (Figure 3). More linearly correlated 

relationships have a coefficient closer to one, where positive coefficients indicate a positive correlation 

and negative coefficients indicate a negative correlation. The coefficient for training accuracy and 

number of training spectra indicate they are indirectly correlated whereas the coefficient for training 

cross entropy and number of training spectra is positive, or positively correlated. However, the models 

with less training spectra show no correlation between final accuracy and ability to classify unknown 

spectra. Furthermore, both validation accuracy and cross entropy do not have significant linear 

correlation. While training results display correlation with the number of images, the validation data 

indicates that models are successful with a range of number of training spectra. 

We can determine some of the underlying shortcomings in the model, from both spectroscopic and 

computational perspectives, by investigating two functional groups: aldehyde and carboxylic acid. The 

model results for aldehyde are promising for the training data but do not perform as effectively in 

validation and testing (Table 2, SI). The confusion matrix for carboxylic acid describes how well the 

model performs on spectra that have not been used for training or validation. We observe that the IR 

mode frequencies for the carboxylic acid and aldehyde affect the performance of the model, in 

addition to the number of spectral examples available for training and validation.  

Aldehyde C-H stretching frequency (2830- 2695 cm-1) is commonly overlapping in organic spectra 

with other C-H bonds because it is a weaker mode (Table 3). The carbonyl stretch is also frequently 

unresolved in compounds that contain multiple oxygen atoms. The C-H bending mode is often weak, 



 

in addition to being in the fingerprint region, which is a challenge to interpret due to the complexity. 

With these stretching and bending modes considered, it is reasonable to anticipate that an aldehyde 

functional group is challenging for the model to identify in spectra. In comparison, carboxylic acid 

functional groups are always correctly identified in spectra by the model. The model for carboxylic 

acids is well trained. As observed by the validation accuracy and cross entropy (Table 2), the carboxylic 

acid model has a more robust transferability to spectra it has never observed. We confirm the 

effectiveness of the model with a correct assignment of unknown spectra. In totality, there are more 

carboxylic acid training spectra, and the IR modes are better resolved, especially the strong COO-H 

stretching, in comparison to aldehydes (Table 3).  

Table 3. Aldehyde and carboxylic acid IR stretching and bending mode frequencies.44 

 

 

 Mode Frequency (cm-1) Appearance 

Aldehyde 

C-H stretch 2830-2695 Weak, medium 

C=O stretch 1740-1720 Medium, strong 

C-H bend 1390-1380 Weak, medium 

Carboxylic acid 

O-H stretch 3300-2500 Strong, broad 

C=O stretch 1760 Strong 

O-H bend 1440-1395 Medium 



 

Figure 3. Final train and validation accuracy and cross entropy as a function of the number of spectra 

used to train each functional group. Pearson’s correlation coefficients (PCC) are inset in the plots for 

final accuracy and cross entropy of training and validation as a function of the number of spectra. The 

coefficients closer to ±1 indicate that the train accuracy and cross entropy are linearly correlated 

(negative is inversely correlated and positive is directly correlated) to the number of spectra used in 

training. Validation accuracy and cross entropy are not linearly correlated to the spectral examples 

used.  

From our results, we observe that the models are more accurate for functional groups when there are 

more training spectra examples for the functional group and IR peaks are well resolved. Albeit this is 

an intuitive result for a trained spectroscopist with respect to accuracy correlating to peak resolution, 

yet there is no precedent using a machine learning approach.  

Conclusion 

We present a novel method for FTIR spectral interpretation using CNNs and the NIST database. 

Fifteen functional group models successfully and effectively classify unknown spectra in a facile 

method for spectral submission to interpretation. We find that the image recognition features inherent 

in CNNs are transferrable to a chemical-identification application. From our observations, we can 

conclude that CNNs are effective at identifying spectral features for classification and generalizable 

models are achievable with ample spectral examples. In future work, optimization for functional group 

identification with less spectral examples should be investigated to improve accuracy.
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