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ABSTRACT 

Designing and optimising graphene-based gas sensors, which involve physisorption of analytes 

on the sensor surface, requires theoretical insights into the strength and nature of such non-

covalent interactions. This modelling entails constructing appropriate atomistic representations 

for an infinite graphene sheet and its complex with the analyte, then selecting accurate yet 

affordable methods for geometry optimisations and energy computations. In this work, density 

functionals from the 2nd to 5th rungs of Jacob’s ladder, coupled cluster theory, and symmetry-

adapted perturbation theory in conjunction with a range of surface models, from benzene to the 

periodic system, were tested for their ability to reproduce experimental adsorption energies of 

CO2 on graphene in a low-coverage regime. The best agreement with the reference 

computations was found for global and double hybrid density functionals, while experimental 

adsorption energies were reproduced within chemical accuracy by extrapolating the 

SAPT0//DSD-BLYP-D3 interaction energies from finite clusters to infinity. This simple yet 

powerful extrapolation scheme effectively removes size dependence from the data obtained 

using finite cluster models, and the latter can be treated at more sophisticated levels of theory 

relative to periodic systems. 
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INTRODUCTION 

Among practical applications of graphene – a two-dimensional sheet of sp2-carbon atoms 

arranged in a honeycomb lattice1-3 – detection of small gaseous molecules is arguably the most 

readily geared towards viable real-life implementation.4-8 Development and optimisation of 

graphene-based gas sensors, which typically operate via (non-)covalent interactions of 

adsorbates with the graphene surface, greatly benefit from theoretical insights into the strengths 

and nature of these interactions.9 Examples of the properties studied in silico include adsorption 

geometries, energies, and charge transfer of small molecules (H2O, NO, NO2, NH3, and CO) 

adsorbed on graphene,10 selectivity of NH3 detection with graphene nanoribbons,11 and the role 

of surface defects in the adsorption of CO2 and CO on graphene.12 In these studies, graphene 

and its derivatives were modelled as periodic systems, however, an infinite graphene sheet can 

instead be represented by a finite molecular fragment. For example, in a joint theoretical and 

experimental study on the adsorption of organic molecules on graphene, averaged ab initio 

molecular dynamics energies obtained with non-local van der Waals functionals were in 

excellent agreement with empirical data.13 

Choosing an appropriate model of the adsorbate-surface complex in conjunction with an 

electronic structure theory method, which affords an efficient sampling of adsorption 

geometries for a given adsorbate concentration regime, is a key to accurately simulate 

graphene-based gas sensors.9 Periodic representation of the surface can be advantageously free 

of defects and edge effects; yet, on an ab initio level it is usually feasible only at the local 

density or generalised gradient approximations (LDA and GGA, respectively) of density 

functional theory (DFT), which cannot describe dispersive interactions without empirical 

corrections or non-local functional extensions. While more high-level density functionals, 

periodic second-order perturbation theory (MP2), random phase approximation (RPA), and the 

GW approach are available and able to address the aforementioned limitations of LDA and 
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GGA DFT, they generally come at a prohibitively high computational cost.9 This is particularly 

the case for adsorption in the low coverage regime, where large surface slab models are 

required in addition to large vacuum gaps along the normal directions of the surfaces. Finite 

cluster models, on the other hand, can be treated with a broad spectrum of wavefunction-based 

methods, as well as density functionals from the higher rungs of Jacob’s ladder.14 

Unfortunately, these models suffer from artificial edge effects and heavy size-dependence of 

their computed properties. 

In the absence of a realistic yet computationally inexpensive model, what is the most 

balanced approach to simulating the adsorption of gas molecules on graphene? To address this 

question, we assessed the performance of diverse electronic structure theory methods across 

the surface model sizes for adsorption geometries and energies of CO2 on graphene. In silico 

findings were corroborated via comparison with the results from two recent experimental 

studies. In a study by Matsuda et al.,15 adsorption of carbon dioxide on a monolayer of epitaxial 

graphene on a SiC(0001) surface was analysed by temperature-programmed desorption (TPD) 

and X-ray photoelectron spectroscopy (XPS). At low CO2 coverage, the adsorption energy was 

found to be 30.1 ± 1.5 kJ mol–1, decreasing to 25.4 ± 1.5 kJ mol–1 at higher coverages. The 

XPS results indicated blue shifts of the O 1s and C 1s electron binding energies with increasing 

adsorbate coverage. Additional periodic density functional theory computations using non-

local van der Waals exchange correlation functionals suggested that CO2 is adsorbed parallel 

to the surface. In a more recent study by Smith and Kay,16 a binding energy of 26.1 ± 2 kJ mol–

1 was reported for low CO2 coverage on graphene exposed on a Pt(111) surface. While this 

value is close to that reported by the first study,15 the results of reflection adsorption infrared 

spectroscopy (RAIRS) suggested that CO2 is instead tilted away from the surface. Furthermore, 

the vibrational band of the antisymmetric stretch mode of CO2, which is located at 2350 cm–1 

at low coverage, is blue-shifted to 2378 cm–1 upon transition to higher coverages. 
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In this study, we test the ability of various simulation approaches to reproduce the reported 

experimentally measured adsorption energies and analyse the adsorption geometries of carbon 

dioxide on graphene in a low coverage regime. Examined methodological approaches span 

from the smallest possible graphene model, benzene, treated at various approximations to the 

DFT exchange-correlation functional and at highly accurate wavefunction-based methods, to 

the realistic periodic representation of graphene in conjunction with a GGA density functional. 

 

COMPUTATIONAL DETAILS 

Chemical model. The structures of the finite models of graphene investigated here (Figure 

1A) can be categorised based on their edge structures and shapes as circular (benzene, 

coronene, and circumcoronene), zigzag (rhomboid shapes), and armchair (rectangular shapes). 

For each of these models, three principal adsorption sites (top, hollow, and bridge, shown in 

Figure 1B for benzene) are considered in parallel (shown in Figure 1B) and orthogonal 

orientations. In the larger systems, CO2 is located either near the central C–C bond (for 2´2-

zigzag, 4´4-zigzag, 3´2-armchair), or near the central 6-membered ring. Constrained 

optimisations were performed to preserve the initial adsorption geometries, since they do not 

necessarily correspond to the local minima on the potential energy surface (PES); the 

corresponding structures and their energies were then compared to those in the fully relaxed 

minima, obtained in unconstrained optimisations and confirmed by normal mode analyses. 
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Figure 1. (A) Graphene surface models: the smallest model in red, a mid-sized model in red 

and green, and a large model in red, green, and blue. (B) Principal adsorption sites are shown 

for a parallel orientation of CO2 on benzene. 

Finite model. The following DFT methods in combination with appropriate dispersion 

corrections were used in geometry and energy computations: generalised density 

approximation functional PBE-D3,17,18 hybrid-GGA functional B3LYP-D3,19,20 the long-range 

separated functional ωB97X-D321 and its non-local version ωB97X-V22 for single-point 

energies, and the double hybrid functional DSD-BLYP-D3.23 The latter two functionals were 

found to be among the best for describing inter- and intramolecular non-covalent interactions.24 

All DFT computations were performed with a recent version of the ORCA program25 using 

very tight convergence thresholds and the largest DFT grids (keyword: GRID7). See the 

Supporting Information (SI) for a sample input. Coupled cluster with singles, doubles, and 

perturbative triples (CCSD(T)) computations were performed using the XNCC module of the 

CFOUR program.26,27 ORCA’s capability to function as an external optimiser was utilised to 

perform geometry optimisations with Cartesian coordinates with and without constraints using 

the exact same convergence criteria as for the DFT computations. A self-written interface using 

Atomic Simulation Environment (ASE)28 was used to transform the gradients between the 

input orientation and CFOUR’s standard orientation. The symmetry-adapted perturbation 
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theory (SAPT)29-31 computations at a SAPT0 level in conjunction with DFT geometries were 

performed using Psi4.32,33 The SAPT0 results are relatively independent on the DFT functional 

used to obtain the geometries (see Table S4 in the SI), thus data based on the PBE-D3 

geometries are reported herein. Unless stated otherwise, all computations were performed with 

the def2-TZVP basis set.34,35 

The interaction energy is computed as the difference between the energies of the optimised 

dimer and the two monomers in their dimer geometries: 

𝐸!"# = 𝐸$%&'()")/+,!
- (𝐷) − 𝐸+,!

- (𝐷) − 𝐸$%&'()")- (𝐷)    Eq. 1, 

where 𝐸.-(𝐷) is the energy of the fragment X in the dimer geometry using the dimer basis set. 

Computations for the monomer fragments are performed using the basis set of the dimer so as 

to correct for the basis set superposition error (BSSE). Importantly, computed interaction 

energies are always slightly lower than the experimental adsorption energies, since the latter 

contain additional, albeit relatively small in non-covalently bound complexes, relaxation 

effects (or deformation energy) of the monomers. 

Periodic model. Computations on an infinite/periodic model of graphene were performed at 

the PBE-D3 level using the QuantumEspresso program.36 A 7´7 supercell approach with 98 

carbon atoms and pseudopotentials from the PSLibrary37 was used. An energy cutoff of 90 Ry 

for the plane-wave expansion of the wavefunction was selected after careful evaluation of the 

interaction energy dependence on the cutoff value (see Figure S1 in the SI). For this cell size, 

no dependence on the number of included k-points was detected (see Table S2 in the SI); 

therefore, all computations were executed at the Г-point. In contrast to the finite cluster 

systems, no constraints were needed, since initial adsorption geometries were preserved 

throughout optimisations. The systems were optimised until the maximum force exerted on an 

atom was below 0.01 eV Å–1, using the ASE interface with QuantumEspresso. 
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RESULTS AND DISCUSSION 

Method assessment: Energies. Interaction energies for CO2 adsorbed on benzene, 

computed according to Eq. 1 using a range of DFT and wavefunction theory methods for global 

minima and diverse constrained orientations, are shown in Table 1. Among all tested electronic 

structure methods, CCSD(T) results in the lowest absolute interaction energies, while SAPT0 

gives the most stable complexes, especially for parallel adsorption. The likely origins of this 

discrepancy are (i) the basis set effects on the CCSD(T) energies, and (ii) the low order of the 

perturbation expansion used for SAPT. To confirm this, we performed DLPNO-CCSD(T)38 

and higher order SAPT single point computations for a fixed geometry and with larger basis 

sets (see Table S5 in the SI). The biggest difference between the two methods using a larger 

basis (def2-QZVPPD) and a higher order of perturbation (SAPT2+3) is only 2.3 kJ mol–1. 

Considering the DFT results, all computed Eint are relatively close to each other and to the 

reference coupled cluster and SAPT0 computations. The relative order of interaction energies 

across adsorption geometries is the same for all DFT methods. For example, among the parallel 

orientations, the bridge sites have the lowest Eint, followed by the top and hollow geometries. 

This trend is also in agreement with the SAPT0 results; however, the hollow adsorption site is 

more stable than the top adsorption site at the CCSD(T) level, albeit only by 0.2 kJ mol–1. For 

the orthogonal geometries, the hollow adsorption site is predicted to be the most stable at all 

considered DFT and wavefunction theory methods. Among the DFT functionals, the double-

hybrid DSD-BLYP-D3 gives results that are closest to the coupled cluster, while the long-

range separated hybrid ωB97X-D3 most closely reproduces the SAPT0 computations. These 

observations are in agreement with the broader trends from an extensive benchmarking study 

by Grimme et al.,24 exemplified by, e.g., the mean deviations for the S66 test set (in kJ mol–1): 

1.13 (PBE-D3), 1.05 (B3LYP-D3), 0.96 (ωB97X-D3), 0.17 (ωB97X-V) and 0.04 (DSD-

BLYP-D3). Nonetheless, all computed Eint values are significantly lower than the reported 
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experimental adsorption energies for CO2 on graphene (30.1 ± 1.5 kJ mol–1 and 26.1 ± 2 kJ 

mol–1),15,16 suggesting that larger models might be needed to reproduce these values. 

Table 1. Computed interaction energies (in kJ mol–1) for CO2 on benzene at various adsorption 

sites and orientations.  

Method/def2-
TZVP 

Global 
minima 

Local minima (constrained optimisation) 

Parallel orientation Orthogonal orientation  

bridge top hollow bridge top hollow 

CCSD(T) -7.6 -7.2 -6.9 -7.1 -0.4 -0.4 -0.5 

SAPT0//PBE-D3 -11.9 -11.4 -10.9 -10.7 -1.0 -1.1 -1.4 

PBE-D3 -10.2 -9.9 -9.6 -9.5 -1.7 -1.7 -2.1 

B3LYP-D3 -10.9 -10.5 -10.2 -10.0 -0.9 -0.9 -1.3 

ωB97X-D3 -11.3 -10.9 -10.5 -10.3 -1.0 -1.0 -1.5 

ωB97X-V -10.6 -10.2 -9.8 -9.8 -1.2 -1.2 -1.8 

DSD-BLYP-D3 -9.2 -8.8 -8.4 -8.4 -0.8 -0.8 -1.1 

 

Method assessment: Geometries. Considering the specific adsorption geometries, parallel 

orientations are significantly more stable than the orthogonal ones independent of the 

computational method. For a given parallel orientation, top and bridge sites are very close in 

energy, while the hollow site is on average approximately 0.5 kJ mol–1 less stable. To further 

analyse the adsorption geometries, the following parameters have been analysed: distance d 

between the adsorption site (benzene ring plane) and the CO2 molecule (carbon or oxygen atom 

in case of parallel or orthogonal adsorption, respectively), tilt angle α between the CO2 axis 

and the surface plane, and angle β representing an angle between the adsorption site, CO2 centre 

of mass (i.e., the carbon atom) and its projection onto the surface plane (Table 2). Within the 

constrained geometries, the bridge and top sites in the parallel orientation feature very similar 

distances d, which are consistently larger by approximately 0.17 Å in hollow geometries. The 
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converse is evident for orthogonal orientations, where the hollow adsorption occurs at a shorter 

range relative to the top and bridge counterparts. These structural trends reflect the 

corresponding interaction energies (Table 1): the top and bridge adsorptions are more stable 

for parallel, but less stable for the orthogonal orientations compared to the hollow adsorptions. 

The global minimum geometries are generally very similar to the bridge parallel adsorption 

site; however, the CO2 in the former is slightly shifted towards the centre of the ring, as 

indicated by the β angle.  

Table 2. Geometrical parameters across adsorption sites of CO2 on benzene, computed with 

different electronic structure methods. The inset figure illustrates these parameters. 

 

Global minima Local minima (constrained optimisation) 

Parallel orientation Orthogonal orientation  

bridge top hollow bridge top hollow 

Method/def2-
TZVP 

α,° β,° d, Å d, Å 

CCSD(T) 92.5 3.8 3.25 3.24 3.24 3.40 3.41 3.42 3.27 

PBE-D3 93.8 1.6 3.30 3.30 3.29 3.47 3.46 3.46 3.36 

B3LYP-D3 93.3 2.1 3.25 3.25 3.24 3.40 3.44 3.43 3.29 

ωB97X-D3 93.2 2.2 3.21 3.22 3.21 3.38 3.45 3.46 3.33 

DSD-BLYP-D3 92.5 3.2 3.24 3.23 3.23 3.39 3.40 3.40 3.26 

 

Among the tested DFT methods, PBE consistently predicts the greatest adsorption distances, 

while the shortest d is obtained with ωB97X-D3 for parallel, and with DSD-BLYP-D3 for 

orthogonal orientations. Compared to the CCSD(T) reference, all density functionals predict 

qualitatively correct trends. However, PBE-D3 results tend to overestimate d by 0.5-0.9 Å for 

all adsorption geometries, likely due to its neglect of the Hartree-Fock-like exact exchange.39 

Geometries obtained with the global hybrid B3LYP-D3 and the long-range separated ωB97X-
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D3 are closer to the CCSD(T) geometries than those computed using PBE-D3. Finally, the 

double hybrid functional DSD-BLYP-D3 reproduces the CCSD(T) geometries most 

accurately, with a maximum deviation of only 0.02 Å. 

Overall, the double hybrid functional DSD-BLYP-D3 predicts geometries and energies that 

are the closest to the CCSD(T) reference, in line with the recent benchmark study.24 However, 

the scaling of its computational cost is less favourable compared to B3LYP-D3 and ωB97X-

D3.39,40 This factor, whilst insignificant for a relatively compact benzene•••CO2 complex, can 

become crucial when moving towards larger and more realistic surface models. 

Size dependency. How transferrable is the computed interaction energy of carbon dioxide 

with benzene to the infinite graphene sheet? To address this, we have tested the size 

dependency of Eint computed with different DFT methods across a range of cluster models 

(Figure 1) up to periodic graphene; for clarity, only the PBE-D3 results are detailed further 

(Table 3, the corresponding geometrical parameters and the results of other methods can be 

found in Tables S1 and S4 of the SI). 

Table 3. Size dependency of the interaction energies (in kJ mol–1) of CO2 on multiple graphene 

models computed with PBE-D3. 

Model No. of 
carbon 
atoms 

Global 
minima 

Local minima (constrained optimisation) 

Parallel orientation Orthogonal orientation  

bridge top hollow bridge top hollow 

Benzene 6 -10.2 -9.9 -9.6 -9.5 -1.7 -1.7 -2.1 

Coronene  24 -13.9 -13.9 -13.2 -12.8 -6.0 -5.8 -6.9 

Circumcoronene 54 -15.4 -15.4 -14.6 -14.0 -7.6 -7.5 -8.2 

2´2-zigzag 16 -13.1 -13.1 -12.3 -11.4 -5.1 -4.9 -4.9 

3´3-zigzag 30 -14.3 -14.2 -13.6 -13.1 -6.3 -6.4 n/a a 

4´4-zigzag 48 -15.2 -15.2 -14.5 -13.8 -7.4 -7.4 -7.8 



 

 

12 

2´2-armchair 20 -13.3 -13.3 -13.0 -12.2 -5.2 -5.2 -6.2 

3´2-armchair 28 -14.4 -14.4 -13.7 -12.8 -6.6 -6.4 -6.9 

5´3-armchair 66 -15.5 -15.5 -14.8 -14.0 -7.7 -7.6 -8.3 

Extrapolated   -16.3 -16.3 -15.6 -14.9 -8.6 -8.6 -9.4 

Periodic  -15.6 -15.6 -15.2 -14.4 -8.5 -8.5 -9.0 

a (Constraint) minimum structure that preserved the initial characteristics was not located. 

The following observations can be made on the basis of these results: 

1. Larger surface models lead to more stable clusters independent of the computational 

method and the adsorption geometry. On average, the interaction energies are lower by 6-8 kJ 

mol–1 for the largest considered graphene models compared to the smallest ones. Furthermore, 

this increase in the stability of CO2•••graphene complexes is accompanied by shorter 

interaction distances (see Table S1 in the SI), albeit to an extent dependent on the adsorption 

site. For instance, these distances decrease by only 0.06 Å (from 3.30 Å for benzene to 3.24 Å 

for the 5´3-armchair model) in the bridge parallel adsorptions, but by 0.26 Å (from 3.36 Å for 

benzene to 3.10 Å for the 5´3-armchair model) for the hollow orthogonal counterparts. In 

general, the orthogonal adsorption geometries are more strongly affected by the increasing 

model size than their parallel equivalents. A similar correlation between larger graphene 

models and shorter adsorption distances was reported by Irle et al.41 

2. The relative order of interaction energies does not depend on the system size. For example, 

the bridge parallel adsorption is always the most stable complex (optimised under constraint), 

followed by the top and hollow parallel orientations. Similarly, the hollow adsorption site is 

the most stable among orthogonal orientations (except for the 2´2-zigzag model). 

3. All larger models (circumcoronene, 3´3-zigzag, and 5´3-armchair) converge to similar 

adsorption geometries. For example, all large models feature similar CO2•••surface distances 

for the bridge parallel adsorption (see Table S1 in the SI). 
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4. Geometries of all global minima are similar to each other and very similar to the bridge 

parallel adsorption. 

5. The interaction energy is approximately linearly proportional to the inverse size of the 

surface model (beyond benzene), i.e., the inverse of the number of carbon atoms it contains 

(PBE-D3 data is shown in Figure 2, while the plots for other functionals are given in Figure S2 

of the SI). The linear fit of this data intercepts the y-axis at lim
/→1

𝑚/𝑥	 + 	n, where x is the 

number of carbon atoms in the surface model. Similar extrapolation schemes have been 

established for Eint of graphene with water (exponential fit),42 acetone (three-parameter 

exponential fit),41 a second graphene layer,43 and nucleobases44 (non-linear two parameter fits). 

Importantly, such an extrapolation scheme gives interaction energies for an artificial, infinitely 

large graphene model at any quantum-chemical method applicable to finite systems (Table 4). 

Extrapolated PBE-D3 Eint values are within 1 kJ mol–1 from the periodic PBE-D3 results, 

strongly suggesting that this extrapolation scheme is verily capable of capturing the energetics 

of non-covalent interactions for an infinitely large surface model. 

 

 

Figure 2. PBE-D3 interaction energies of CO2 as a function negatively correlated with the 

number of carbon atoms in the underlying finite surface model (circles), corresponding PBE-
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D3 Eint for the periodic model (diamonds), and linear regression fits of the finite model data 

points (dashed lines). 

Extrapolated values for the interaction of carbon dioxide with an artificial infinite graphene 

sheet follow the same trends in terms of preferred adsorption geometries at all methods 

considered (Table 4). The bridge parallel adsorption site is the most stable and converges to 

the values obtained for the global minimum adsorptions. The highest Eint values are obtained 

with periodic and cluster-based PBE-D3 computations, and while they are close to each other, 

they are approximately 10 kJ mol–1 greater than the experimental adsorption energies. Among 

the DFT methods, B3LYP-D3 gives the lowest extrapolated interaction energy (-19.8 kJ mol–

1 for the global minimum), in reasonable agreement with the empirical data (30.1 ± 1.5 kJ mol–

1 and 26.1 ± 2 kJ mol–1).15,16  

Table 4. Extrapolated interaction energies (in kJ mol–1) of CO2 adsorbed on an artificial infinite 

graphene model computed with several density functionals and SAPT0. 

Method Global 
minima 

Local minima (constrained optimisation) 

Parallel orientation Orthogonal orientation  

bridge top hollow bridge top hollow 

PBE-D3 -16.3 -16.3 -15.6 -14.9 -8.6 -8.6 -9.4 

B3LYP-D3 -19.8 -19.8 -18.8 -18.0 -9.5 -9.5 -10.6 

ωB97X-D3 -17.9 -17.8 -16.6 -15.8 -8.4 -8.4 -9.5 

ωB97X-V -18.6 -18.6 -17.4 -16.7 -9.7 -9.7 -10.4 

DSD-BLYP-D3 -18.9 -18.9 -18.0 -17.3 -10.8 -10.3 -11.6 

SAPT0//PBE-D3 -24.8 -24.8 -23.2 -22.0 -14.2 -14.1 -15.9 

SAPT0//B3LYP-D3 -25.7 -25.6 -23.9 -22.7 -14.7 -14.5 -16.5 

SAPT0//ωB97X-D3 -25.6 -25.5 -23.8 -22.6 -14.3 -14.2 -16.1 

SAPT0//DSD-BLYP-
D3 

-27.0 -26.8 -25.1 -23.8 -16.2 -15.2 -18.2 
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PBE-D3 (periodic)  -15.6 -15.2 -14.4 -8.5 -8.5 -9.0  

 

The interaction energies obtained with SAPT0 are even lower than the B3LYP-D3 values 

and are closer to experimental adsorption energies. The extrapolated Eint for the global 

minimum at the DSD-BLYP-D3 geometry is -27.0 kJ mol–1, in excellent agreement with the 

experimental observations.15,16 With respect to the underlying geometries, SAPT0 interaction 

energies are the highest for the PBE-D3 geometries, and lowest for the DSD-BLYP-D3 

structures. However, the difference between these results is rather small (< 2 kJ mol–1) and is 

a direct outcome of the corresponding adsorption distances (see discussion and Table S3 in the 

SI). 

Established extrapolation using a combination of density functional theory and symmetry-

adapted perturbation theory represents a simple yet powerful scheme for obtaining accurate 

interaction energies for CO2 with graphene. Such a linear fit across model sizes has been 

demonstrated to be necessary to arrive at the most stable complexes and the interaction energies 

that are the closest to experimental values. The best agreement is obtained for geometries 

optimised with the DSD-BLYP-D3 method and energies evaluated at SAPT0 level. However, 

results nearly as accurate can be obtained with computationally less expensive functionals used 

for geometry optimisations. 

Nature of the interactions. Symmetry-adapted perturbation theory provides not only highly 

accurate total non-covalent interaction energies, but also the ability to decompose them into 

physically meaningful components.31 As might be expected for interactions between neutral 

organic molecules,45 dispersion is a primary stabilising force in the investigated complexes, 

supplemented by attractive electrostatics and countered by repulsive exchange (Figure 3A). 

This qualitative behaviour is observed in all studied adsorption geometries (see further 

discussion and Figures S3-4 in the SI). Considering the size dependence of the energy 
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contributions, beyond benzene induction and electrostatic terms are constant and independent 

of the system size, while exchange and dispersion become larger (on an absolute scale) with 

increasing system size. When carbon dioxide transitions from a parallel to an orthogonal 

orientation, the absolute values of all Eint components decrease (Figure 3B). This change is 

most profound for the attractive contributions, leading to an overall weaker interaction for the 

orthogonally oriented CO2 on graphene. 

 

Figure 3. Energy decomposition analysis of the SAPT0//PBE-D3 total interaction energies in 

CO2 complexes (A) with various surface models (global minima adsorption geometries), as 

well as (B) along the transition between the parallel and orthogonal bridge adsorption of CO2 

on benzene (the intermediate points were found by a linear interpolation of the coordinates 

between the two PBE-D3 stationary points). 

 

CONCLUSION AND OUTLOOK 

In search of an optimal methodological approach to modelling the absorption of small 

gaseous molecules on two-dimensional organic materials, the ability of various density 

functional theory and wavefunction theory methods, as well as finite and periodic models to 
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reproduce experimental adsorption energies of carbon dioxide on graphene has been probed. 

For the smallest model, benzene, a comparison with the gold standard of quantum chemistry, 

CCSD(T), shows that the double-hybrid DSD-BLYP-D3 functional performs the best, in 

accordance with previous benchmarks. Nonetheless, all computed interaction energies for 

CO2•••benzene complexes are relatively far from the experimental adsorption energies of CO2 

on graphene in a low coverage regime. Even with larger cluster models (up to 66 carbon atoms), 

computed DFT interaction energies are underestimated by 10-20 kJ mol–1 with respect to 

experiment. Instead, a simple linear fit extrapolating the interaction energies of CO2 on a model 

surface from finite clusters to infinity and using a combination of density functional theory and 

symmetry-adapted perturbation theory produces interaction energies in excellent agreement 

with the experimental values. Computed energies of these dispersion-driven interactions are 

consistently lower (i.e., more stable) in complexes with shorter distances between CO2 and the 

surface model. Relative stabilities of the considered adsorption geometries are generally 

independent of the density functional and the cluster size, with parallel orientations being 

generally more stable than their orthogonal counterparts. Interaction energies obtained in 

conjunction with the PBE-D3 geometries are the furthest from the reference values, followed 

by B3LYP-D3 and ωB97X-D3. DSD-BLYP-D3 predicts the shortest adsorption distances, 

which, combined with SAPT0 interaction energies, predict the most stable complexes. Thus, 

while reasonable relative adsorption energies can be obtained at a relatively low computational 

cost with medium-sized graphene clusters using PBE-D3, reliable estimates of absolute 

adsorption energies require a combination of higher-level DFT (e.g., DSD-BLYP-D3) 

geometries with SAPT0 energies, extrapolated to the infinite cluster size limit. Beyond 

graphene-based sensors for carbon dioxide, these findings can be used as a general recipe for 

computational modelling of various small molecules on graphene and other two-dimensional 

organic materials. 
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