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Abstract  

Inputting molecules into chemistry software, such as quantum chemistry packages, currently 

requires domain expertise, expensive software and/or cumbersome procedures. Leveraging 

recent breakthroughs in machine learning, we develop ChemPix: an offline, hand-drawn 

hydrocarbon structure recognition tool designed to remove these barriers. A neural image 

captioning approach consisting of a convolutional neural network (CNN) encoder and a long 

short-term memory (LSTM) decoder learned a mapping from photographs of hand-drawn 

hydrocarbon structures to machine-readable SMILES representations. We generated a large 

auxiliary training dataset, based on RDKit molecular images, by combining image augmentation, 

image degradation and background addition. Additionally, a small dataset of ~600 hand-drawn 

hydrocarbon chemical structures was crowd-sourced using a phone web application. These 

datasets were used to train the image-to-SMILES neural network with the goal of maximizing 

the hand-drawn hydrocarbon recognition accuracy. By forming a committee of the trained neural 

networks, we achieved a nearly 10 percentage point improvement of the molecule recognition 

accuracy and were able to assign a confidence value for the prediction based on the number of 

agreeing votes. The top ensemble model achieved a hand-drawn hydrocarbon recognition 

accuracy of 77% for the first prediction and 86% if the top 3 predictions were considered; in over 

50% of cases, the model was at least 97% confident in the prediction, making it a promising tool 

for real-world use cases.  
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Introduction 

 Artificial intelligence (AI) refers to the introduction of “human intelligence” into artificial 

machines. Machine learning is a subfield of AI that focuses specifically on the “learning” aspect 

of the machine’s intelligence, removing the need for manually coding rules. Although Rosenblatt 

proposed the perceptron in the 1950s,1 it wasn’t until the 1990s that machine learning shifted 

from a knowledge-based to a data-driven approach. A decade later, “deep learning” emerged as 

subclass of machine learning that employed multilayer neural networks (NNs). The boom of big-

data and increasingly powerful computational hardware allowed deep learning algorithms to 

achieve unprecedented accuracy on a variety of problems. This resulted in much of the AI 

software used today, such as music/movie recommenders, speech recognition, language 

translation and email spam filters. 

 Deep learning algorithms have been adopted by almost every academic field with hopes of 

solving both novel and age-old problems.2 The natural sciences have historically relied on the 

development of theoretical models derived from physically-grounded fundamental equations to 

explain and/or predict experimental observations. This makes data-driven models an interesting, 

and often unusual, approach. In quantum chemistry, for example, to calculate the energy of a 

molecule one would traditionally solve an approximation to the electronic Schrodinger equation. 

A machine learning approach to this problem, however, might involve inputting a dataset of 

molecules and their respective energies into a NN, which would learn a mapping between the 

two.3-5 The ability to generate accurate models by extracting features directly from data without 

human input makes machine learning techniques an exciting avenue to explore in all areas of 

chemistry – from drug discovery and material design to analytical tools and synthesis planning.  

 Easy-to-use machine learning based tools have the potential to accelerate research and 

enrich education. Here, we develop a hand-drawn molecule recognition tool to extract a digital 

representation of the molecule from an image of a hand-drawn hydrocarbon structure. Drawing 

skeletal chemical structures by hand is a routine task for students and researchers in the 

chemistry community. Therefore, photographing a hand-drawn chemical structure offers a low-

barrier method of entering molecules into software that would normally require time-consuming 

workflows and domain expertise. Moreover, for the vast majority of the chemistry community, 

drawing a chemical structure by hand is far less cumbersome than building it with a mouse. The 

recognition tool could be integrated into a phone application that performs tasks such as quantum 
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chemistry calculations, database lookups and AI synthesis planning directly from the hand-drawn 

molecule, extending the ChemVox voice-recognition system we recently developed.6  

 In addition to its potential as a chemical research and education widget, hand-drawn 

hydrocarbon recognition is an interesting problem from a fundamental science perspective: it 

serves as a prototypical example of how deep learning can be applied to a well-suited chemical 

problem. Sourcing a large training dataset for this task is time and resource intensive, a common 

obstacle encountered in machine learning applications. To address this, we discuss strategies for 

synthetic data generation and their generalizability to scenarios where there is access to limited 

real-world data, but abundant similar data. 

 Hand-drawn chemical structure recognition is, in many ways, similar to the task of 

handwriting recognition. Hand-written character recognition is a prototypical application of 

machine learning, with the MNIST hand-written digit dataset serving as an archetype for 

assessing new classification algorithms.7 Large variation in writing styles, poor image quality, 

lack of labelled data and cursive letters make hand-written text recognition a challenging task.8-11 

Hand-writing recognition falls into two camps: online recognition, in which a user writes text on 

a tablet or phone and it is recognized in real-time, and offline recognition, which refers to static 

images of hand-written text. Offline recognition poses considerably more challenges than online 

recognition due largely to the latter’s ability to use time dependent strokes in combination with 

the final image to distinguish between characters.12 In this work, we focus on offline hand-drawn 

hydrocarbon structure recognition, extending the potential use cases to digitization of lab 

notebooks.  

 Automatic extraction of a molecule from an image of its 2D chemical structure to a 

machine-readable format, termed optical chemical structure recognition, first emerged in the 

1990s.13-18 These systems were developed with the intent of mining ChemDraw type diagrams in 

the chemical literature to utilize the wealth of largely untapped chemical information that lies 

within publications. Over the following decades, more complex systems were developed, often 

based on the principles of their predecessors.18-29 OSRA was the first chemical structure 

recognition open-source software, allowing new programs to be developed by direct extension. 

The majority of optical chemical structure recognition packages, including Kekulé,15 IBM’s 

OROCS,16 CLiDE17 and CLiDEPro,22 ChemOCR,21 OSRA,23 ChemReader,24 MolRec,26 

ChemEx,27 MLOCSR,28 and ChemSchematicResolver29 rely on a rule-based workflow rather 
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than a data-driven approach. These systems achieve various degrees of accuracy, with the 

recently developed ChemSchematicResolver reaching 83-100% precision on a range of datasets. 

 Rule-based systems often involve complex, interdependent workflows, which can make 

them challenging to revise and extend. Therefore, several optical chemical structure recognition 

packages have been recently proposed based on data-driven, deep learning techniques.30-32 

Notably, Staker et al30 employed an end-to-end image to molecule neural network, and 

ChemGrapher31 used as series of deep neural networks to extract molecules from the chemical 

literature. Since these models are built directly from the provided data, they can be adapted or 

extended by presenting the neural network with different or additional training data, without the 

need for algorithm modification. Therefore, if there is an available dataset, data-driven systems 

offer a promising alternative to rule-based systems for this task. 

 The optical chemical structure recognition systems mentioned thus far focus on recognition 

of computer generated, ChemDraw-type structures. A handful of promising online hand-drawn 

chemical structure recognition programs have recently been developed,33-34 however they 

currently remain limited in accuracy and generalizability. Our goal of extracting molecules from 

photographs of hand-drawn chemical structures is a further challenge. We believe that machine 

learning models are well-suited to address the noisiness of hand-drawn structures by augmenting 

and degrading the training data. 

 In this article, we begin by discussing our chosen deep learning approach for hand-drawn 

chemical structure recognition and demonstrate proof-of-concept on ChemDraw type images of 

molecules produced with the RDKit. Next, we describe the generation of two datasets: a small 

set of real-world photographs of hand-drawn hydrocarbon structures and a large synthetic 

dataset. We perform a series of experiments with these datasets, aiming to optimize the 

recognition accuracy on out-of-sample real-world hand-drawn hydrocarbons. We end by forming 

an ensemble model consisting of a committee of NNs trained in the experiments, which leads to 

a significant boost in recognition accuracy and introduces a confidence value for the predicted 

molecule. The work serves as a prototypical case study for approaching a chemical problem with 

machine learning methods, focusing on the explanation of deep learning, synthetic data 

generation, and ensemble learning techniques. 
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Theory 

 Using molecules as the input or output of NNs require them to be represented in a machine-

readable format. There are many ways to represent chemical structures, however each approach 

suffers from shortcomings. As a result, formulating new molecular representations has received 

significant attention in recent years.35-36 The simplified molecular-input line-entry system 

(SMILES) format represents the molecular graph as a string.37 Unfortunately, small changes in 

SMILES strings can lead to large changes in chemical structure (and often invalid molecules), 

and small changes in structure can lead to large changes in the string. As a result, representing 

molecules as graphs has become increasingly popular, with graph convolutional neural networks 

often being employed for encoding and decoding.38-39 Other molecular representations include 

Cartesian coordinates and SELFIES.36, 40-41 

 In this work, we represent molecules as SMILES strings in order to leverage recent advances 

in natural language processing (NLP).42 We employ neural image captioning, in which an image 

is input into a NN and a caption for the image is produced.43-44 Here, an image of a hydrocarbon 

molecule is input and the predicted SMILES string is output, as shown in Figure 1. The NN 

architecture consists of a convolutional neural network (CNN)45-46 encoder and a long short term 

memory (LSTM)47 decoder. CNNs contain ‘convolutional layers’ that apply a convolutional 

filter over the image and pass the result to the next hidden layer; they are used primarily for 

encoding images since they conserve the spatial relationship of the pixels. LSTMs are a type of 

stable recurrent neural network (RNN) that make use of “gates” to learn long term dependencies, 

popularly used for language applications. This is a useful feature in the case of decoding 

SMILES strings since there are often relations between characters at the start and end of the 

string, such as closing of a parentheses pair to indicate the end of a branching group. Our image-

to-SMILES approach is inspired by the work of Deng et al., which trained a NN to convert 

images of mathematical formulas to LaTeX code.48 A similar approach was also used by Staker 

et al. to recognize SMILES strings from ChemDraw type images in the chemical literature.30 
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Figure 1. Image-to-SMILES neural network used for hand-drawn hydrocarbon recognition 

based on neural image captioning. The network consists of a convolutional neural network 

(CNN) encoder and long short-term memory (LSTM) decoder network.  

 

 Chemical structure recognition is a supervised learning problem: each input is associated 

with an output label. During the training process, a defined loss function, which depends on the 

error between the predicted NN label and the reference label, is minimized. Our image-to-

SMILES network is an example of an encoder-decoder network: the input is encoded to create a 

compressed representation of the data, which is subsequently decoded to the predicted output. 

The key idea behind these encoder-decoder workflows is the ability to learn a mapping between 

two different representations of the same data by compressing it to its key “features” through the 

central bottleneck called the latent space. One of the properties of encoder-decoder frameworks 

that has made them so successful for supervised learning is the ability for the same network 

architecture to be used for many different applications by simply providing data specific to that 

application. For example, a CNN-LSTM network can be applied to chemical structure 

recognition, image caption generation,44 mathematical formula recognition,48 optical character 

recognition (OCR) in natural scenes49 and hand-writing recognition11 to name a few. Moreover, 

since the encoder and decoder networks are swappable components, they generalize well beyond 

the CNN-LSTM applications: machine translation can be achieved by simply swapping the CNN 

with another LSTM to form a sequence-to-sequence model for instance. Autoencoders are a 

special case of encoder-decoder networks in which the target output space is equal to the input 

space, used as a way of performing dimensionality reduction.  

 In our image-to-SMILES network, the LSTM decoder uses an attention mechanism to 

improve the accuracy of the output text sequence.44, 50-51 The attention mechanism learns a 

probability mask over the image by calculating a “context vector” which acts as a dynamic 

pointer to relevant areas of the image during decoding. This reduces the loss of higher-level 

image features at the encoder bottleneck. For example, a high attention score for pixels showing 

two parallel lines in the chemical structure might prompt “=” to be output from the LSTM.  
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 In addition to attention, beam search was also used in the decoding layers. Beam search 

keeps track of the top k most probable NN predictions. During training, RNNs output predicted 

characters of the SMILES string and pass them back into the network, which outputs the next 

predicted character and so on. Applying beam search to an RNN allows the network to keep 

track of the strings with the k highest cumulative probability at each decoding step, while the 

other predictions are pruned. The final output of the NN is a list of length k with the highest 

ranked predictions. A greedy decoder would have k = 1, meaning that only the highest 

probability characters are saved.  

Methods  

Neural network architecture  

 For the NN training we applied an adapted sequence-to-sequence (seq2seq) model used 

originally for mathematical equation recognition.52 The CNN encoder architecture outlined in 

Table S1 was implemented. An LSTM with 512 units and embedding dimension of size 80 was 

used for decoding, with beam search (k = 5) and attention mechanism intermediary vector 

dimension of 512. We used the Adam optimizer53 and a batch size of 20 for training. Network 

weights were saved based on the validation set’s perplexity, p, calculated as 

𝑝 = − exp (
𝐻𝑐ℎ𝑎𝑟𝑠

𝑛𝑐ℎ𝑎𝑟𝑠
) 

where 𝐻𝑐ℎ𝑎𝑟𝑠 is the sum of the cross-entropy loss for the characters in the validation set, and 

𝑛𝑐ℎ𝑎𝑟𝑠 is the number of characters in the validation set. A learning rate of 1x10-4 was used for all 

training runs and the model was implemented in Tensorflow.54 We define the NN accuracy as 

the proportion of molecules predicted exactly correctly, i.e., the predicted SMILES matches the 

target SMILES character-by-character. 

Datasets 

 We extracted a dataset of 500,000 SMILES strings with a ring size of less than eight carbon 

atoms from the GDB-13 and GDB-11 databases.55-57 The vocabulary was restricted to 

“Cc=#()1”, where = and # indicate double and triple bonds, respectively, parentheses indicate the 

start and end of a branching group, lower case letters represent aromaticity, and numbers are 

found at the start and end of rings. To remove ambiguous skeletal structures from our dataset that 

confuse the NN during training, we only include the number ‘1’ meaning that molecules with 
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multiple conjoined rings are not considered. The SMILES labels were canonicalized using 

RDKit to give a single target output. After canonicalization, molecules outside of the vocabulary 

were removed, resulting in a ~10% reduction in size for all datasets used in the experiments 

presented. RDKit was used to generate images of molecules from the SMILES dataset, by first 

generating SVG files and then converting to PNG format. The result is a labelled dataset of 

image and SMILES pairs; representative examples are shown in the Figure 2 inset. We used this 

clean RDKit dataset to perform proof-of-concept for the image-to-SMILES network. A synthetic 

dataset based on RDKit images designed to mimic hand-drawn data was curated for the purpose 

of this study. We discuss the auxiliary data generation workflow, and experiments performed on 

this dataset in the coming sections.  

 The computer-generated datasets were first split into a 90% training/validation set, and a 

10% test set. The test set serves as out-of-sample data used to evaluate the accuracy of the 

network after finishing the training process. The training/validation set, used during training, was 

then split further into a training set (90%) and a validation set (10%). The real-world 

photographs of hand-drawn hydrocarbons consisted of a total of 613 images. We set aside a 200-

image test set, with the remaining 413 images being either used entirely as a validation set or 

split into validation (200 images) and training (213 images) datasets, depending on the 

experiment. All images were resized to 256 x 256 pixels and converted to PNG format using 

OpenCV.58 

Results and discussion  

Synthetic data generation 

 To test the suitability of our image-to-SMILES network for hand-drawn molecule 

recognition, we begin by training with clean images of hydrocarbon skeletal structures generated 

with RDKit and their respective SMILES labels (Figure 2). In order to determine the dataset size 

required to achieve a given recognition accuracy, the NN was trained with datasets of size 104, 

5x104, 105, 2x105 and 5x105 images (split between training, validation and test sets as described 

in the methods section). The results of the proof-of-concept training are shown in Figure 2, 

illustrating the increasing NN recognition accuracy with dataset size. A dataset of 5x104 labelled 

RDKit images achieves an out-of-sample (test set) accuracy of over 90%, and a maximum 
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accuracy of 98% is achieved with a dataset of 5x105 images. This demonstrates that the chosen 

NN architecture is capable of learning SMILES strings from images of hydrocarbons. 

 

 

Figure 2. Out-of-sample accuracy of the image-to-SMILES network trained with an increasing 

number of clean RDKit hydrocarbon structures and their corresponding SMILES label. 

Representative examples of labelled RDKit training images and SMILES are shown in the inset.  

 

Although the results from training with RDKit images suggest that a dataset of 5x104 

images obtains 90% out-of-sample accuracy, in reality a much greater number of hand-drawn 

hydrocarbon molecules are likely needed to achieve this same accuracy. As with handwritten text 

recognition, variation in drawing style, backgrounds and image quality provide significant 

challenges. There is noise associated with (i) the chemical structure, such as varying line widths, 

lengths, angles and distortion, (ii) the background, such as different textures, lighting, colors and 

surrounding text, and (iii) the photograph, such as blurring, pixel count and image format (Figure 

3). A further challenge of chemical structure recognition is the ability for a molecule to be drawn 

in any orientation, in contrast to text recognition of languages written in one direction, e.g. left-

to-right.  
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Figure 3. Comparison between (a) a computer-generated (RDkit) image of a hydrocarbon 

structure and (b) a photographed hand-drawn hydrocarbon structure. The differences between the 

two images are highlighted, demonstrating the increased complexity of hand-drawn structure 

recognition. 

 

 Since end-to-end NNs learn a model solely from the data presented during training, access to 

high-quality data is imperative to achieve an accurate model. Unfortunately, a labelled dataset of 

real-world hand-drawn molecules does not exist and cannot be easily generated. Therefore, 

unlike in the case of RDKit images, it is not possible to achieve high recognition accuracy by 

simply training with hundreds of thousands of hand-drawn structures. Lack of training data is a 

common hurdle when attempting to apply end-to-end deep learning models to real-world 

problems. This is especially true in fields where producing datapoints is time and energy 

intensive, such as the chemical domain. In cases such as these, generating synthetic data can 

prove more efficient than spending excessive time and resources collecting large amounts of 

real-world data. 

 We developed a data collection web app to source a small dataset of hand-drawn chemical 

structures. In order to capture the large noise in drawing style, photograph quality and 

background types that are prevalent in real-world data, we collected data from many different 

drawers by promoting the app to a range of groups in the Stanford University Chemistry 

Department. This aimed to reduce the risk of the network learning to recognize only a single 

user’s drawing style. Over 100 unique users of the app generated over 5800 photographs of 

hand-drawn chemical structures, 613 of which were hydrocarbons. Details of the data collection 

app are shown in Figure S1 and the collected dataset will be released with this paper. Based on 

our earlier RDKit image results (Figure 2), ~ 600 images is several orders of magnitude less data 

than necessary to train to any reasonable recognition accuracy. As a result, in addition to 
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sourcing real-world data, we also developed a workflow to generate a large synthetic dataset to 

be used in conjunction with the limited real-world dataset for training. 

 An ideal synthetic dataset is exactly equivalent to the target data, but can be readily 

generated on large scales (unlike the target data). The desired datatype (of which there is 

insufficient data for training) could therefore be substituted with synthetic data during training 

and the weights would be directly transferable to the target data. To discuss how to generate such 

an auxiliary dataset, we consider a subspace that spans from the desired datatype to a similar, 

readily scalable datatype. In our case, this is the subspace between photographs of hand-drawn 

molecules and RDKit images. The aim is to find a mapping that moves both datatypes to the 

same point in the subspace such that they are indistinguishable. Figure 4 depicts such a subspace, 

highlighting possible convergence routes. Perhaps the most obvious pathway transforms raw 

RDKit data (bottom right) into images that resemble raw hand-drawn data (top left) as closely 

possible (or visa-versa); this might involve adding in backgrounds, distorting the lines and 

blurring the image. Indeed, it is also possible to modify both datatypes such that they reach a 

common point in the subspace that lies away from both the original data points – so long as the 

two datatypes converge to the same point, they are equivalent. For example, applying edge 

detection (or background removal) to both the hand-drawn and computer-generated data would 

result in movement away from their respective raw datatypes, but closer to one another. In this 

instance, a model would be trained with an edge-detected synthetic dataset, and later applied to 

hand-drawn hydrocarbon molecule images that have been pre-processed with edge detection. 

Mapping two datatypes to a common point in a subspace is commonly used in deep learning 

applications since there is often a limited amount of the exact data needed, but a similar readily 

accessible datatype that can form the basis of a synthetic dataset.11, 59-60 

 It is important to note that, although the desired and synthetic datapoints should converge, 

the data must also maintain enough structure to allow the SMILES string to be extracted from the 

image. In other words, the information content, i.e., the important features, must be preserved. 

For example, consider the extreme case of setting all the pixels in the image to black for both 

datatypes: the data would reside at the same point in the subspace, however the NN would not be 

able to learn the mapping from image to SMILES. A one-to-one mapping between the two 

datatypes and the output label must exist, i.e., one image should only correspond to exactly one 

molecule.  
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Figure 4. Data subspace that spans from target data (photographs of hand-drawn hydrocarbon 

chemical structures, top left) to scalable data (raw RDKit images, bottom right). Paths to reach 

similar points in the subspace for the target data and synthetic data are demonstrated. Blue 

outline: hand-drawn images, red outline: computer-generated images.  

 

 We explored auxiliary datasets based on background removal and edge detection algorithms, 

however these image processing techniques were often found to be brittle when applied to real-

world hand-drawn data. For example, dark shadows, lined paper and thin pencils made it hard to 

clearly identify the molecule after applying such algorithms (Figure S2). To ensure the 

recognition software is robust to a wide range of potential images, for the remainder of this study 

we focus on generating a synthetic dataset that resembles hand-drawn molecules as closely as 

possible. Figure 5a outlines the synthetic data generation workflow developed to transform 

RDKit images into synthetic photographs of a hand-drawn hydrocarbon structure. First, we 

introduce randomness to bond angles, lengths and widths via modification of the RDKit source 

code (RDKit'). The image is then passed through the augmentation pipeline that applies a series 

of random image transformations according to a defined probability (RDKit'-aug). The 

augmented molecule image is then combined with a randomly augmented background image by 

weighted addition with OpenCV (RDKit'-aug-bkg). Finally, the image is passed through a 

degradation pipeline to form the final synthetic data (RDKit'-aug-bkg-deg). The molecule 

augmentation, background augmentation and image degradation workflows are outlined in 

Figure 5b, with all the transformations applied in these pipelines detailed in Table S2. Generating 
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a synthetic datapoint from a SMILES string takes ~1s, hence, over 85,00 labelled images of 

hydrocarbons can be produced in 24 hours of compute time. For comparison, it takes ~1 minute 

for a human to draw, photograph, and label a hydrocarbon chemical structure, meaning that ~2 

months of continuous human effort would be needed to achieve a dataset of this size.  

 

 

Figure 5. (a) The synthetic data generation workflow with the datatype’s assigned name for each 

stage of the pipeline. (b) The augment molecule, augment background and degradation pipelines 

used for the synthetic data generation. Each box corresponds to a function that is applied 

according to probability, p. A complete list of the image transforms associated with each 

function is given in the Supplemental Information. (c) Schematic depiction of how the steps in 

the synthetic data workflow move the synthetic data distribution towards the hand-drawn data 

distribution by representing the datasets as two-dimensional gaussians (not to scale).  

 

 The background images are randomly selected from a dataset of 1052 photographs (Figure 

S3). This backgrounds dataset was collected relatively easily as it did not require labelling. By 
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adding the photographed backgrounds to a known molecule, a labelled synthetic dataset with 

realistic background textures and photograph features is produced. Since it is common for the act 

of labelling data to be the most time intensive step of dataset generation, sourcing a large dataset 

of an unlabelled component of the data and combining it with a synthetic labelled component can 

be an inexpensive way of generating synthetic data with realistic features.  

 The molecule and background image augmentation pipelines (Figure 5b) introduce noise 

into the data through rotations, translations, distortion and other image transformations. This acts 

as a form of regularization during training to reduce overfitting (where the NN reaches high 

accuracies during training but much lower accuracies on out-of-sample data). The importance of 

broadening the data distribution can be exemplified with background augmentation: without 

augmenting backgrounds the NN may become overly familiar with the structure of the 

background images used during training and learn to remove them from the image. The result is 

bad generalization when presented with images that have different backgrounds to those seen 

during training. The augmentations are deliberately more aggressive than what would be found 

in real-world images to span the maximum dataset subspace, i.e., make the distribution as wide 

as possible. 

In addition to augmentation, we also randomly degrade the data to further increase the 

regularization. This accounts for features like variation in image quality and type. The 

degradation pipeline was adapted from work by Ingle et al.,11 which leveraged a large dataset of 

online data for offline hand-written text recognition by applying aggressive degradation. 

Through a well-constructed degradation workflow, they were able to achieve a large increase in 

accuracy, particularly for cases where a small number of real-world images were available. We 

will later show the effect that data augmentation and degradation have on our recognition 

accuracy. 

As described previously, the stages of the synthetic data generation pipeline are designed 

to map the synthetic distribution onto the distribution of real-world hand-drawn chemical 

structures. A simplified schematic of how each step effects the data distribution is shown in 

Figure 5c. The datasets are represented as two-dimensional gaussians, with their amplitude 

proportional to the quantity of data and their width proportional to the data variation within the 

distribution. As the data proceeds through the augmentation, background addition and 

degradation steps, the synthetic distribution approaches the hand-drawn data distribution in the 
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subspace, as was previously explored in Figure 4. We also show widening of the distribution as 

these steps are applied in order to span as wide a range of data as possible to minimize 

overfitting.  

Representative examples of the synthetic and real hand-drawn datasets are compared in 

Figure 6. By eye, the synthetic images strongly resemble the hand-drawn data. However, since 

NNs read the images as an array of pixel values, an important comparison metric is the 

frequency of the pixel values found in the images. We do this by comparing histograms of pixel 

intensity, which ranges from 0 (black) to white (255), for the synthetic and hand-drawn data. It 

can be seen that the synthetic data often has less of a smooth, continuous pixel count and less 

texture than the real-life data. Also, the frequency of pixel intensities is generally higher for the 

synthetic data in comparison to the hand-drawn data. These differences are due to the heavy 

augmentations of the backgrounds in the synthetic data pipeline (e.g., cropping and adding 

borders) which results in reduced image texture. This discrepancy could be reduced by 

increasing the size of the background dataset such that less aggressive augmentations would be 

required. 
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Figure 6. Comparison of representative images taken from synthetic dataset (left) and real-life 

hand-drawn dataset (right) and their pixel count histogram calculated by flattening the greyscale 

images and calculating the frequency of pixel intensities (values from 0 to 255 where 0 is black 

and 225 is white). 

 

Analysis of the pixel counts highlights the dangers of over-augmentation. A compromise 

must be reached between augmenting enough to prevent overfitting, but not so much that the 

data no longer resembles the target. An example of an overly-augmented background image can 

be found in Figure S5, which was generated with heavily cropped backgrounds. Since we have 

access to only a limited number of background images, we choose to augment our synthetic data 

relatively aggressively. However, we limit overly excessive cropping and resizing so not to 

remove completely the continuous texture of the image. Heavy augmentation can also lead to 

uninterpretable data, for example, molecules may be distorted such that bonds cannot be 

distinguished (Figure S5). This can confuse the training process and result in an increased error 

rate. 
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Neural network experiments  

 In the following section we lay out a series of experiments designed to understand how our 

real-world and synthetic datasets can be best utilized to achieve the highest out-of-sample hand-

drawn hydrocarbon recognition accuracy. First, only synthetic data is used during training; we 

investigate how the synthetic data generation pipeline, and training set size impact the NN 

accuracy. Once we have an understanding of the synthetic data results, hand-drawn data is 

introduced into first the validation set, and then the training set. The results of fine-tuning are 

compared to training from scratch. We end by forming an ensemble model from the trained NNs, 

which allows us to assign a confidence value to the prediction, as well as improve the 

recognition accuracy.  

In order to examine how each stage of the synthetic data generation workflow (Figure 5a) 

affects training, we train our CNN-LSTM network with data from each stage of the pipeline: 

modified RDKit images (RDKit'), augmented RDKit images (RDKit'-aug), augmented RDKit 

images with background addition (RDKit'-aug-bkg), and augmented RDKit images with 

background addition and degradation (RDKit'-aug-bkg-deg). Datasets of 200 000 images from 

each of the four steps in the workflow were split into train, validation and test sets as detailed in 

the Methods section. The results of the training are presented in Figure 7a. As the steps proceed 

through the synthetic data generation pipeline, the non-uniformity of the data increases, making 

it more complex, and hence more challenging for the NN to learn. As a result, slower 

optimization and a reduction in final accuracy is observed (Figure S6). The image-to-SMILES 

network is tested on the same datatype used for training (e.g. if the network was trained with 

RDKit’-aug data, it would also be tested on RDKit’-aug data) as well as our real-life hand-drawn 

dataset. As discussed previously, the synthetic data pipeline was developed in order to match the 

hand-drawn data as closely as possible. The test set accuracy of the hand-drawn data is seen to 

increase from 8% to 47% as we proceed through the steps in the data generation pipeline, 

illustrating that each stage performs the desired effect of bringing the computer-generated data 

and the hand-drawn data distributions closer together.  
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Figure 7. Training experiments with synthetic data showing the test set accuracy of the datatype 

used for training (x) and hand-drawn data (o). (a) Results of training with 200 000 images from 

each stage of the synthetic data generation pipeline: modified RDKit images (RDKit'), 

augmented RDKit images (RDKit'-aug), augmented RDKit images with background addition 

(RDKit'-aug-bkg), and augmented RDKit images with background addition and degradation 

(RDKit'-aug-bkg-deg). (b) Results of training with different sized training sets of the final 

synthetic data (RDKit'-aug-bkg-deg). Equivalent training runs in the two sets of experiments are 

indicated (*).  

 

 From Figure 7a, it can be seen that augmenting the images increases the hand-drawn 

hydrocarbon recognition accuracy by 20 percentage points. Moreover, degrading the images 

increases the accuracy from ~30% to nearly 50%. The jump in accuracy when adding in 

backgrounds is minimal in comparison to the addition of augmentation and degradation. This is a 

surprising result, since observation by human eye suggests that background addition would move 

the synthetic data significantly closer to the hand-drawn hydrocarbon target data, in comparison 

to introducing image degradation. This serves as a powerful demonstration of the importance of 
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evaluating the success of the auxiliary data techniques though training experiments rather than 

by eye and the effectiveness of broadening the data distribution via augmentation and 

degradation. 

 Next, we investigate how the size of our synthetic dataset (RDKit'-aug-bkg-deg) impacts the 

training and test set accuracies. The network was trained with datasets of size 50 000, 100 000, 

200 000 and 500 000 images (split between training, validation and test sets according to the 

Methods section). As the number of images in the synthetic dataset increases, the out-of-sample 

recognition accuracy on the synthetic data grows from 0% to nearly 90% (Figure 7b). A 

particularly large leap (~20% to ~75% Acc.) is seen from the 100 000 to 200 000 image datasets 

and a smaller jump between 200 000 and 500 000 images is observed as the recognition accuracy 

begins to plateau. It can also be seen that the difference between the accuracy of the synthetic 

and hand-drawn test sets increases with dataset size, demonstrating how the network begins to 

overfit to the synthetic data. Remarkably, the NN trained with 500 000 images achieves an 

accuracy of over 50% on real-world hand-drawn data, despite not having been exposed to hand-

drawn data at any point during the learning process. This result suggests that the auxiliary data 

bears significant resemblance to the target datatype, and hence assigns some confidence that the 

workflow developed in the previous section behaves as desired. For reference, training with 500 

000 raw RDKit images results in a real-life hand-drawn hydrocarbon recognition accuracy of 

0%.  

 Now that we have examined how the stages of the synthetic data generation pipeline and 

dataset size effect the network’s recognition accuracy, we can begin to incorporate photographs 

of real-world hand-drawn data into the training process i.e., the training and/or validation sets. 

The aim is to explore how best to utilize a limited target dataset and a large synthetic dataset to 

achieve the highest accuracy on out-of-sample target data. Since the model is constructed based 

on only the data used for training, if the training data more closely matches the desired testing 

data the model will perform better. After each epoch, the NN weights are tested on the validation 

set to track the model’s accuracy as the training proceeds. Weights that achieve the best results 

are saved according to the network’s perplexity score, a measure of the uncertainty of the 

prediction. Although the validation set is not directly used for optimizing the weights, it can be 

thought of as a “target” that the NN is aiming for. Therefore, this target should be equivalent to 

the desired use case such that the maximum out-of-sample accuracy for the desired application is 
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reached. As a result, we expect that adding hand-drawn structures to the training and validation 

sets increases the hand-drawn molecule recognition accuracy. 

We examine the effect of replacing the synthetic validation set with a 213-image hand-

drawn validation set. The size of the synthetic training set was varied from 50 000 to 500 000. As 

with the previous results, the hydrocarbon recognition accuracy increases with the size of the 

synthetic dataset (Figure 8a). Comparison to Figure 7b, which used a synthetic validation set 

instead of the hand-drawn data, shows very similar accuracies. Therefore, for this task, 

employing hand-drawn data as a validation set does not result in any significant increase of the 

hand-drawn hydrocarbon structure test set accuracy. A notable difference, however, lies in the 

training mechanism: when using a synthetic train and validation set, as in the previous 

experiments, the NN overfit to the synthetic data – the training accuracies were high compared to 

the lower test set accuracies. In contrast, training with a synthetic training set and hand-drawn 

validation set does not overfit – the training and test set accuracies are comparable – however the 

limitations of the synthetic data prevent it from training to higher accuracies. This can be seen by 

comparing the training accuracies in Figure S6b to the test set accuracies in Figure S7a. Despite 

the contrasting mechanisms, the trained networks produce similarly successful test set outcomes.  
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Figure 8. Recognition accuracy of the hand-drawn hydrocarbon test set after incorporating hand-

drawn data into the training process. (a) Results of training with increasing sized synthetic 

training sets and a hand-drawn hydrocarbon validation set. (b) Results of training with varying 

ratios of augmented and degraded hand-drawn hydrocarbon to synthetic data training sets (500 

000 image total) and a hand-drawn hydrocarbons validation. (c) The effect of fine tuning is 

investigated by restarting the weights from training with a 500 000-image synthetic dataset used 

for both training and validation, and a 500 000-image synthetic dataset used for training with 

hand-drawn validation set. The weights are restarted with a training set consisting of 90% 

synthetic data and 10% augmented and degraded hand-drawn data, and a validation set of hand-

drawn hydrocarbons. Equivalent training runs in the experiments are indicated (†). 
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 We now incorporate hand-drawn data into the training set so that it can directly impact the 

weight optimization during training, allowing the NN to learn from the target data, rather than 

only determine if the weights should be saved. The number of remaining images of hand-drawn 

hydrocarbon structures in our dataset after the removal of the test set is 413, which must be 

distributed between the training set and validation set. We assign 213 images to the training set 

and 200 images to the validation set. A dataset of 500 000 images is chosen since it reached the 

highest accuracies in our synthetic data experiments.  

 We trained the image-to-SMILES network with varying ratios of augmented and degraded 

real-world hand-drawn to synthetic data, and tested the weights on the hand-drawn test set data 

(as used in earlier experiments). Due to the very limited hand-drawn hydrocarbon data, we 

augmented and degraded the images to produce the number needed in the training set to satisfy 

each given ratio. For example, to generate a training set of 50% hand-drawn and 50% synthetic 

images (250 000 images each), each hand-drawn image was augmented ~1173 times using the 

augment molecule pipeline (Figure 5b, excluding the final translation step). Although this 

introduces a large number of repeated SMILES and similar images, the small amount of hand-

drawn data makes this necessary to ensure that the information is not overridden by the large 

amount of synthetic data. Once the molecules have been augmented and degraded, the synthetic 

and hand-drawn data are randomly shuffled together for training.  

We investigate ratios of 0:100, 10:90, 50:50, 90:10 and 100:0 synthetic:hand-drawn data. 

From Figure 8b, it can be seen that using entirely hand-drawn data results in an out-of-sample 

accuracy of 0% due to the network overfitting to the very narrow distribution of hand-drawn 

training data. Adding synthetic data allows the neural network to be exposed to many more 

molecules and image types, and hence leads to a rapid increase in test set accuracy up to 90:10 

synthetic:hand-drawn data. Removing the final 10% of hand-drawn hydrocarbon molecules from 

the training set (equivalent to the 500 000 image training run presented in Figure 8a), however, 

leads to a decrease in the hydrocarbon recognition accuracy from 62% to 56%. Therefore, the 

results suggest that two opposing effects are at play: (i) including target data in the training set 

allows the weights to be optimized for the target application and (ii) including only a narrow or 

sparse distribution of target data leads to overfitting. As a result, including a small portion of 

target data, specifically 10% hand-drawn molecules, yields the highest recognition accuracy.  
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 In all the experiments discussed so far, the image-to-SMILES network has been trained from 

scratch, i.e., the weights are randomly initialized. When applying deep learning to tasks with 

limited available data, training the network with a large dataset before restarting the weights with 

a similar dataset has been shown to increase NN accuracy.61 This approach is termed fine-tuning 

due to the NN weights being tuned from a related task to better suit the desired datatype. Fine-

tuning is a similar to transfer learning, which freezes a portion of NN layers weights during re-

training. 

 We apply fine-tuning to our problem by first training with synthetic training data and then 

restarting the NN weights with training data that includes real-life images of hand-drawn 

hydrocarbon structures. We fine-tune two trained NNs, both of which use 500 000 image 

synthetic training datasets but that differ in their validation data: the first uses a synthetic 

validation set (pre-training results shown in Figure 7b) and the second uses a hand-drawn 

validation set (pre-training results shown in Figure 8a). The two trained NNs are restarted with a 

training set made up of 90% synthetic data and 10% hand-drawn data – the optimal ratio 

according to Figure 8b. The results from the two fine-tuning runs (Figure 8c) show that pre-

training with synthetic data before incorporating hand-drawn data into the training set improves 

the molecule recognition accuracy. The network reaches 68% accuracy after pre-training with a 

hand-drawn validation set, in comparison to the best NN trained from scratch which achieved an 

accuracy of 62%. 

 

Ensemble learning  

Instead of relying on a single model to predict a desired output, combining several models 

can result in improved performance. The process of combining models to form an ensemble 

model is called ensemble learning.62 There are several ways in which ensemble models can 

operate, such as boosting, bagging and random forests.63 Perhaps the simplest ensemble, 

however, is a committee of trained NNs, where each NN casts a single vote according to their 

prediction. The ensemble model’s predictions can then be ordered from most to least votes and 

the prediction corresponding to the most votes, i.e., the mode, is output. The number of agreeing 

votes for a prediction can give insight into the confidence of the ensemble model. If all of the 

models predict the same output, there is a high probability the prediction is accurate. However, if 
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all the models disagree, there is high uncertainty in the prediction. We demonstrate these 

properties by forming a committee of trained NNs.  

 We build two ensemble models, one comprised of all the trained NNs presented in the 

previous section (All-models), and another comprised of only trained NNs that achieve >50% 

accuracy on the hand-drawn test set (Top-models). The out-of-sample hand-drawn hydrocarbon 

recognition accuracy for each of the two ensemble models is shown in Figure 9, comparing the 

three predictions that have the most votes with the reference SMILES label. The “Top-models” 

ensemble model achieves an accuracy of 77% on the hand-drawn test set for the top prediction 

and 86% if the top three predictions are considered. The “All-models” ensemble achieves only 

slightly lower recognition accuracies for the top three SMILES predictions. By forming a 

committee of NNs, we see a significant improvement in accuracy in comparison to the 

constituent NNs (the highest of which obtained 68% on out-of-sample hand-drawn data). 

Examples of correctly and incorrectly labelled hand-drawn hydrocarbon structures are provided 

in Figure S8. 

 

 

Figure 9. The out-of-sample hand-drawn hydrocarbon recognition accuracy of the top N 

predictions of two ensemble models made up of all trained NNs in previous experiments (All-

models, red), and only trained NNs with over 50% recognition accuracy on out-of-sample 

images of hand-drawn hydrocarbon molecules (Top-Models, blue).  

 

 The agreement between the models that make up the committee offers insight into the 

certainty of the prediction. Figure 10a shows the increase of recognition accuracy as the number 

of votes for the top prediction, V, rises. Here, we assign the accuracy of the ensemble model 
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when there are V agreeing votes to its confidence value. As expected, as V increases, so does the 

accuracy (or confidence) of the model. When all the models disagree (V = 1) the model has low 

out-of-sample accuracy, equating to a low confidence value of the model. When many models 

agree, the prediction tends to have a higher accuracy. For the “Top-models” ensemble, all of the 

models agreeing (V = 4) translates to a confidence value of 98% in the predicted hydrocarbon.  

 In addition to knowing the confidence of the model’s prediction, it is useful to be aware of 

how often the model achieves this confidence: if the model was 100% confident when all the 

votes agreed but this only occurred 1% of the time its use would be limited. We therefore 

investigate the portion of times that a confidence value occurs in the test set (Figure 10b). For the 

“Top-models” ensemble, the percentage of times that V votes occurs, corresponding to a 

confidence value (Figure 9c), increases with the number of votes – there are few instances where 

all the NNs disagree (V = 1), and by far the most common occurrence is all NNs agreeing (V = 

4). A similar trend is observed for the “All-models” committee.  

 The importance of knowing the uncertainty of a model’s prediction should not be 

underestimated. In many cases, it is more important to achieve a lower accuracy but be able to 

predict when the model will fail, than to achieve a higher accuracy but have no insight into when 

it will fail. For example, in the case of autonomous vehicles, a model that is able to determine 

when it will fail and prompt a human to take over controls would be far safer than a model that 

failed less but was unable to forecast failure. In the case of hand-drawn molecule recognition, the 

software could, for example, prompt the user to take a second photograph if the uncertainty of 

the model was high. Of course, both the accuracy and confidence of the output should be 

optimized. Here, our ensemble model recognizes the correct molecule with near 100% 

confidence in over 50% of cases (≥ 97% in 55% of cases). This is a promising result for 

applying this technology to real-world applications.  
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Figure 10. (a) The out-of-sample hand-drawn hydrocarbon recognition accuracy of the ensemble 

model when the top prediction has a given number of agreeing votes, V. (b) The percentage 

occurrence of a given number of agreeing votes for the top prediction. The accuracy is attributed 

to the confidence of the model when there are V votes for the top SMILES prediction.  

 

Conclusions 

 In this work, we demonstrate how deep learning can be used to develop an offline hand-

drawn hydrocarbon structure recognition tool. We curated a large synthetic dataset and small 

hand-drawn dataset and explored how to best leverage the two to maximize the molecule 

recognition accuracy. The datasets were used to train an image-to-SMILES neural network to 

extract the molecule from a photographed hand-drawn hydrocarbon structure. By training with 

synthetic data only, we were able to achieve over 50% recognition accuracy on real-life hand-

drawn hydrocarbons. We improved this accuracy by replacing 10% of the training set with 

augmented hand-drawn images and saw that applying fine-tuning resulted in a hand-drawn 

hydrocarbon recognition accuracy of nearly 70%. The trained data-driven models were combined 

with ensemble learning to achieve superior accuracy to the constituent models and gain 
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information on when the model would fail. The best ensemble model’s top three predictions 

included the exactly correct molecule over 85% of the time, with over 50% of the predictions 

having over a confidence of nearly 100%. Extending the hydrocarbon recognition results 

presented in this paper to the recognition of all molecules offers an obvious extension, however, 

variation in hand-drawn font style and letter location provides a significant challenge.  

 Generative adversarial networks (GANs) have become popular in recent years for generating 

high quality synthetic data.64-65 GANs were first introduced by Goodfellow et al. in 2014,66 

describing the idea of simultaneously training a generative model and a discriminative model. 

The generative model is trained to generate realistic training data, and the discriminative model 

is trained to distinguish between the generated data and the training data; by training the two 

models simultaneously, both are driven to improve at their respective roles. The result is a 

generated data distribution that matches the input data, and hence training data of the desired 

distribution can be produced for NN training. GANs can be thought of a highly sophisticated 

alternative to data augmentation, offering an exciting avenue to explore in future studies of hand-

drawn molecule recognition. 

 The chemical structure recognition software developed in this work has many interesting use 

cases, such as connecting it to a user interface to be used as a phone or tablet application. A wide 

range of chemistry software could then be connected to the backend such as theoretical 

chemistry packages, lab notebooks and analytical tools. It would be particularly useful for 

software that currently requires knowledge of coding, command line scripting, and specialized 

input file format and so is inaccessible to large sections of the chemistry community. Since 

drawing a chemical structure by hand is a familiar task for all chemists, this app would lower the 

barrier of accessing such software. As a result, these currently unattainable tools could be readily 

incorporated into laboratories and classrooms to catalyse advances in chemical research and 

education.  

 

Supporting Information 

Details of image processing, neural network training, and example image predictions. Link to 

code to generate data and run training experiments.  
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