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Understanding and predicting the charge transport properties of π-conjugated materials is
an important challenge for designing new organic electronic applications, including solar
cells, plastic transistors, light-emitting devices, and chemical sensors. A key component of
the hopping mechanism of charge transfer in these materials is the Marcus reorganization
energy, which serves as an activation barrier to hole or electron transfer. While mod-
ern density functional methods have proven to accurately predict trends in reorganization
energy, such calculations are computationally expensive. In this work, we outline active
machine learning methods to predict computed intramolecular reorganization energies of
a wide range of polythiophenes and their use towards screening new compounds with low
reorganization energies. Our models have an overall root mean square error of ±0.113 eV,
but a much smaller RMSE of only 0.036 eV on the new screening set. Since the larger error
derives from high-reorganization energy compounds, the new method is highly effective to
screen for compounds with potentially efficient charge transport parameters.

PACS numbers: 72.20.Jv, 31.15.A, 72.80.Le, 36.20.Kd

I. INTRODUCTION

Polythiphenes are a class of π-conjugated con-
ductive and semi-conductive organic materials
which can be used in many electronic devices,
such as field-effect transistors1,2, organic so-
lar cells3–5, chemical sensors6–10, and more11.
The electronic properties of polythiophenes can
be tuned across a wide range by various syn-
thetic substitutions of the parent thiophene
ring, which has enabled both fundamental stud-
ies and many applications.

The vast majority of polythiophenes derivatives
are p-type, with the charge transfer mediated
by a hole transfer process12–14. Marcus-Hush
charge transfer theory shows that the inter-
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nal reorganization energy (λ), which describes
the energy change required to distort geometry
upon a charge transfer, is one important factor
in the charge transfer rate and resulting charge
mobility12–14.

The internal reorganization energy λ of
molecules undergoing hole transfer can be cal-
culated from four energies - the energy of the
neutral molecule in the lowest energy geometry
(E0, “Neutral”), the energy of the cation at its
lowest energy geometry (E+, “Cation”), the en-
ergy of the cation at the geometry of the neu-
tral species (E∗

+, “Cation@Neutral”), and the
energy of the neutral molecule at the geometry
of the cation (E∗

0 , “Neutral@Cation”)12,14 (Fig-
ure 1). The λ can then be calculated from those
energies according to the following formula 1:

λ = λ0 + λ+ = (E∗
0 − E0) + (E∗

+ − E+) (1)
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FIG. 1: Internal reorganization energy for hole
transfer.

Calculating the λ of polythiophenes using den-
sity functional theory (DFT) calculations re-
quires two geometry optimizations (of both
the neutral and cationic species) and can be
computationally expensive, as the calculation
time increases with the length the polythio-
phene chain. Recent work on the approximate
density functional GFN2 method15 has shown
accurate geometries and excellent correlation
with coupled-cluster methods for conformers16.
We attempted to correlate reorganization en-
ergies computed with GFN2 with those com-
puted with the B3LYP DFT method17,18. As
discussed below, no significant correlation was
found.

In this work, we instead focus on predicting
internal reorganization energies λ using ma-
chine learning (ML) methods, using a minimal
amount of B3LYP-calculated λ as a training set.

In recent years ML has been applied widely,
with a goal of accelerating quantum chem-
ical calculations that would otherwise have
large computational costs. Calculating elec-
tronic properties with traditional methods can
be computationally expensive and take between
hours to weeks to finish, depending on the size
of the system and the type of calculation. ML
has shown a great potential in calculating elec-
tronic structure properties, drug discovery, ma-

terials research, and more19–25. Training a ML
model is also time consuming as well, since it re-
quires a large data set for training and finding
an accurate ML method and representation for
that specific application can be exhaustive, but
once a model has been properly trained, evalu-
ation for new calculations can be performed in
seconds or less.

In this work, we have developed a machine
learning filter for predicting the internal reor-
ganization energy of organic electronic mate-
rials. At present, we find the accuracy to be
greater for compounds with low reorganization
energy - as such it proves more useful for ig-
noring compounds expected to have high bar-
riers for charge transport than as a fully accu-
rate surrogate across the entire range consid-
ered. Nevertheless, since key applications re-
quire efficient charge transport, and thus low
reorganization energies, we demonstrate its use
in efficiently screening a pool of possible co-
polymers. Finally, we discuss frequent chemical
motifs among compounds with low predicted re-
organization energies.

II. METHODS

A. Computational Methods

Input files for each oligomer were created by
combining the corresponding SMILES strings of
its monomers (Table S1) and using OpenBabel
version 3.1.026 to generate a 3D geometry.27 All
GFN2 calculations were performed using xTB
version 6.015. All DFT calculations were done
using the B3LYP functional17,18 with the 6-
31G* basis set,28 calculated with Gaussian 09,29

for comparison with previously published inter-
nal reorganiztion energies.

Random forest and gradient boosted trees mod-
els were implemented using Scikit-Learn ver-
sion 0.20.030. Neural network model was imple-
mented using Keras version 2.3.131 with Ten-
sorFlow version 2.1.032 backend.

All Python code and notebooks are pro-



3

vided in the Supporting Information and
at https://github.com/hutchisonlab/
ReorganizationEnergy

B. Data Set
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FIG. 2: Thiophene based oligomers, length of 2,
4, and 6 monomers - named dimers, tetramers,
and hexamers, respectively.

Our data set consists of 253 thiophene-based
monomers (Table S1). The monomers had dif-
ferent functional groups at the 3 and 4 positions,
while connected to other monomers at the 2 and
5 positions (Figure 2), yielding a total of 31,878
possible copolymers, plus 253 homopolymers, to
a total of 32,131 possible oligomer families. We
used our available monomers to create a list of
possible oligomers made from two, four, and six
monomers - dimers, tetramers, and hexamers,
respectively (Figure 2).

Calculating the λ of long oligomer chains us-
ing traditional DFT methods can be time-
consuming and computationally expensive.
However, previous studies have claimed that
six-membered oligomer chains can closely esti-
mate the λ of longer chains12. However, quan-
tum mechanical calculations, especially when
optimizing molecular geometries, drastically in-
crease with the length of the oligomer (Fig-
ure 3a). We therefore have explored different
ways to minimize the calculation time, such as
using a different computational method, GFN2,
and using shorter oligomers.

At first, we calculated the λ of all the oligomers
using GFN2-xTB, an approximate density func-
tional tight-binding method developed by the
Grimme group15, to see if it can be used as an

accurate surrogate for B3LYP-computed reor-
ganization energies. This method is produces
accurate geometries, and is considerably faster
than B3LYP calculations (Figures S7 and 3a).
However, the λ calculated using GFN2-xTB
does not correlate well with the λ calculated
using B3LYP (Figure S2).

In contrast, while the energies have little cor-
relation, we have found that the geometries of
both the neutral and cation species calculated
using GFN2-xTB did had a significant correla-
tion with those calculated using B3LYP. Specif-
ically, the average dihedral angle and the aver-
age inter-ring bond length. Therefore, instead
of using GFN2-xTB to calculate the λ, we con-
sidered using ML methods using the geomet-
rical descriptors obtained from the GFN2-xTB
calculations. Likely, while the geometric min-
ima correlate well between GFN2 and B3LYP,
the shape of the potential energy surfaces differ
substantially away from the local minima.

In addition, we considered a correlation of λ
between shorter and longer oligomers, since
shorter oligomers are faster to optimize (Fig-
ure S1). We did not find such a correlation
between the B3LYP-computed λ of the dimer
and tetramers, or the dimers and hexamers.
We did find, however, a good correlation be-
tween the tetramers and hexamers (Figure 3b).
Thus, to develop an adequate training set, more
tetramers than hexamers can be used, con-
siderably reducing the calculation time. We
therefore used a data set made up of mainly
tetramers plus a small number of hexamers. We
increased the training set in batches until we
saw no significant improvement in the model
score (Figure 3c) and decrease in RMSE. Our fi-
nal data set consisted of 7020 tetramers and 408
hexamers with B3LYP-calculated λ between 0
and 2 eV. We chose this range as we assumed
that oligomers with λ larger than 2 eV are ir-
relevant to our study.
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FIG. 3: (a) Mean CPU run time of the 4 different calculations using B3LYP, (b) Correlation
between tetramers λ and hexamers λ, trendline indicated robust linear regression fit, (c) training

set size effect on the RF model score.

C. Representation and Model Selection

For the representation of the oligomers in the
ML model we began with the monomer id and
the oligomer length. In addition, we added the
average dihedral angle between the monomers of
each oligomer, and the average inter-ring bond
length of each oligomer, for both the neutral
and cation species of each oligomer, as calcu-
lated using GFN2. We saw correlation (e.g., R2

between 0.57 and 0.74) between those geometric
values calculated with GFN2 and with B3LYP
(Figure S3). Using those starting features gave
us decent preliminary results. Next, we added
an extended circular finger print (ECFP4) 2048
bit representation33 using RDKit34, which in-
creased the R2 and decreased the RMSE of the
model significantly, likely by describing local
functional group effects on reorganization en-
ergies. The final step was to add a new fea-
ture to represent the size of the π-system in the

oligomers (Figure S10), as we hypothesized that
a highly-conjugated oligomer will contribute to
a lower λ. Adding this final feature moderately
improved the model (Table I).

Using our best representation, we trained three
different ML models with our data set: a ran-
dom forest model, a gradient boosting trees
model, and a neural network model. The first
two are ensemble methods based on decision
trees, which combine a several weighted trees
into one model. The random forest model
builds a large number of random sets of deci-
sion trees35, hence the name, while the gradi-
ent boosted trees model builds nested decision
tree one at a time, improving over the previous
tree36. The third ML model, a neural network,
has been widely used in many classification and
regression applications. Neural networks are
built in layers, where each node in each layer
is connected to all the nodes in the next layer.
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R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV)

Run 1 0.533 0.138 0.536 0.138 0.706 0.109 0.719 0.107

Run 2 0.526 0.140 0.548 0.137 0.677 0.116 0.681 0.115

Run 3 0.521 0.140 0.559 0.134 0.661 0.118 0.663 0.118

Average
0.526 0.139 0.548 0.136 0.681 0.114 0.688 0.113

± 0.003 ± 0.001 ± 0.007 ± 0.001 ± 0.013 ± 0.003 ± 0.017 ± 0.003

TABLE I: Cross-validated R2 and RMSE, averages and standard errors, to show model
development improvement as new features are added to the representation.

A mathematical loss function is dictating how
much each node is contributing to the network,
creating a complex structure that can predict
values or classify objects37.

In a random forest model, the key hyperparame-
ter is only the number of trees in the forest. The
greater the number of trees is likely to yield a
better predictions, but also increases the time
it takes to train. Moreover, at point, the model
comes to a prediction ceiling, and adding more
trees will not improve the model. We optimized
the number of trees in the random forest model,
ranging from 10 to 1500, and recorded the train-
ing time, the Scikit-Learn built-in score func-
tion value for random forest models, which is
comparable to the coefficient of determination,
R2, and the root mean square error (RMSE) for
to the test set. As indicated in Figure S11, 50
trees are the optimal number for the random
forest, as it gives the optimal training time, of
about 25 seconds, while having the highest score
and lowest RMSE.

For the gradient boosting trees model, there are
several hyperparameters to optimize — includ-
ing the number of trees, maximum tree depth,
minimum sample split, learning rate, and the
loss function. Optimization started using the
common starting parameters of 1000 trees, un-
limited maximum tree depth, a minimum sam-
ple split of 2, learning rate of 0.01, and the least
squares loss function. Parameters were manu-

ally sampled, comparing the mean square error
(MSE) score. This initial sampling did not no-
ticeably affect the performance relative to the
random forest and the neural network model.
Therefore a more exhaustive grid search over
these hyperparameters was not performed.

As for the neural network model, we used
Bayesian optimization using the HyperOpt and
Hyperas python packages38,39, to find the op-
timal number of hidden layers, the number of
nodes in each layer, and the dropout amount.
We searched over a space of 1 to 3 hidden layers,
20 to 200 nodes per layer, and dropout between
0 to 0.5. We found that 2 hidden layers, size
127 and 109 nodes receptively, and the dropout
amount of 0.005 for the first hidden layer and
0.448 for the second hidden layer, are the opti-
mal values for this neural network. We used the
Continuously Differentiable Exponential Linear
Units (CELU) activation function40, as imple-
mented in the EchoAI python package41, for
the input and both hidden layers, as it outper-
formed other functions - including the widely
used Rectified Linear Unit (ReLU) function.
The output layer consists of a single node as
standard for regression, with a linear activa-
tion function. Training was performed using
the Adam optimizer42 using the mean square er-
ror (MSE) loss function. In order to reduce the
number of hyperparameters needed to optimize,
the ReduceLROnPlateau and the EarlyStopping
Keras functions31 were used to tune the learn-
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Random Forest Neural Network Gradient Boosting Trees

R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV)

Run 1 0.716 0.108 0.631 0.122 0.645 0.121

Run 2 0.662 0.118 0.653 0.120 0.575 0.134

Run 3 0.685 0.114 0.623 0.125 0.612 0.129

Average
0.687 0.113 0.636 0.122 0.611 0.128

± 0.016 ± 0.003 ± 0.009 ± 0.001 ± 0.020 ± 0.004

TABLE II: R2 and RMSE results for three runs for each machine learning method used. The
training and test sets in each run were the same for each method. Averages with standard error.

ing rate during the training of the model and
stop the training once there is no further im-
provement. Effectively optimized the learning
rate and the number of epochs for the neural
network training.

For cross-validation, each model was trained
on three different train-test split sets, using
the Scikit-learn train test split function30 using
random state values of 0, 42, and 420. We
saw that the random forest model outperform
both other models in both the R2 value and the
root mean square error (RMSE) (Table II). We
therefore used the random forest model as our
model of choice for the remaining work..

III. RESULTS AND DISCUSSION

In order to see how well the final random for-
est model can predict the λ of unseen oligomers
we split the data set into a 85%-15% train-test
sets, respectively, comparing the trained model
to predict the λ of the test set and compared
it to the B3LYP calculated λ. The correlation
graph between the predicted and calculated en-
ergies (Figure 4) shows good correlation with
unitless coefficient of determination, R2 = 0.717
and root mean square error, RMSE = 0.105eV
for the tetramers, R2 = 0.737 and RMSE =
0.140eV for the hexamers, and R2 = 0.719 and
RMSE = 0.107eV in total.

Moreover, as figure 4 shows, the correlation
also shows heteroscedasticity, where there is

better correlation for oligomers with lower λ,
and worse for compounds with greater reor-
ganization energies. This shows that predict-
ing the λ for oligomers with geometric differ-
ences between the neutral and cation species
is a complex task. In all likelihood there are
many possible geometric changes between neu-
tral and cation geometries, and as such the lim-
ited training set makes it challenging for the
model to properly account for all reorganiza-
tion in compounds with large λ. Similar het-
eroscedastic behavior can be seen in the correla-
tion between the tetramers and hexamers (Fig-
ure 3b. In principal, some of the heteroscedas-
ticity in the predictions could be reduced by us-
ing more, or even only, hexamers in the training
of the model. However, calculating the B3LYP
lambda for hexamers is computationally expen-
sive — which runs counter to the benefit of the
ML model as a surrogate for the calculations.

For screening, where the intent is to find can-
didates with low λ, the larger heteroscedastic
error for higher λ compounds has only a small
effect — there is better correlation for com-
pounds with small internal reorganization en-
ergies. Therefore we can use the random forest
model as a first, rapid screening tool to find
oligomers with low λ.

The random forest regression model, as imple-
mented in the scikit-learn package, has a fea-
ture importance function30, which enables ex-
ploration of the features in the representation
that contribute the most to the model (Fig-
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FIG. 4: Correlation plot between the
random-forest predicted λ and the B3LYP

calculated λ for the tetramers and hexamers in
the test set.

ure S12). It is clear that the most important
feature is the average inter-ring bond length of
the neutral oligomer, as calculated using xTB-
GFN2. While the bond lengths are expected
to change going from the neutral to cation ge-
ometries, this is a surprising effect as the cor-
relation between the neutral inter-ring bond
length and the B3LYP-calculated λ is weak
(R2 = 0.233, Figure S14). Much like the over-
all reorganization energies, the correlation be-
tween GFN2-computed and B3LYP-computed
inter-ring bond lengths shows the same het-
eroscedasticity, which may explain some of the
feature importance. The second most impor-
tant feature is the π-system size descriptor,
which agrees with the hypotheses that bigger π-
conjugated systems promote lower λ. The third
most important feature is the ECFP bit num-
ber 1019, which indicates the existence of an sp3

hybridized carbon in the oligomer (Figure S13).
Two possible explanations exist for this feature
— that a sp3 hybridized carbon breaks conju-
gation, and as discussed below, the CH2 group
may promote a less planar conformation. Inter-
estingly, the monomer numbers, although used
as a categorical feature with a seemingly arbi-
trary assignment meant for naming only, do ap-
pear to contribute to the model as the fourth

and sixth most important features. The rest
of the features are the other geometrical infor-
mation we encoded into the representation, fol-
lowed by the rest of the ECFP bits which min-
imally contribute to the model.

After using 85% of the training set to train the
model for testing purposes, the final random
forest model was trained using the full data set
for screening a larger validation set to predict
the λ of 24,853 tetramers and 31,722 hexamers
that were not part of the original data set. From
those new predicted λ, oligomers with λ < 0.3
eV were filtered to compute the full B3LYP
λ, including 660 tetramers and 1753 hexamers
with low λ (Figure 5 a, b). The increase in
the number of oligomers with λ < 0.3ev from
the tetramers to the hexamers agrees with as-
sessment of the inverse relationship between the
length of the oligomer and its reorganization
energy12.

We also looked to trends in the predictions in
order to see if there are monomers that repeat-
edly contribute to oligomers with low λ (Figure
5 c, d). For both tetramers and hexamers, the
monomers number 47, 110, 158, 213, 258, and
283 are found frequently (Figure 6). As it can
be seen, all the best performing monomers have
a fused aromatic system on the thiophene back-
bone, supporting our hypothesis that a larger π-
system contributes to low λ. Moreover, exclud-
ing monomer 253 which only has one, all of the
monomers have two aromatic nitrogen atoms in
the 3- and 4- positions on the thiophene ring.
We hypothesize that steric considerations con-
tribute, as CH2 groups in these positions in-
crease the steric repulsion between neighboring
monomers forcing a non-planar, twisted chain
conformation, and increasing λ.12

In order to validate the accuracy of the full ran-
dom forest model the 300 tetramers and 150
hexamers with the lowest predicted λ were se-
lected, and the B3LYP λ was computed to com-
pare with the RF model prediction (Figure 7).
While the predicted values are not perfect, the
low RMSE (0.036 eV) of the prediction versus
the calculated λ, indicates the that model is ro-
bust and accurate at this new validation set,
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FIG. 5: λ predictions for new tetramers and hexamers. Histogram of predicted λ for the new
tetramers (a) and hexamers (b), with tetramers and hexamers with λ < 0.3 eV colored in green.
Histograms of the common monomers for the tetramers (c) and hexamers (d) with λ < 0.3 eV.
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FIG. 6: The top 6 common monomers in
oligomers with predicted λ < 0.3 eV.

and thus can be used as a first step in finding
conjugated materials with better charge trans-
port properties. Interestingly, of the 50 hex-
amers with the lowest B3LYP λ, 44 oligomers
had monomer 47 as one of their monomers, and
the hexamer with the lowest B3LYP λ con-
sists of the homo-oligomer of monomer 47, with
λ = 0.051 eV (Figure 7b). This fragment, and

related monomers are frequently used in top or-
ganic photovoltaic materials.

Moreover, the dihedral angle between the best
performing hexamers is close to 180°(Table S2),
or in other words - flat, and is only minimally
changing between the neutral and cation species
(Table III). This further strengthen the hypoth-
esis, that in addition to a large π-system, for low
λ, better conjugation and planar chain confor-
mations contribute to the low λ. In addition to
the dihedral angle, the best performing hexam-
ers exhibit a minimal change between the neu-
tral and the cation bond lengths.

IV. CONCLUSION

In this work we have shown that a random for-
est model can be used as a screening tool to
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Monomer 1 Monomer 2 Predicted λ B3LYP λ
GFN2

∆Angle (°)
B3LYP

∆Angle (°)
GFN2 ∆Bond

Length (Å)
B3LYP ∆Bond

Length (Å)

47 47 0.120 0.051 0.063 0.005 0.004 0.005

47 116 0.141 0.081 0.034 0.097 0.005 0.008

47 156 0.178 0.086 0.415 0.019 0.006 0.010

47 247 0.147 0.088 0.352 1.628 0.005 0.010

47 217 0.146 0.094 0.032 4.460 0.006 0.012

TABLE III: The monomer numbers, the predicted and calculated B3LYP λ, The GFN2 and
B3LYP geometrical data of the average change in dihedral angles between the neutral and cation
species, and average change in the inter-ring bond length of both neutral and cation species for

the five hexamers with the lowest B3LYP λ.
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robust linear regression fit, tetramers in blue,
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with the lowest B3LYP calculated λ. The
numbers represent the two monomers in the

chain.

find thiophene based oligomers with low and
high λ. Our goal was to train a model by mini-
mizing the calculation time required to generate

the training set by calculating the λ of shorter
oligomers (i.e., tetramers), correlating with the
λ of longer lengths, saving considerable com-
putational time. The resulting random forest
regression model can predict thousands of new
oligomers in a matter of seconds, yielding a list
of potential oligomers with low λ for further
screening. Comparing the time required to gen-
erate the test and validation sets to the possible
time required to calculate all 31,878 tetramers
and 31,878 hexamers, the RF model yields a
∼13× speedup.

From the predictions of the model and the
relative feature importance, it is clear that
oligomers with large, conjugated, π-system have
lower internal reorganization energies. In addi-
tion to a large π-system size, monomers with
low steric bulk, which minimally change con-
formation upon a hole transfer, and also yield
a high degree of delocalization and π orbital
overlap between the monomers, also contributes
to low λ. One monomer in particular, with
a thiadiazole group is frequently observed in
compounds with low internal reorganization en-
ergy. All the top oligomers also share simi-
lar geometries, i.e. being almost completely
flat, and only exhibit minimal changes in ge-
ometry upon a hole transfer. Future work can
consider a similar method for internal reorgani-
zation energies of n-type electron transfer, or
other calculated properties requiring multiple
time-intensive computational steps.



10

ACKNOWLEDGMENTS

We acknowledge support from Department
of Energy-Basic Energy Sciences Computa-
tional and Theoretical Chemistry (Award DE-
SC0019335) and the University of Pittsburgh
Center for Research Computing through the
computational resources provided, and to
Dakota Folmsbee for thoughtful discussions.

1Z. Bao and A. J. Lovinger, Chemistry of Materials 11,
2607 (1999).

2R. Porrazzo, S. Bellani, A. Luzio, C. Bertarelli,
G. Lanzani, M. Caironi, and M. R. Antognazza, APL
Materials 3, 014905 (2015).

3Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley,
S. Cook, and J. R. Durrant, Journal of Materials Sci-
ence 40, 1371 (2005).

4M. Zhang, X. Guo, W. Ma, H. Ade, and J. Hou, Ad-
vanced Materials 26, 5880 (2014).

5Z. G. Zhang, S. Zhang, J. Min, C. Cui, H. Geng,
Z. Shuai, and Y. Li, Macromolecules 45, 2312 (2012).

6F. Wang, H. Gu, and T. M. Swager, Journal of the
American Chemical Society 130, 5392 (2008).

7P. Schottland, M. Bouguettaya, and C. Chevrot, Syn-
thetic Metals 102, 1325 (1999).

8L. Wang, Q. Feng, X. Wang, M. Pei, and G. Zhang,
New Journal of Chemistry 36, 1897 (2012).

9B. H. Barboza, O. P. Gomes, and A. Batagin-Neto,
Journal of Molecular Modeling 27, 17 (2021).

10S. K. Kang, J. H. Kim, J. An, E. K. Lee, J. Cha,
G. Lim, Y. S. Park, and D. J. Chung, Polymer Journal
36, 937 (2004).

11A. L. Ding, J. Pei, Y. H. Lai, and W. Huang, Journal
of Materials Chemistry 11, 3082 (2001).

12G. R. Hutchison, M. A. Ratner, and T. J. Marks,
Journal of the American Chemical Society 127, 2339
(2005).

13J. Cornil, D. Beljonne, J. P. Calbert, and J. L. Brédas,
Interchain interactions in organic π-conjugated mate-
rials: Impact on electronic structure, optical response,
and charge transport (2001).

14S. Zade and M. Bendikov, Chemistry - A European
Journal 14, 6734 (2008).

15C. Bannwarth, S. Ehlert, and S. Grimme, Journal of
Chemical Theory and Computation 15, 1652 (2019).

16D. Folmsbee and G. Hutchison, International Jour-
nal of Quantum Chemistry 121, 10.1002/qua.26381
(2020).

17C. Lee, W. Yang, and R. G. Parr, Physical Review B
37, 785 (1988).

18A. D. Becke, The Journal of Chemical Physics 98,
5648 (1993).

19H. Sahu and H. Ma, Journal of Physical Chemistry
Letters 10, 7277 (2019).

20M. Rinderle, W. Kaiser, A. Mattoni, and A. Gagliardi,
Journal of Physical Chemistry C 124, 17733 (2020).

21D. Padula, J. D. Simpson, and A. Troisi, Materials
Horizons 6, 343 (2019).

22D. Padula and A. Troisi, Advanced Energy Materials
9, 1902463 (2019).

23C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, and S. P.
Ong, Advanced Energy Materials 10, 1903242 (2020).

24T. Sato, T. Honma, and S. Yokoyama, Journal of
Chemical Information and Modeling 50, 170 (2010).

25J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham,
E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah,
M. Spitzer, and S. Zhao, Applications of machine
learning in drug discovery and development (2019).

26N. M. O’Boyle, M. Banck, C. A. James, C. Morley,
T. Vandermeersch, and G. R. Hutchison, Journal of
Cheminformatics 3, 33 (2011).

27N. Yoshikawa and G. R. Hutchison, Journal of Chem-
informatics 11, 10.1186/s13321-019-0372-5 (2019).

28V. A. Rassolov, J. A. Pople, M. A. Ratner, and
T. L. Windus, Journal of Chemical Physics 109, 1223
(1998).

29M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scal-
mani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnen-
berg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Ren-
dell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Sal-
vador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
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Supplementary Information

Monomer SMILES
1 c(s1)ccc1
2 c(s1)cc(F)c1
3 c(s1)cc(Cl)c1
4 c(s1)cc(Br)c1
5 c(s1)cc(C(F)(F)(F))c1
6 c(s1)cc(C(#N))c1
7 c(s1)cc(N(=O)=O)c1
8 c(s1)cc(N)c1
9 c(s1)cc(C)c1
10 c(s1)cc(O)c1
11 c(s1)cc(OC)c1
12 c(s1)cc(S)c1
14 c(s1)cc(C(=O)O)c1
15 c(s1)cc(C=O)c1
16 c(s1)cc(C(C)=O)c1
17 c(s1)cc(C(C(F)(F)(F))=O)c1
18 c(s1)cc(c2ccccc2)c1
19 c(s1)c(F)c(F)c1
20 c(s1)c(Cl)c(Cl)c1
21 c(s1)c(Br)c(Br)c1
22 c(s1)c(C#N)c(C#N)c1
23 c(s1)c(N(=O)=O)c(N(=O)=O)c1
24 c(s1)c(C)c(C)c1
25 c(s1)c(OC)c(OC)c1
26 c(s1)c(OC)c(N)c1
27 c(s1)c(OC)c(C#N)c1
28 c(s1)c(N)c(N(=O)(=O))c1
29 c(s1)c(C(#N))c(C(F)(F)(F))c1
30 c(s1)c(O)c(C(=O)O)c1
31 c(s1)c2CCCc2c1
32 c(s1)c2OCOc2c1
33 c(s1)c2NCNc2c1
34 c(s1)c2SCSc2c1
36 c(s1)c2occc2c1
37 c(s1)c2Nccc2c1
38 c(s1)c2N(C(F)(F)(F))ccc2c1
39 c(s1)c2sccc2c1
41 c(s1)c2Cccc2c1
42 c(s1)c2ocnc2c1
43 c(s1)c2scnc2c1
44 c(s1)c2Ncnc2c1
45 c(s1)c2onnc2c1
46 c(s1)c2snnc2c1
47 c(s1)c2N=S=Nc2c1
49 c(s1)c2c(=C)ccc2c1
50 c(s1)c2c(=O)ccc2c1
51 c(s1)c2s(=O)ccc2c1
52 c(s1)c2s(=O)(=O)ccc2c1
53 c(s1)c2C(=O)CC(=O)c2c1
54 c(s1)c2C(=O)NC(=O)c2c1
55 c(s1)c2C(=O)N(C(F)(F)(F))C(=O)c2c1
56 c(s1)c2C(=O)OC(=O)c2c1
57 c(s1)c2C(=O)SC(=O)c2c1
58 c(s1)c2oc(=O)oc2c1
59 c(s1)c2oc(=S)oc2c1
60 c(s1)c2NC(=O)Nc2c1
61 c(s1)c2NC(=S)Nc2c1
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Monomer SMILES
62 c(s1)c2sc(=O)sc2c1
63 c(s1)c2sc(=S)sc2c1
64 c(s1)c2OCCOc2c1
65 c(s1)c2OCCCOc2c1
66 c(s1)c2NCCNc2c1
67 c(s1)c2SCCSc2c1
69 c(s1)c2CC=CCc2c1
70 c(s1)c2occoc2c1
71 c(s1)c2NC=CNc2c1
72 c(s1)c2SccSc2c1
74 c(s1)c2oc(=O)c(=O)oc2c1
75 c(s1)c2Nc(=O)c(=O)Nc2c1
76 c(s1)c2Sc(=O)c(=O)Sc2c1
77 c(s1)c2ccccc2c1
78 c(s1)c2nccnc2c1
79 c(s1)c2cnncc2c1
80 c(s1)c2ncncc2c1
81 c(s1)c2cc(OC)c(OC)cc2c1
82 c(s1)c2cc(C#N)c(C#N)cc2c1
83 c(s1)c2cc(F)c(F)cc2c1
84 c(s1)c2c(F)c(F)c(F)c(F)c2c1
85 c(s1)c2c(F)ccc(F)c2c1
86 c(s1)c2cc(N(=O)=O)c(N(=O)=O)cc2c1
89 c(s1)c2CCCCc2c1
91 c(s1)cc(C=C)c1
92 c(s1)c(C)c(C=C)c1
93 c(s1)cc(C(=O)OC)c1
94 c(s1)c(S)c(O)c1
95 c(s1)c(OC)c(C(F)(F)(F))c1
96 c(s1)cc(c2ccc(N)cc2)c1
97 c(s1)cc(c2ccc(OC)cc2)c1
98 c(s1)cc(c2ccc(F)cc2)c1
99 c(s1)cc(c2ccc(N(=O)=O)cc2)c1
100 c(s1)c2OCCSc2c1
101 c1sc(c(c1C(F)(F)F)C(F)(F)F)
102 c1sc(c(c1CC)CC)
105 c1sc(c2c1SCCCS2)
106 c1sc(c2c1cc(C(=O)C)cc2)
107 c1sc(c2c1c(C#N)ccc2C#N)
108 c1sc(c2c1CCC[C@H]2O)
109 c1sc(c2c1c(C)ccc2)
110 c1sc(c2c1nc1c3cccnc3c3ncccc3c1n2)
111 c(s1)c2NCOc2c1
112 c1sc(c2c1sc(C(=O)CC)c2F)
113 c1sc(c2c1C(=O)c1ccccc1C2=O)
114 c1sc(c2c1C[C@H](F)[C@@H](F)C2)
115 c1c2c(ncc(CC)n2)c(s1)
116 c1sc(c2c1cc(S)c(O)c2)
118 c1sc(c2c1c(N(=O)=O)ccc2N)
120 c1sc(c2c1C[C@H](C#N)[C@@H](C#N)C2)
121 c1sc(c2c1C[C@H](S)CC2)
124 c1sc(c2c1sc(C(=O)OCC)c2)
127 c1sc(c2c1c(S)ccc2O)
129 c1sc(c2c1c(C(=O)OC)ccc2)
132 c1sc(c2c1CC[C@@H](N(=O)=O)C2)
133 c1sc(c2c1[C@H](C#N)CC[C@H]2OC)
135 c1sc(c2c1SCC(=O)CO2)
136 c(s1)c2ccs(=N)(=O)c2c1
137 c1sc(c2c1[C@H](C)CCC2)
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Monomer SMILES
138 c1sc(c2c1c(C=C)ccc2C)
140 c1sc(c2c1[C@H](C=C)CCC2)
142 c1sc(c(c1O)C(=O)O)
143 c1sc(c2c1nc(OCC)c(CN)n2)
144 c1sc(c2c1sc(=S)o2)
145 c1sc(c2c1cc(C(F)(F)F)cc2)
146 c1c(CC)cc(s1)
147 c1sc(c2c1cc(C)c(C)c2)
149 c1sc(c2c1cc(S)cc2)
150 c1c2c(OCN2)c(s1)
151 c1sc(c2c1C[C@H](OC)[C@@H](OC)C2)
152 c1sc(c2c1S(=O)(=O)CCC2)
154 c1sc(c2c1cc(C=C)cc2)
156 c1sc(c2c1cc(C(C)(C)C)cc2)
157 c1sc(c2c1c(C(F)(F)F)ccc2C#N)
158 c1c2nc(C)c(C)nc2c(s1)
159 c1sc(c2c1CC[C@@H](N)C2)
160 c1sc(c2c1nc(OCC)c(OCC)n2)
161 c1c2c(nccc2)c(s1)
163 c1sc(c2c1c(C(F)(F)F)ccc2)
164 c1sc(c2c1sc(=O)s2)
166 c1sc(c2c1[C@H](C)CC[C@H]2C)
167 c1sc(c2c1C[C@H](C(=O)OC)CC2)
169 c1sc(c2c1CCS(=O)(=O)C2)
170 c1sc(c2c1CC[C@@H](O)C2)
171 c1sc(c2c1[C@H](N(=O)=O)CC[C@H]2N(=O)=O)
172 c1sc(c2c1c(C=C)ccc2)
173 c(s1)c(O)c(NN)c1
174 c1sc(c(c1C(=O)O)OC)
175 c1sc(c2c1cc(N(=O)=O)c(N)c2)
176 c1c2c(ncc(C)n2)c(s1)
178 c1sc(c2c1ncnc2C#N)
179 c1sc(c2c1cc(C(=O)C(F)(F)F)cc2)
183 c1sc(c(c1N(=O)=O)N(=O)=O)
184 c1sc(c2c1nc(CCO)c(CN)n2)
185 c1sc(c(c1O)OC)
187 c1sc(c2c1C[C@H](C(F)(F)F)[C@@H](C(F)(F)F)C2)
188 c1sc(c2c1[C@H](C(=O)C(F)(F)F)CCC2)
190 c1sc(c2c1CC(=O)C(=O)C2)
191 c1sc(c(c1OCC)ON(=O)=O)
192 c1sc(c(c1N(=O)=O)C#N)
193 c1sc(c2c1oc(=O)c(=O)s2)
194 c1sc(c2c1[C@H](C(=O)OC)CCC2)
195 c(s1)c2c(=O)N(CC)c(=O)c2c1
197 c1sc(c2c1oc(C#N)c2)
198 c1sc(c2c1[C@H](C(F)(F)F)CC[C@H]2C(F)(F)F)
200 c1sc(c2c1C(=O)CCC2=O)
201 c1sc(c2c1cc(C=C)c(C)c2)
202 c1sc(c2c1sc(=O)c(=O)s2)
204 c1sc(c(c1OCC)OCC)
205 c1sc(c2c1C[C@H](C#N)[C@@H](OC)C2)
206 c1sc(c2c1C[C@H](N(=O)=O)[C@@H](N(=O)=O)C2)
207 c(s1)c(CCN)c(CCN)c1
211 c1sc(c2c1[C@H](C(F)(F)F)CCC2)
212 c1sc(c2c1cccc2F)
213 c1sc(c2c1nc1c3ccccc3c3ccccc3c1n2)
214 c1sc(c2c1c(N(=O)=O)ccc2)
215 c1sc(c2c1sc(=S)s2)
217 c1sc(c2c1ccc(F)c2)
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Monomer SMILES
218 c1sc(c2c1C[C@H](S)[C@@H](O)C2)
219 c1sc(c2c1nc(CN)c(CN)n2)
220 c1sc(c2c1C[C@H](C)[C@@H](C)C2)
222 c1sc(c2c1oc(N(=O)=O)c2)
223 c1sc(c2c1c(C#N)ccc2)
225 c1sc(c2c1cc(OC)cc2)
226 c1sc(c2c1C[C@H](N)[C@@H](N(=O)=O)C2)
227 c1sc(c2c1[C@H](C#N)CC[C@H]2C#N)
229 c1sc(c2c1OCSS2)
230 c1sc(c2c1c(S)ccc2)
231 c1sc(c2c1OCC[C@@H](SC)O2)
232 c1sc(c2c1OSCS2)
233 c1c2c(sc(C(=O)OCC)c2F)c(s1)
234 c1sc(c2c1[C@H](F)[C@H](F)[C@@H](F)[C@H]2F)
236 c1sc(c2c1[nH]c(N(=O)=O)c2)
237 c1sc(c2c1oc(=O)o2)
238 c1c2nc(CC)c(CC)nc2c(s1)
239 c1sc(c2c1[C@H](C(=O)C)CCC2)
240 c1sc(c2c1cc(C=O)cc2)
241 c1sc(c2c1C[C@H](C(=O)C)CC2)
242 c1sc(c2c1[C@H](S)CC[C@H]2O)
244 c1sc(c(c1O)C#N)
245 c1sc(c2c1cc(C#N)c(OC)c2)
247 c1sc(c2c1cc(C)c(OC)c2)
248 c1sc(c2c1[C@H](F)CC[C@H]2F)
249 c1sc(c2c1sc(C(=O)CC)c2)
250 c1sc(c2c1oc(=S)o2)
251 c1sc(c2c1CCC[C@H]2N(=O)=O)
252 c1sc(c2c1cc(C)cc2)
254 c1sc(c2c1c(C)ccc2C)
255 c1sc(c2c1CC[C@@H](C)C2)
256 c1sc(c2c1[C@H](C)CC[C@H]2C=C)
257 c1sc(c2c1cc(N(=O)=O)cc2)
258 c1sc(c2c1nc1c3ccc(CC)cc3c3cc(CC)ccc3c1n2)
259 c1sc(c2c1CC[C@@H](C=O)C2)
261 c1sc(c2c1[nH]c(C#N)c2)
262 c1sc(c2c1cc1C(=O)N(CC)C(=O)c1c2)
263 c1sc(c2c1[C@H](C(F)(F)F)CC[C@H]2OC)
264 c1sc(c2c1C[C@H](C(F)(F)F)CC2)
266 c1sc(c2c1CCC[C@H]2C=O)
267 c1sc(c(c1C=C)OC)
268 c(s1)c2C(NCC)OC(O)c2c1
269 c1sc(c2c1C(=O)c1ccc(CC)cc1C2=O)
270 c1sc(c2c1C[C@H](C(=O)C(F)(F)F)CC2)
271 c1sc(c2c1CC[C@@H](OC)C2)
272 c1sc(c2c1cc(C(=O)O)c(O)c2)
273 c1sc(c2c1cc(C(F)(F)F)c(OC)c2)
274 c1sc(c2c1cc(C(F)(F)F)c(C#N)c2)
275 c1sc(c2c1[C@H](OC)CC[C@H]2OC)
276 c1sc(c2c1c(C(=O)C(F)(F)F)ccc2)
277 c1sc(c2c1C[C@H](C(F)(F)F)[C@@H](C#N)C2)
279 c1sc(c2c1OCCCC2)
280 c1sc(c2c1CC[C@@H](C(=O)O)C2)
281 c1sc(c2c1[C@H](OC)CCC2)
282 c1sc(c2c1cc(C#N)cc2)
283 c1sc(c2c1[nH]nc2)
284 c1sc(c2c1[C@H](N)CC[C@H]2N)
285 c1sc(c2c1C[C@H](C(=O)O)[C@@H](O)C2)
286 c1sc(c2c1[C@H](S)CCC2)
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Monomer SMILES
288 c1sc(c2c1c(C(F)(F)F)ccc2OC)
290 c1sc(c(c1O)C(F)(F)F)
291 c1sc(c2c1CN2)
292 c1sc(c2c1cc(C(=O)OC)s2)
293 c1sc(c2c1c(C(=O)O)ccc2O)
296 c1sc(c2c1cc(C)s2)
297 c1sc(c2c1sc(N(=O)=O)c2)
298 c1sc(c2c1oc(=O)c(=O)o2)
299 c1sc(c2c1c(C(=O)C)ccc2)
301 c1sc(c2c1[C@H](C(F)(F)F)CC[C@H]2C#N)
303 c1sc(c2c1cc(SCC)c(SCC)c2)
304 c1sc(c2c1cc(C(=O)OC)cc2)
305 c1sc(c2c1SC(=O)CC(=O)O2)
306 c1sc(c2c1SCC(=O)CS2)
307 c1sc(c2c1c(C#N)ccc2OC)
309 c1sc(c2c1sc(C#N)c2)
310 c1sc(c2c1[C@H](N)CC[C@H]2OC)
311 c1sc(c2c1c(C=O)ccc2)
312 c1sc(c2c1OCCCS2)

TABLE S1: List of monomers numbers and their correspondent SMILES string



6

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Dimers B3LYP  (eV)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Te
tra

m
er

s B
3L

YP
 

 (e
V)

R2 = 0.41

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Dimers B3LYP  (eV)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

He
xa

m
er

s B
3L

YP
 

 (e
V)

R2 = 0.31

FIG. S1: Correlation of B3LYP calculated λ between (a) dimers and tetramers, and (b) dimers
and hexamers. Trendlines indicated robust linear regression fit.
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FIG. S2: Correlation between λ calculated using B3LYP vs. λ calculated using GFN2 for (a)
tetramers and (b) hexamers. Trendlines indicated robust linear regression fit.



8

(a)

1.38 1.40 1.42 1.44 1.46
GFN2 Neutral Inter-Ring Bond Length (Å)

1.38

1.40

1.42

1.44

1.46

B3
LY

P 
Ne

ut
ra

l I
nt

er
-R

in
g 

Bo
nd

 L
en

gt
h 

(Å
)

R2 = 0.61

(b)

100 120 140 160 180
GFN2 Neutral Dihedral Angle (°)

100

120

140

160

180

B3
LY

P 
Ne

ut
ra

l D
ih

ed
ra

l A
ng

le
 (°

)

R2 = 0.57

(c)

1.38 1.40 1.42 1.44 1.46
GFN2 Cation Inter-Ring Bond Length (Å)

1.38

1.40

1.42

1.44

1.46

B3
LY

P 
Ca

tio
n 

In
te

r-R
in

g 
Bo

nd
 L

en
gt

h 
(Å

)

R2 = 0.64

(d)

100 120 140 160 180
GFN2 Cation Dihedral Angle (°)

100

120

140

160

180
B3

LY
P 

Ca
tio

n 
Di

he
dr

al
 A

ng
le

 (°
)

R2 = 0.74

FIG. S3: Correlation between the dihedral angle (b, d) and the inter-ring bond length (a, c)
between the monomers calculated using B3LYP vs. GFN2 for the neutral (a, b) and cation (c, d)

species. Trendlines indicated robust linear regression fit.
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FIG. S4: Calculation run time of the 4 different calculation for the dimers using GFN2. Note the
logarithmic y-axis.
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FIG. S5: Calculation run time of the 4 different calculation for the tetramers using GFN2. Note
the logarithmic y-axis.
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FIG. S6: Calculation run time of the 4 different calculation for the hexamers using GFN2. Note
the logarithmic y-axis.



12

Dimers Tetramers Hexamers
0

10

20

30

40

50

60
M

ea
n 

CP
U 

Ru
nt

im
e 

(s
)

Cation
Neutral
Neutral@Cation
Cation@Neutral

FIG. S7: Mean run time for each of the 4 calculations for the dimers, tetramers, and hexamers
using GFN2.
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FIG. S8: Calculation run time of the 4 different calculation for the tetramers using B3LYP. Note
the logarithmic y-axis.
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FIG. S9: Calculation run time of the 4 different calculation for the hexamers using B3LYP. Note
the logarithmic y-axis.
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FIG. S10: Example for the PiSystemSize feature, which counts the number of atoms in the
longest continuous conjugated π-system. In this example of the hexamer of monomers 31

(cyclopentathiophene) and 47 (thiadiazolthiophene) - the 39 highlighted atoms in red are counted.
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FIG. S11: Random Forrest regression optimization, (a) score vs. number of trees, (b) run time
vs. number of trees, (c) RMSE vs. number of trees, (d) score/run time vs. number of trees.
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FIG. S13: Example of the ECFP bit number 1019 which indicates the existence of an sp3

hybridized carbon in the oligomer.
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FIG. S14: Correlation between the average neutral inter-ring bond length of the oligomers versus
the B3LYP calculated λ.
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FIG. S15: Histogram of monomers, sorted by frequency, for (a) tetramers and (b) hexamers with
λ < 0.3 eV illustrating that only a small number of monomers are found frequently (compare to

sorting by arbitrary monomer number in (a) 5c, and (b) 5d).
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Monomer 1 Monomer 2

GFN2
Neutral
Dihedral
Angle (°)

GFN2
Cation

Dihedral
Angle (°)

B3LYP
Neutral
Dihedral
Angle (°)

B3LYP
Cation

Dihedral
Angle (°)

GFN2
Neutral
Bond

Length (Å)

GFN2
Cation
Bond

Length (Å)

B3LYP
Neutral
Bond

Length (Å)

B3LYP
Cation
Bond

Length (Å)

47 47 179.308 179.371 179.999 179.994 1.381 1.378 1.379 1.374

47 116 179.693 179.727 178.576 178.674 1.390 1.385 1.397 1.389

47 156 177.520 177.935 179.979 179.997 1.388 1.383 1.397 1.387

47 247 179.201 178.849 178.099 179.726 1.388 1.383 1.401 1.390

47 217 179.460 179.493 175.533 179.994 1.393 1.387 1.403 1.391

TABLE S2: The monomer numbers, the predicted and calculated B3LYP λ, the dihedral angles of
the neutral and cation species, and the inter-ring bond length of both neutral and cation species

for the 5 hexamers with the lowest B3LYP λ.


