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ABSTRACT 

We present a sequence-to-sequence machine learning model for predicting the IUPAC name of a 

chemical from its standard International Chemical Identifier (InChI). The model uses two stacks 

of transformers in an encoder-decoder architecture, a setup similar to the neural networks used in 

state-of-the-art machine translation. Unlike neural machine translation, which usually tokenizes 

input and output into words or sub-words, our model processes the InChI and predicts the 
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IUPAC name character by character. The model was trained on a dataset of 10 million 

InChI/IUPAC name pairs freely downloaded from the National Library of Medicine’s online 

PubChem service. Training took five days on a Tesla K80 GPU, and the model achieved test-set 

accuracies of 95% (character-level) and 91% (whole name). The model performed particularly 

well on organics, with the exception of macrocycles. The predictions were less accurate for 

inorganic compounds, with a character-level accuracy of 71%. This can be explained by inherent 

limitations in InChI for representing inorganics, as well as low coverage (1.4 %) of the training 

data.  

INTRODUCTION 

The International Union of Pure and Applied Chemistry (IUPAC) define nomenclature for both 

organic chemistry2 and inorganic chemistry.3 Their rules are comprehensive, but are difficult to 

apply to complicated molecules. Although there are numerous commercial software packages 

that can generate the IUPAC name from a chemical structure, these are all closed source and 

their methodology is unknown to the general public. Correctly generating IUPAC names is 

therefore an open problem, and in particular is an issue faced by synthetic chemists who want to 

give a standard name to a new compound. Although canonical SMILES and InChI can be used 

for this purpose, a correct IUPAC name can be more human-readable. 

Two of the most common formats used to represent molecular structure are InChI4 and 

SMILES.5 InChI explicitly records chemical formula, connectivity, and isomerism in a single 

string, although it has the disadvantage of being difficult to interpret by a human. SMILES are 

often easier to work with, as they explicitly show each atom in the compound, and use a system 
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of numbers and brackets to show connectivity. The disadvantage is that SMILES are not unique, 

although various canonicalization schemes are available. 

Neural networks excel at making general predictions from a large set of training data. They have 

shown great success in natural language processing, and have been deployed by Google on their 

online translation service.1 Compared to earlier efforts that needed human-designed linguistic 

features, modern machine translation learns these features directly from matched sentence pairs 

in the source and target language. This is done with a sequence-to-sequence (seq2seq) neural 

network, made up of an encoder, which projects the input sentence into a latent state, and a 

decoder, which predicts the correct translation from the latent state. 

This paper presents a seq2seq neural network trained to predict the IUPAC name of a chemical 

from its unique InChI identifier. 

Data Collection 

A dataset of 100 million SMILES-IUPAC pairs was obtained from PubChem,6 and the SMILES 

were converted to InChI with Open Babel. 7 The average character length of the InChI identifiers 

was 134±60, and 103±43 for the IUPAC names. To simplify training, compounds were removed 

from the dataset if their InChI was longer than 200 characters, or their IUPAC name was longer 

than 150 characters. The resulting dataset of 94 million compounds was split into training data 

(90% of the data), with the remainder reserved for the validation and test sets. As IUPAC names 

of small molecules are usually easy to generate from procedural rules, validation and test sets 

were limited to compounds with an InChI length of 50 characters or greater. Due to the large 

volume of data available, the training set was reduced to a random sample of 10 million 
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compounds. For the same reason, 10,000 samples were chosen for the validation set, and 

200,000 were chosen for the test set. 

Experimental Setup 

All experiments were carried out with the PyTorch version of OpenNMT 2.0.0rc2.8 The neural 

network had a transformer encoder-decoder architecture,9 with six layers in both the encoder and 

decoder (Figure 1). Each attention sub-layer had eight heads, and the feed-forward sub-layers 

had a hidden state size of 2048. Model weights were initialized with Glorot’s method.10  
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Figure 1. The encoder passes a numerical representation of the InChI to the decoder. The 

decoder is seeded with a start token, and its output is recursively re-input until it predicts an end 

token. 

The input (InChI) and target (IUPAC name) were tokenized into characters on-the-fly with 

OpenNMT’s pyonmttok module, with each character represented by a trainable embedding 

vector of length 512. Spaces were treated as separate tokens to enable detokenization of 

predicted names. The word vectors were augmented with positional encoding, to indicate the 

position of each character in the word. Character vocabulary was generated separately for InChI 

(66 characters) and IUPAC name (70 characters), using the whole training set.  

The batch size was optimized for throughput: the optimal batch size was 4096 tokens which is 

equivalent to an average batch size of 30 compounds. Differing sample lengths within a batch 

were addressed by padding samples to a uniform length, and ignoring pad tokens when 

calculating model loss.  

The model was regularized with a dropout rate of 0.1 applied to both dense layers and attentional 

layers.11 The decoder output was regularized with label smoothing with magnitude 0.1.12  The 

model was optimized with the ADAM variant13 of stochastic gradient descent, with beta_1 = 0.9 

and beta_2 = 0.998. The loss function to be minimized was the standard cross-entropy loss 

averaged over all tokens in the batch, defined as 

ℓ =
1

𝑁
∑ ∑ 𝑝(𝑐𝑖) log (

1

𝑞(𝑐𝑖)
)𝑖𝑐𝜖

batch
    ( 1 ) 
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where N is the number of tokens in the batch, 𝑝(𝑐𝑖) is the ground-truth probability that token c is 

the ith character in the alphabet (regularized with label smoothing as described above), and 𝑞(𝑐𝑖) 

is the corresponding probability predicted by the model. We report this as perplexity, defined as 

℘ =  𝑒ℓ      ( 2 ) 

which can be interpreted as the model’s token distribution being, on average, as unreliable as a 

uniform distribution with ℘ branches. We also report token accuracy, defined as the proportion 

of correctly predicted characters in the IUPAC names, and whole-name accuracy, which is the 

proportion of IUPAC names predicted without error. 

The learning rate was increased linearly to 0.0005 over 8000 warmup steps, then decayed with 

the reciprocal square root of the iteration number.9 Gradients were accumulated over 4 batches 

before updating parameters. 

During training, the model was validated every 3200 batches on a validation set of 10,000 

samples, as this size was found to be large enough to be representative. All models were trained 

until the validation accuracy stalled for three consecutive periods. Both training and validation 

used teacher forcing to improve convergence: rather than feeding predictions recursively into the 

decoder, each output character was predicted based on the ground truth from previous 

timesteps.14 Training took seven days on a Tesla K80 GPU, with throughputs of 6000 

tokens/second (InChI) and 3800 tokens/second (IUPAC). The model was evaluated with a test 

set of 200,000 samples. The most probable IUPAC name was found using a beam search (width 

10) and a length regularizer of strength 1.0.1 

RESULTS 
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We performed limited training on a subset of 1 million samples to determine appropriate model 

parameters, and trialed an LSTM architecture14 before settling on the transformer architecture 

described above. Training on 10 million samples converged with a validation token accuracy of 

99.7 %, and a perplexity of 1.09 (Figure 2). The test set accuracies were 95.2 % (token-level) and 

90.7 % (whole name level).  The model was sensitive to dropout probability: increasing this 

parameter above 0.1 reduced the test accuracy by ten percentage points, and training without 

dropout reduced the accuracy by one percentage point. 

 

Figure 2. Perplexity and token accuracy during training of the InChI to IUPAC model. 

The model can accurately predict the IUPAC name of a wide variety of organic molecules, with 

the exception of macrocycles. The model did not perform as well on inorganic compounds. 

Although we cannot provide a comprehensive list here, examples of correct predictions are 

shown in Table 5. Common molecules whose names our model predicts correctly.Table 5. 

DISCUSSION 

The encoder-decoder architecture works by projecting the input InChI into a latent vector, and 

then predicting each character in the IUPAC name sequentially (conditioned on the previous 
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predictions), until it predicts a stop token (Figure 1). The attentional layer in the decoder 

essentially calculates a similarity between characters in the input to characters in the predicted 

IUPAC name. Visualizing these correlations shows which parts of the input were important for 

predicting the output. 

 

Figure 3. Attention coefficients from second to last layer of decoder, averaged over all heads. 

All InChIs have a main layer with the chemical formula, connectivity, and hydrogen positions (in 

that order). When predicting the IUPAC name ‘propane’, no particular part of its InChI stands 
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out (Figure 3), but when predicting the suffix in ‘propanal’, the model pays attention to the 

oxygen element in the formula layer. Similarly, when predicting the ‘-1-ol’ suffix in propan-1-ol, 

the model pays particular attention to the oxygen atom (in the formula layer), and the fact that 

atom 4 (oxygen) has only one hydrogen (in the hydrogen layer). 

We can probe the model further by selectively setting characters in the InChI to an out-of-

vocabulary token. As one might expect, mutating the ‘O’ in propan-1-ol changes the predicted 

IUPAC name to propane. But the model makes a correct prediction when all of the formula apart 

from the ‘O’ is mutated, presumably because the connectivity and hydrogen layers still make 

‘propan-1-ol’ the most likely candidate (Table 1). 

InChI Predicted IUPAC name 

InChI=1S/C3H8O/c1-2-3-4/h4H,2-3H2,1H3 propan-1-ol 

InChI=1S/C3H8#/c1-2-3-4/h4H,2-3H2,1H3 propane 

InChI=1S/####O/c1-2-3-4/h4H,2-3H2,1H3 propan-1-ol 

InChI=1S/C3H8O/c1-2-3-4/####2-3H2,1H3 propan-1-one 

InChI=1S/C3H8O/c1-2-3-4/h4H,######### prop-1-en-1-ol 

#########C3H8O/c1-2-3-4/h4H,2-3H2,1H3 propan-1-ol 

Table 1. Model predictions when mutating the InChI of propan-1-ol with an out-of-vocabulary 

token. 

Isomers 

Stereoisomers are specified by an extra layer in the InChI representation. The inchi2iupac model 

can successfully label enantiomers and diastereomers, even when their InChI differs by a single 

character (Table 6). 
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There are issues with predicting isomerism that are related to limitations in the InChI standard. 

InChI does not recognize optical activity in molecules with Nitrogen in a bridgehead position in 

a polycyclic system (https://www.inchi-trust.org/download/104/inchi-faq.pdf), such as 

Tröger's base, and as such the model cannot assign isomerism in these cases. Tröger's base 

highlights another issue with the predicted IUPAC name: the model is unable to distinguish 

superscripts, so these are reproduced as ordinary characters. This is wholly because the training 

data did not contain superscript markers.  

Inorganic and Organometallic Compounds 

Token accuracy dropped to 71 % for compounds with an inorganic atom. This is partly due to 

only 1.4 % of the training set fitting into this category, which is a small proportion given the 

wide variety of inorganic compounds. Another reason is that InChI is inherently limited in 

representing complexes and organometallics. The standard representation encodes the metal as a 

separate component, and does not encode connectivity.15 While it is possible to add a 

‘reconnected’ layer to InChI to represent coordinate or organometallic bonds (https://www.inchi-

trust.org/download/104/inchi-faq.pdf), the latter is not part of the standard specification, and is 

rarely used in chemical databases. The result is that the model fails to predict the correct IUPAC 

name of many simple inorganic and organometallic compounds (Table 2).  

To demonstrate the problem, converting a Grignard reagent from SMILES to InChI and back 

results in the magnesium being separated from the carbon: 

[Cl-].[Mg+]C  InChI=1S/CH3.ClH.Mg/h1H3;1H;/q;;+1/p-1  [CH3].[Cl-].[Mg+] 

https://www.inchi-trust.org/download/104/inchi-faq.pdf
https://www.inchi-trust.org/download/104/inchi-faq.pdf
https://www.inchi-trust.org/download/104/inchi-faq.pdf
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For such molecules, the IUPAC prediction model would have to base its predictions on 

standardized SMILES, or another format able to denote connectivity. 

There is also a question of the accuracy of the IUPAC names in the training set. Many of the 

IUPAC names of inorganic and organometallic compounds in the PubChem database are 

inaccurate, perhaps because they too were generated from InChI. An improved InChI to IUPAC 

model would need a better data source. 

Common Name IUPAC Name Predicted Name 

ferrocene bis(η5-cyclopentadienyl)iron cyclopenta-1,3-diene;iron(2+) 

ferrocene  

(with reconnected layer) 

bis(η5-cyclopentadienyl)iron cyclopenta-1,3-diene;1,2,3,4-

tetrafluorocyclopenta[b]pyrrol-

4-ide;iron(2+) 

hexaamminecobalt(III) 

chloride 

hexaamminecobalt(III) chloride azane;trichlorocobalt 

methylmagnesium 

bromide 

bromo(methyl)magnesium magnesium;carbanide;bromide 

n-butyllithium butyllithium lithium;butane 

Table 2. Prediction of the IUPAC name of inorganic and organometallic compounds. 

Charges, Radicals and Isotopes 

Although the test set accuracy for charged molecules was only 77 %, the model is still able to 

predict the names of common charged species. However, due to low training set coverage, the 

model performs poorly when predicting the names of molecules with isotopic substitutions 

(Table 3). As InChI encodes point isotopic substitutions with an extra layer at the end, the model 

tends to ignore this information and predict the name of the non-substituted compound.  
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Common Name IUPAC Name Predicted Name 

phenolate phenolate phenolate 

ammonium azanium azanium 

trimethylammonium trimethylazanium trimethylazanium 

naphthalen-1-ylazanium naphthalen-1-ylazanium naphthalen-1-ylazanium 

methyl carbene radical methylene methane 

phenyl radical phenyl cyclohexatriene 

phenoxy radical phenyloxidanyl cyclohexa-2,4-dien-1-one 

heavy water (2H2)Water deuteriooxydiazene 

tritiated water (3H2)Water tritiooxytin 

deuterated benzene 1,2,3,4,5,6-

hexadeuteriobenzene 

1,2,3,4,5,6-

hexadeuteriobenzene 

3-chloroalanine-Cl37 (37Cl)2-amino-2-chloroacetic 

acid 

2-amino-2-chloroacetic acid 

Table 3. Prediction of the IUPAC name of charged species, radicals, and molecules with isotopic 

substitutions. 

Tautomers 

Standard InChI can recognize certain tautomers,15 but when it does so, it encodes a general 

representation. This is powerful, but it does mean that information on the specific tautomer can 

be lost when converting to the InChI format. We found that InChI does not standardize keto-enol 

tautomers or enamine-imine tautomers, and that our model can correctly predict the IUPAC 

name of specific tautomers (Table 4). 

However, for simple proton shifts InChI encodes the structure in the general form. For γ-lactam / 

γ-lactim tautomers, our model predicted the lactam form. A similar effect can be seen with 

resonance forms of the five-membered ring in guanine. While it is possible to specify the 
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resonance form with a non-standard fixed-H layer, there were no such examples in our training 

set and our model still predicts the standard IUPAC name for guanine even when an alternative 

tautomer is specified. The same can be seen on charged species with a mobile proton: the 

oxazolium ion can have a protonated oxygen or nitrogen, but standard InChI does not specify the 

charge center and standardizes the location of the proton. 

Overall, our model performed well on the limited range of tautomers we tested, considering the 

limitations of standard InChI. 

Common Names IUPAC Name Predicted Name 

cyanamide 

(enamine-imine) 

cyanamide / 

methanediimine 

cyanamide / 

methanediimine 

glucic acid 

(keto-enol) 

2-hydroxypropanedial / 

2,3-dihydroxyprop-2-enal 

2-hydroxypropanedial / 

2,3-dihydroxyprop-2-enal 

γ-Lactam 

(lactam-lactim) 

pyrrolidin-2-one / 

3,4-dihydro-2H-pyrrol-5-ol 

pyrrolidin-2-one 

guanine 2-amino-1,7-dihydropurin-6-one 2-amino-1,7-dihydropurin-6-

one 

guanine  

(resonance specified with 

fixed H layer) 

N/A 2-amino-1,7-dihydropurin-6-

one 

Oxazolium 

(mobile proton) 

4,5-dihydro-1,3-oxazol-3-ium 4,5-dihydro-1,3-oxazol-3-ium 

Table 4. Prediction of the IUPAC name of tautomers. 

Alternative Models 
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In machine translation, there are several alternatives to the character-level approach used in the 

current paper. Byte-pair encoding16 and unigram language models17 attempt to tokenize the input 

into common clusters of characters in the training data, and have been very successful in 

machine translation. We performed a limited number of experiments with these encoding 

methods, but could not match the accuracy of the character-level approach. 

The transformer network can be trained with SMILES instead of InChI, and achieve a similar 

accuracy. However, these models did not generalize to alternative SMILES representations that 

were not present in the training data. It may be possible to regularize a SMILES to IUPAC model 

with a function that randomly permutes the possible representations of each training sample, but 

such an implementation is not trivial and may take far longer to train. An attempt to do so with 

two alternative SMILES representations per compound did not generalize. 

Alternative IUPAC Names 

To our knowledge, there are six different commercial software packages that can generate an 

IUPAC name from a structure. There’s a certain amount of variability in the predicted name 

between the different packages, and some allow the user to specify different IUPAC standards. 

This variability is reflected in the IUPAC names found in PubChem6 and ChemSpider,18 

presumably because they use different software to generate the names. For example, Codeine has 

the names: 

(4R,4aR,7S,7aR,12bS)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1H-4,12-

methanobenzofuro[3,2-e]isoquinolin-7-ol 

(5β,6β,9α,13α,14α)-3-Methoxy-17-methyl-7,8-didehydro-4,5-epoxymorphinan-6-ol 
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As our model was trained on PubChem data, its predictions may differ from the IUPAC name 

found on other online services. 

Conclusions and Future Work 

Our InChI to IUPAC model works very well for organics, but has some clear shortfalls, mainly 

due to known issues with InChI and the composition of our training data. It is suitably robust to 

be deployed as a service, as long as the service is constrained to the types of molecule on which 

the model performs well. Our model will be integrated into the United Kingdom’s Physical 

Sciences Data-science Service, as part of a wider physico-chemical property prediction platform.  

This work could be improved by retraining the model (or a separate model) with better data for 

inorganics and organometallics. Due to the inherent issues with InChI, this model would need to 

be trained on SMILES or directly on the chemical graph. The former would either need to rely 

on a canonical form of SMILES, or randomly permute equivalent SMILES strings at each 

iteration, which could result in slow convergence. The latter could be achieved using a hybrid 

model with a graph neural network for the encoder, and a transformer for the decoder.  

Data and Software Availability 

The dataset of 100 million compounds was obtained from PubChem’s6 public ftp server 

(ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/) in two separate files (CID-SMILES.gz 

and CID-IUPAC.gz). The two files were combined by merging on the CID column (the internal 

identifier used by PubChem) with GNU join (http://www.gnu.org/software/coreutils/). The 

integrity of the data was verified with Open Babel,7 which is freely available under the GNU 

General Public License (https://github.com/openbabel/openbabel). This was done by reading in 

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/
http://www.gnu.org/software/coreutils/
https://github.com/openbabel/openbabel
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each SMILES string and excluding 132,421 structures that could not be parsed. The integrity of 

the IUPAC column was verified by excluding names with unbalanced parentheses, using a 

simple regular expression. The SMILES from PubChem were converted to InChI and canonical 

SMILES using Open Babel’s pybel module. The neural machine translation software, 

OpenNMT,8 is freely available under the MIT license (https://github.com/OpenNMT/OpenNMT-

py).  

  

https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
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TABLES  

 

Common Name: decane 

Name: decane 

Prediction: decane 

 

 

Common Name: 4-decanol 

Name: decan-4-ol 

Prediction: decan-4-ol 

 

Name: 1-aminodecan-4-ol 

Prediction: 1-aminodecan-4-ol 
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Name: 3-ethyl-1H-indole 

Prediction: 3-ethyl-1H-indole 

 

Common Name: L-Tryptophan 

Name: (2S)-2-amino-3-(1H-indol-3-

yl)propanoic acid 

Prediction: (2S)-2-amino-3-(1H-indol-3-

yl)propanoic acid 

 

 

Common Name: Val-Gly-Ser Peptide 

Name: (2S)-2-[[2-[[(2S)-2-amino-3-

methylbutanoyl]amino]acetyl]amino]-3-

hydroxypropanoic acid 

Prediction: (2S)-2-[[2-[[(2S)-2-amino-3-

methylbutanoyl]amino]acetyl]amino]-3-

hydroxypropanoic acid 
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Common Name: Codeine 

Name: (4R,4aR,7S,7aR,12bS)-9-methoxy-3-

methyl-2,4,4a,7,7a,13-hexahydro-1H-4,12-

methanobenzofuro[3,2-e]isoquinolin-7-ol 

Prediction: (4R,4aR,7S,7aR,12bS)-9-

methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-

1H-4,12-methanobenzofuro[3,2-e]isoquinolin-

7-ol 

 

Table 5. Common molecules whose names our model predicts correctly. 

 

 

 

 

InChI: InChI=1S/C15H13Cl3O4S/c16-10-1-

4-13(5-2-10)23(20,21)9-12(19)8-22-15-6-3-

11(17)7-14(15)18/h1-7,12,19H,8-9H2/t12-

/m1/s1 

Name: (2R)-1-(4-chlorophenyl)sulfonyl-3-

(2,4-dichlorophenoxy)propan-2-ol 

Prediction: (2R)-1-(4-chlorophenyl)sulfonyl-

3-(2,4-dichlorophenoxy)propan-2-ol 

 

InChI: InChI=1S/C15H13Cl3O4S/c16-10-1-

4-13(5-2-10)23(20,21)9-12(19)8-22-15-6-3-

11(17)7-14(15)18/h1-7,12,19H,8-9H2/t12-

/m0/s1 

Name: (2S)-1-(4-chlorophenyl)sulfonyl-3-

(2,4-dichlorophenoxy)propan-2-ol 

Prediction: (2S)-1-(4-chlorophenyl)sulfonyl-

3-(2,4-dichlorophenoxy)propan-2-ol 
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InChI: InChI=1S/C20H18N2O/c1-23-20-15-

9-8-10-17(20)16-21-22(18-11-4-2-5-12-18)19-

13-6-3-7-14-19/h2-16H,1H3/b21-16+ 

Name: N-[(E)-(2-

methoxyphenyl)methylideneamino]-N-

phenylaniline 

Prediction: N-[(E)-(2-

methoxyphenyl)methylideneamino]-N-

phenylaniline 

 

InChI: InChI=1S/C20H18N2O/c1-23-20-15-

9-8-10-17(20)16-21-22(18-11-4-2-5-12-18)19-

13-6-3-7-14-19/h2-16H,1H3/b21-16- 

Name: N-[(Z)-(2-

methoxyphenyl)methylideneamino]-N-

phenylaniline 

Prediction: N-[(Z)-(2-

methoxyphenyl)methylideneamino]-N-

phenylaniline 

 

InChI: InChI=1S/C17H18N2/c1-12-3-5-16-

14(7-12)9-18-11-19(16)10-15-8-13(2)4-6-

17(15)18/h3-8H,9-11H2,1-2H3 

Names: (±)-Tröger's base 

(1S,9S)- / (1R,9R)-5,13-dimethyl-1,9-

diazatetracyclo[7.7.1.02,7.010,15]heptadeca-

2(7),3,5,10(15),11,13-hexaene 

Prediction: 5,13-dimethyl-1,9-

diazatetracyclo[7.7.1.02,7.010,15]heptadeca-

2(7),3,5,10(15),11,13-hexaene 

Table 6. Prediction of the IUPAC name of isomers not present in the training set. 
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