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Abstract

Synthesis, distribution and abuse of fentanyl, a synthetic opioid, has
led to a critical worldwide epidemic. Mass spectral library searching for
opioids remains unresolved despite being central to law-enforcement in-
volving identification, monitoring and prosecution of opioid related crimes.
In this article, two model problems are presented to illustrate difficulties
associated with fentanyl identification. A collection of both currently-
employed similarity measures and intuitive measures of dissimilarity are
employed to simulate identifying fentanyl analogs with mass spectral li-
brary searching.

Keywords: Fentanyl; Mass Spectral Library Searching; Pattern
Similarity

1 Introduction

Fentanyl is a synthetic opioid originally developed as a prescription med-
ication for treating severe pain [6, 5]. However, over the past several
years, there has been explosive growth in the abuse of this extremely po-
tent drug, leading to an unprecedented rise in the number of overdose
deaths across the United States and around the world [13]. One key
cause of this fentanyl epidemic is the illegal production of designer fen-
tanyl analogs, drugs with distinct but similar chemical structure to that of
fentanyl. These illegal compounds are often produced in clandestine labo-
ratories and distributed through illegal channels at a rate that far exceeds
law enforcement’s ability to combat them. Particularly daunting tasks
include the identification and scheduling of this complicated collection
of compounds. Regulation of these types of compounds by federal U.S.
drug policy as described by the Controlled Substances Act (CSA) seek
to control the manufacture, importation, possession, use and distribution
of substances like fentanyl. The U.S. Drug Enforcement Administration
(DEA), for example has the task of scheduling, that is categorizing, drugs
depending upon the drug’s acceptable medical use and the drug’s abuse
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or dependency potential. Fentanyl is currently categorized as a Schedule
II drug (together with more commonly known drugs like Adderall, Ritalin
and oxycodone (OxyContin)) a substance or chemical agreed to have the
high potential for abuse, with the possibility of leading to severe psycho-
logical or physical dependence. Furthermore, once distributed, fentanyl
and its designer analogs are often used in very low quantities to increase
potency and reduce the street cost of other drugs, like heroin. This signif-
icantly complicates the tasks of collection, identification and scheduling.

Electron Ionization Mass Spectrometry (EI-MS) is one of the primary
tools used to identify drugs, in law-enforcement applications as well as
emergency medical evaluation facilities where proper identification is often
crucial. An analyte, a substance or molecule being identified or measured,
is ionized through interactions with energetic electrons creating a molec-
ular ion. Under normal conditions, this molecular ion will almost always
fragment, resulting in fragment ions. These ions are separated according
to mass-to-charge ratios, (m/z), and then observed electronically by a de-
tector. The resulting detected signal, proportional to the number of ions,
is plotted against corresponding (m/z) values in order to produce a mass
spectrum (see [18]). Roughly speaking, the mass spectrum is the plot of
intensity or abundance, proportional to the number of ions arriving in a
given time, as a function of (m/z) values. In EI-MS, the charge of an ion
is most often 1, and for this reason, (m/z) is often interpreted and inter-
changeably referred to as mass with units of Daltons (Da). Additionally,
EI mass spectra are often unit mass resolution, hence the horizontal axis,
mass values, are positive integers. A peak in the mass spectrum has height
which corresponds to the positive abundance of ions detected at specific
mass values. The height and location of these peaks that are, in turn, used
to infer chemical composition and structural information. The mass spec-
trum does not directly yield information about the chemical structure of
the analyte. While there are advanced alternative experiments (e.g. Tan-
dem MS [7]) which can illuminate more information about the chemical
structure associated with an analyte, these methods are less commonly
employed in forensics applications and will not be discussed here.

Given an unidentified compound, its mass spectrum can be measured
and compared to the mass spectra of reference compounds with the objec-
tive of chemical identification. Reference compounds are well character-
ized, often purchased, molecules with associated mass spectra obtained
under controlled conditions. The mass spectra of these reference com-
pounds can be assembled into searchable databases or libraries ([15]). In
practice, the spectrum of the unidentified compound is compared with
the mass spectra in a well-chosen library with the goal of identifying com-
pounds with similar mass spectra. If successful this process results in
the eventual identification of the compound from which the mass spec-
trum was originally measured. This process is referred to as mass spectral
library searching. Typically, the mass spectral library search returns a
well-ordered list of database entries determined to have mass spectra sim-
ilar to that of the unidentified mass spectrum, commonly referred to as
a hit list. The compounds associated with the hit list form a collection
of candidate compound matches for the unidentified compound. Ideally,
a hit list will provide an analyst adequate information to correctly infer
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the identity of an unidentfied compound. It is important to note that the
eventual classification of the analyte is still a human task - the burden of
identification lies with the analyst.

Underpinning the success of a mass spectral library search is the se-
lection of a similarity/dissimilarity or distance measure to compare mass
spectra. A recent numerical study on the effectiveness of various mea-
sures of dissimilarity applied to replicate mass spectra, i.e. two different
mass spectral measurements of the same compound, illustrated that all
measures of dissimilarity between replicate mass spectra performed de-
sirably (i.e. low dissimilarity, high similarity between replicate spectra)
[10] . However, it was unclear how these measures would perform under
the significantly more complex task of library searching, especially when
the potential library contains very similar spectra coming from different
compounds (or vice versa) as can be the case with fentanyl and designer
fentanyl analogs.

This manuscript explores the effectiveness of various measures of dis-
similarity in the context of compound identification using mass spectral
library searching. In particular, we are interested in accurately identi-
fying fentanyl, a pressing need. Like Gaul, the body of this manuscript
is comprised of three parts. A brief description of the mechanics of li-
brary searching is presented in the next section. To compare measures of
dissimilarity in the context of library searching, two model problems are
constructed that illuminate some benefits and drawbacks associated with
each of the dissimilarity measures. Finally, the results of our model prob-
lem are summarized in the last section together with some observations.

2 Library Searching

We consider a collection of mass spectra which, for simplicity, are all con-
sidered to be of equal size, say n > 0. Further, since we are only concerned
with unit mass resolution spectra, the mass spectra can be denoted as vec-
tors x ∈ <n with positive entries representing the intensity of measured
signal with the indexed mass. All other entries are identically zero. These
x are carefully measured in a controlled laboratory setting and bundled
together into a library which is then distributed. In 1997 the (DEA) and
the Office of National Drug Control Policy (ONDCP) co-sponsored the
formation of an international group of forensic scientists and United Na-
tions representatives known, since 1999, as the Scientific Working Group
for the Analysis of seized Drugs (SWGDRUG). The (SWGDRUG) have
collected and released mass spectra of interest, [3] to the forensics com-
munity, and a subset of spectra of fentanyl and related compounds was
assembled into a mass spectral library which we refer to as L. This li-
brary is discussed in [11] and is publicly available facilitating comparison
of different methods.

To imitate a situation encountered by law enforcement, we consider a
mass spectrum measured from a presumed unidentified compound, often
called a query spectrum, say, xq. This spectrum is not contained in L,
xq /∈ L and is often attained under less than ideal circumstances. The
enormous variation in instruments used to measure spectra, in sample
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Figure 1: A head-to-tail plot comparing two mass spectra of fentanyl acquired
from two different mass spectral libraries. In a head-to-tail plot, the first mass
spectrum is plotted normally, and the reflection of a compared mass spectrum
is plotted directly beneath the first such that the abundance of ions at equiva-
lent mass-to-charge (m/z) values can be easily compared. This type of plot is
commonly employed when comparing mass spectra.

preparation and in laboratory procedures, suggests that obtaining two
identical spectra is a situation that, in practice, is virtually impossible for
two measurements of the same compound, Fentanyl. (see Figure 1).

Given a library L and a query mass spectrum xq, completing a library
search requires a selection of a dissimilarity measure. Consider φ that
seeks to measure the dissimilarity between xq and x ∈ L. Analytical
chemist’s Mass spectral library search programs employ these dissimilarity
measures to construct a hit list. The mass spectrum associated with the
first element in the hit list, say x1, is the most similar (or least dissimilar)
mass spectrum to xq among mass spectra in L, the second most similar
is x2 and xj is the jth. To assemble the hit list one solves,

x1 = argmin
x∈L

φ(xq, x) (1)

and the second
x2 = arg min

x∈L\x1
φ(xq, x), (2)

and so on, where argmin denots the argument-minimum.
Typically, an analytical chemist a trained user of EI-MS and library

searching will interrogate compounds associated with the first several el-
ements of a hit list, say nH , H = (x1, x2 . . . xnH ) where nH varies for
different applications. Taking nH = 10 is a common practice. It is also
worth noting that equation (1) need not have unique solutions. Mass
spectra associated with distinct compounds can generate identical dissim-
ilarity scores when compared to a query mass spectrum.
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2.1 Dissimilarity Measures

A comparison of several dissimilarity measures applied to the comparison
of replicate mass spectra were recently explored [10]. This included simi-
larity measures traditionally considered in the field of mass spectral library
searching, distances commonly considered in general pattern recognition
tasks, and a distance measure often employed for the study of distances
between histograms. For the completeness of this manuscript, we suggest
and summarize a collection of dissimilarity measures.

2.1.1 Vector Norms

The `p vector norms are straight-forward measures of dissimilarity in Eu-
clidean space. While these are not typically employed in practice, they
are included here for illustrative purposes. For our model problem the `1
and `2 measures can be written

φ`1(xq, x) =

n∑
i

|(xq[i]− x[i])| (3)

and

φ`2(xq, x) =

(
n∑
i

(xq[i]− x[i])2
)1/2

(4)

where the the notation [i] denotes the ith component of a vector.

2.1.2 Cosine similarity and derived vales

Mass spectra are quite sparse which suggests a reasonable measure of
similarity is the Cosine or Orchini similarity function which measures
the cosine of the angle between two non-zero vectors, in this case mass
spectra.

φC(xq, x) =

∑n
i (xq[i]x[i])√∑n

i xq[i]
2
√∑n

i x[i]2
. (5)

This computationally inexpensive measure is often used in large-scale
data-mining applications that involve sparse data. Sometimes referred to
as a distance, it does not satisfy the triangle inequality or Cauchy-Schwarz
inequality.

A variant of cosine similarity commonly employed in mass spectrome-
try is what has come to be called the simple match factor. This measure
differs from cosine similarity by a series of three modifications: (i) ele-
ments of the mass spectrum vectors are replaced with the square roots of
their values before computing the cosine similarity, (ii) the cosine function
(5) is computed with the altered spectra inputs and the result is squared,
and finally, (iii) the result is scaled by a constant. This sequence of mod-
ifications result in the often-used simple match factor [12], denoted here
by φS ,

φS(xq, x) = CS

(∑n
i=1 xq[i]

1/2 x[i]1/2
)2∑n

i=1 xq[i]
∑n
i=1 x[i]

, (6)
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where CS is an arbitrary constant which, for historical reasons, is often
taken to be 999. In commonly employed mass spectral library search
algorithms and software that employ a simple match factor similarity, the
value of φS is rounded to the closest integer. This practice has origins
to when computer memory was more expensive but is still handled the
same way today. A second and often used modification of the measure of
similarity commonly employed in mass spectral library searching is the so
called identity match factor. The idea was first introduced in [16] where
it was referred to as the “composite score”. This measure differs from the
simple match factor by several modifications. A simplified variant of this
commonly employed identity match factor is described and explored in
this manuscript.

Consider a vector, r ∈ <n computed by examining the product of
heights at adjacent (m/z) values. For all i = 2 . . . n, r[i] is defined

r[i] =

{
γ[i] if xq[i]xq[i− 1]x[i]x[i− 1] > 0,

0 if xq[i]xq[i− 1]x[i]x[i− 1] = 0,

where the vector γ ∈ <n is defined

γ[i] =
xq[i]

xq[i− 1]

x[i− 1]

x[i]
,

and we have r[1] = γ[1] = 0. If r has mα non-zero entries, we denote the
set of indices associated with those non-zero components of r as α ∈ <mα .
With this available, a scalar modification term F is computed

F =

∑mα
i α[i] ·min (r[α[i]], 1/r[α[i]])∑mα

i α[i]
.

The identity match factor is then computed

φI(xq, x) = CI
mαF +mx

φS(xq,x)

CS

mα +mx
, (7)

where mx is the number of indices where elements of both xq and x are
positive at the same (m/z) value, and CI is taken to be 999 for historical
reasons as in (6). Despite the fact that both constants are taken here as
999, we distinguish them formally.

These three measures, φC , φS and φI , are commonly employed by the
mass spectrometry community. They are inexpensive to compute and
easily implemented but they are not true distances between specra so
therefor are not metrics. It is worth observing that φI is not symetric,
that is, it is not always the case that φI(xq, x) produces the same value
as φI(x, xq). Both φC and φS are symetric but do not satisfy the triangle
inequalty.

2.1.3 Wasserstein

The first Wasserstein distance [17] for discrete probability measures with
finite support on <d are a natural candidate for this application. Some-
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times called the earth movers distance or Mallows distance [8], the Wasser-
stein distance can be defined as the minimal cost of transforming xq into x
by shifting intensities. Let σ(i, j) denote the amount of intensity located
at xq[i] to be transported to location x[j] in order to transform x into xq.
The most efficient means or optimal strategy for transforming x into xq
can be defined by,

φW (xq, x) = min
σ

n∑
i

n∑
j

σ(i, j)||xq − x|| (8)

where || · || is a well-chosen norm often called the ground distance. For
computational reasons, the ground distance is often selected to be `1. The
value of φW (xq, x) measures the Wassserstien distance between xq and x
and the optimal σ ∈ <n×n gives an optimal flow of intensities from xq
and x.

We refrain from a thorough discussion of the Wasserstein distance but
mention that the solution of (8) is an active research subject. For the
purposes of our numerical comparison we normalized mass spectra be-
fore computing (8) despite the fact that there are mathematically elegant
analogs to (8) which allow for vectors with different mean values to be
compared. These changes may cause the resulting measure to fail to be
a distance, in a mathematical sense. For the numerical comparisons pre-
sented here, it is worth noting that normalizing had little effect on the
results. To solve (8) we implemented a transportation simplex solution ap-
proach based on [14] with an l1 ground distance. The method ran quickly
however, with an eye towards forensic applications where the number and
size of comparisons could potentially grow, there is recent research on
parallel algorithms for solving (8) which appear to be promising [9].

3 Model Problems

In the spirit of reproducing the situation faced by law-enforcement, one
choice for a query spectrum is the mass spectrum of fentanyl taken from a
different library and thus different from the fentanyl mass spectrum in L.
Let x̄F denote the mass spectrum of fentanyl taken from library [2] and
xF be the mass spectrum of fentanyl in library L. In this case x̄F 6= xF .

3.1 Measurement Variation

A major obstacle in the identification of illegal substances by mass spec-
trometry is variations in measurement. Frequently in forensic applica-
tions, the abundance of seized unidentified compound is limited and it is
virtually impossible that a library reference spectra and the query spec-
trum were acquired on the same instrument under identical circumstances.
The sources of disparity in the assembly of mass spectra include things like
variations in instrument resolution and sample preparations. Additional
variations may be introduced by different instrument operators and envi-
ronmental effects that arise from mass spectra being collected in different
laboratories. A very coarse approximation to a sum of these uncertainties
is to consider a synthetic query spectrum constructed from x̄F ,
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xq[i] = x̄F [i] + η for i = 1 . . . n (9)

where η is intended to simulate additive noise in the observed signal and
is taken to be

η = τ x̄F [i]N (0, 1) for i = 1 . . . n

where amount of noise in signal is controlled by τ > 0, which is varied in
our numerical experiments and N (0, 1) is a standard normal distribution.

3.2 Contamination and masking

To disguise or avoid detection, fentanyl is often mixed with other com-
pounds. To simulate this evasion technique, consider a query spectrum
cobbled together as a convex combination of fentanyl and a second, per-
haps legal, compound,

xq(λ) = (1− λ)x̄F + λxM , (10)

where 0 ≤ λ ≤ 1 and xM is the representative mass spectrum for a legal
masking compound not contained in our library of spectra, xM /∈ L. In
our numerical experiments, masking agents are selected intentionally to
be compounds not represented in the library.

We selected quinine (C20H24N2O2) as a first simulated masking com-
pound. It is a chemical used to treat malaria and a compound that is
often employed in mixtures with fentanyl to avoid detection. Quinine is
bitter, as is heroin, and is thus used to imitate a higher quality product to
drug abusers. The second simulated masking compound we selected was
serotonin (C10H12N2O), a biochemical produced in the human body and
is found in foods like chocolate. Serotonin is often attributed to feelings
of euphoria when consumed though it is not a compound associated with
fentanyl.

4 Numerical Results

When the query spectrum xq = x̄F is searched against library L, the
rank of the reference fentanyl in hit lists generated with each dissimilarity
measures is as follows:

Dissimilarity Library
Measure Fentanyl Rank
φC 3
φS 1
φI 1
φ`1 5
φ`2 7
φW 36

It is unsurprising that the dissimilarity measures traditionally employed
in mass spectral library searching, φS and φI , produce hit lists with fen-
tanyl ideally ranked as the first element in the hit list. These less tra-
ditional similarity measures were designed specifically for the purpose of
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mass spectral library searching and include mathematically unintuitive
but chemically advantageous modifications.

The performance of library searches conducted using φC , φ`1 and φ`2 ,
while not ideal, still placed the reference fentanyl within the top-10 en-
tries of the hit list, meaning that a practitioner is still likely to review its
spectrum before making an identification of the query or perhaps pursing
additional tests. The library search conducted using φW to compare spec-
tra resulted in the reference fentanyl being listed as the 36th entry of the
hit list and thus would be unlikely reviewed by a practitioner. Fentanyl,
had it been present, would likely have gone undetected.

Simulated measurement variance In Table 1, the numerical re-
sults of 10 library searches where the query spectra are constructed using
x̄F and (9) with several reasonable values τ are presented. The rank of
the reference fentanyl in hit lists generated using φS and φI is almost
uniformly 1 regardless of the value of τ . Similarly, the change in hit list
positions of fentanyl using φC , φ`1 , and φ`2 is minimal, with standard
deviations of the rank evaluating to less than 3 in every case. Searches
using φW are, not surprisingly, very sensitive to τ .

Figures 2-3 demonstrate an extended assessment of simulated noise,
where 0 ≤ τ ≤ 1 and 100 computations of similarity or distance are
computed between the constructed query mass spectra and the reference
fentanyl, i.e. φi(xq, xF ) where i = {C, S, I, `1, `2,W}. The figures illus-
trate the distribution of dissimilarity measure for a given value of τ . For
each distribution, the outlined box is the computed Inter Quartile Range
(IQR) with the 2nd quartile (median) marked as a darkened line within
the box, and the bottom and top edges of the box indicating the 1st and
3rd quartile measurements, respectively. The upper whisker indicates ei-
ther the maximum measured value in the distribution or the maximum
similarity measure within 1.5 IQR of the 3rd quartile value. Similarly,
the lower whisker is minimum similarity measure or the minimum mea-
sure within 1.5 IQR of the first quartile value. Outliers scores greater
than 1.5 IQR of the 1st or 3rd quartile are shown as open circles. Note
that τ > 0.3 is bordering on impractical variation within a single peak
on replicate measurements, however, it is worth considering for a model
problem.

Simulated contamination The results of library searches of simu-
lated masked query spectra were constructed as convex combinations of
x̄F and the spectrum of Quinine (a masking compound) using (10) are
presented in Table 2. The results of a library search of a spectrum of just
fentanyl (λ = 0), and the results of a library search using just Quinine
(λ = 1) are included for reference. Walking away from fentanyl, from
λ = 0 to λ = 0.2, we observe that the rank of fentanyl improves in the
hit lists generated using φC , φ`1 and φW to measure spectral dissimilar-
ity. We see this again when walking from λ = 0.2 to 0.4, as the rank
of fentanyl improves in the hit list using both φ`2 and φW as measures
of spectral dissimilarity. This non monotonic behavior was not expected
prior to reviewing the results. Similar unexpected behavior can be seen
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Table 1: Results of a library search when the queried spectrum is constructed
using (9) to simulate signal variance in a query mass spectrum of Fentanyl.

Gaussian Noise, τ
0.10 0.15 0.20 0.25 0.30

Mean ranka of fentanyl
φC 2.80 3.30 2.70 2.70 4.60
φS 1.00 1.00 1.00 1.00 1.10
φI 1.00 1.00 1.00 1.00 1.00
φ`1 4.10 3.80 3.60 2.70 4.70
φ`2 5.60 5.70 5.00 3.90 5.80
φW 34.40 34.10 30.90 21.00 34.30

Standard Deviation ranka of fentanyl
φC 1.55 2.06 1.49 2.06 2.55
φS 0.00 0.00 0.00 0.00 0.32
φI 0.00 0.00 0.00 0.00 0.00
φ`1 2.60 2.57 2.41 2.36 2.79
φ`2 2.27 2.31 2.83 2.92 2.53
φW 4.35 6.67 13.02 16.46 11.48

(a) Mean and standard deviation of rank computed over 10 library searches.

in the results of library searches where query spectra were constructed as
convex combinations of x̄F and the spectrum of Serotonin (Table 3).

5 Discussion

We begin this discussion by highlighting some of the limitations of the
outlined model problems. Measurement variance was simulated by con-
structing a synthetic query mass spectrum using (9). In doing so, we
implicitly assumed that the abundance of each peak in the mass spec-
trum is independent of the others. Such a model was selected for its ease
of implementation and, subsequently, interpretation. However, there is
likely to be some correlation between observed measurements within a
mass spectrum. Recall that the peaks in an EI mass spectrum can be
interpreted as the mass of a fragment ion from the molecule. Molecules
and, subsequently, their fragments are composed of atoms which natu-
rally occur at several isotopic masses. For example, one can find stable
atoms of carbon in nature with molecular mass 12 Da or 13 Da. Though
“carbon-12” is far more common, a molecule of fragment constructed of
several carbons is likely to have at least a few “carbon-13” components.
Accordingly, the heights of fragment ion peaks that only differ by isotopic
mass are likely to be correlated. That is the abundances, in this case,
are likely to be correlated. Additionally, several fragment ions recorded
in a mass spectrum may originate from the same fragmentation pathway.
Roughly speaking, a molecular ion may fragment into several fragment
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Figure 2: Box and whisker plots summarizing the distribution of similarity
measures φi where i = {C, S, I} computed between a query mass spectrum, xq
constructed using a mass spectrum of fentanyl and (9) across 0 ≤ τ ≤ 1, and
the mass spectrum of fentanyl contained in the reference library.

ions that may further fragment into several more fragment ions. The
pathway connecting the measured fragment ion to the molecular ion is a
fragmentation pathway. The abundance of fragment ions that originate
from the same pathway may be correlated as well.

Contamination was simulated by constructing a synthetic query spec-
trum using (10). In doing so, we implicitly assumed that the two molecules
in a mixture would ionize with equal probability, thus the fragmentation
pathways observed from the ionization of pure molecules will be conserved
in the mixture. Although this is highly likely to be true, there is no guar-
antee that ionization will occur equally among the molecules. It is con-
ceivable that a mass spectrum taken of a mixture will not be so directly
modeled as a convex combination of the mass spectra of its components.
It is also worth noting that in most applications, a separation step such
as gas chromatography will be employed, and so the values of contamina-
tion we considered are far outside of those that are likely be observed in
practice.

In this demonstrative article, we focused on the task of identifying fen-
tanyl from its mass spectrum using a very small and specifically curated
library of mass spectra, with the knowledge that a reference spectrum for
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Figure 3: Box and whisker plots summarizing the distribution of distance mea-
sures φi where i = {`1, `w,W} computed between a query mass spectrum, xq
constructed using a mass spectrum of fentanyl and (9) across 0 ≤ τ ≤ 1, and
the mass spectrum of fentanyl contained in the reference library

.

fentanyl was contained in the library. This scale of analysis is appropriate
for targeted searches as are common in forensics as well as quality control
applications (e.g. flavor and fragrance molecules). However, untargeted
searches, where the analyte is not only unidentified but potentially com-
pletely novel, are not an uncommon task in modern scientific applications
(e.g. metabolomics, lipidomics, etc.). When conducting an untargeted
analysis, it is far more common to use a general-purpose mass spectral
library (or several libraries). These libraries contain upwards of a million
mass spectra covering a wide variety of molecules [2, 1] and thus allow
for a far wider net to be cast while trying to identify an analyte. Nat-
urally, building, maintaining and searching libraries of such magnitude
introduces several logistical and computational challenges.

It is also worth discussing the library search objective considered in
this article. If used for automated identification of an analyte, it is desir-
able for the library spectrum of the correct identification to be the first
entry of a returned hit list. However, there are scenarios where it may
be desirable to have several similar compounds make up the top several
entries of the hit even at the expense of the correct identification being
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Table 2: Results of a library search when the queried spectrum is constructed
using (10) to model Fentanyl contaminated with Quinine.

Quinine Contamination, λ
0 0.2 0.4 0.6 0.8 1.0

Hit list position of fentanyl
φC 3 2 2 3 2 9
φS 1 1 1 1 3 16
φI 1 1 1 1 1 23.5a

φ`1 5 2 1 7 32 40
φ`2 7 7 6 7 23 42
φW 36 26 1 20 40 38

(a) Non integer hit list rank suggests that another library candidate produced the same
dissimilarity score.

Table 3: Results of a library search when the queried spectrum is constructed
using (10) to model Fentanyl contaminated with Serotonin.

Serotonin Contamination, λ
0 0.2 0.4 0.6 0.8 1.0

Hit list position of fentanyl
φC 3 1 1 1 1 2
φS 1 1 1 1 1 4
φI 1 1 1 1 1 2
φ`1 5 1 6 6 14 28
φ`2 7 1 3 7 7 14
φW 36 27 36 40 39 38

first. As noted earlier in this manuscript, the ultimate identification of
the analyte is made by an human analyst and so having search results
that are easily interpreted and justifiable to a chemist carries significant
value. A recent search procedure that attempts to provide analysts with
higher-value hit lists is the Hybrid Similarity Search[4, 12]. If information
about the molecular mass of the analyte and the reference compounds is
known a priori, the Hybrid Similarity Search procedure promotes com-
pound that have mass spectra that differ in a manner justifiable by the
difference in molecular mass. In many cases, however, little information is
known about the analyte prior to a library search limiting the applicability
of this type of method.

Using mass spectrometry for the chemical identification of fentanyl in
forensics or healthcare is accomplished through the combination of experi-
mental and mathematical procedures that are then coupled to intellectual
interrogation. Taken together this information aids an analysts decision-
making. The reliability of existing approaches is coupled to the quality
of measurements taken of an analyte and reference compounds. The con-
struction of high-quality transferable reference libraries and establishment
of more finely developed mathematical techniques are both ongoing and
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active research areas.

Disclaimer

Certain commercial products are identified to improve clarity of the manuscript;
this does not imply endorsement or recommendation by NIST.
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