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Abstract: Corona viruses were first identified in 1931 and SARS-CoV-2 is the most recent. COVID-19 is a pandemic that put most of the 18 

world on lockdown and the search for therapeutic drugs is still on-going. Therefore, this study uses in silico screening to identify natural 19 

bioactive compounds from fruits, herbaceous plants and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2(PDB: 20 

6LU7). We have used various screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME 21 

(absorption, distribution, metabolism, and excretion), molecular dynamics (MD) simulation and MM/GBSA (molecular 22 

mechanics/generalized born and surface area continuum solvation). 17 compounds were shortlisted using Lipinski’s rule. 5 compounds 23 

revealed significantly good predicted antiviral activity values and out of them only 2 compounds, Macrolactin A and Stachyflin, showed 24 

good binding energy values of -9.22 and -8.00 kcal/mol within the binding pocket, catalytic residues (HIS 41 and CYS 145) of Mpro. These 25 

two compounds were further analyzed for their ADME properties.  The ADME evaluation of these 2 compounds suggested that they could 26 

be effective as therapeutic agents for developing drugs for clinical trials. MD simulations showed that protein-ligand complexes of 27 

Macrolactin A and Stachyflin were stable for 100 nano seconds. The MM/GBSA calculations of Mpro – Macrolactin A complex indicated 28 

higher binding free energy (-42.58 ± 6.35 kcal/mol) with Mpro protein target receptor (6LU7). DCCM and PCA analysis on the residual 29 

movement in the MD trajectories confirmed the good stability on Macrolactin A bound state of 6LU7. This signify the stable conformation 30 

of 6LU7 with high binding energy with Macrolactin A. Thus, this study showed that Macrolactin A could be an effective therapeutical agent 31 

for SARS-CoV-2protease (6LU7) inhibition. Additional in vitro and in vivo validations are needed to determine efficacy and dose of 32 

Macrolactin A in biological systems. 33 

Keywords: Coronavirus; pandemic; communicable disease; treatment; molecular docking; MD simulation; ADMET; MM/GBSA. 34 

 35 

1. Introduction 36 

The 2003 SARS-CoV outbreak caused 10 % fatality [1], MERS-CoV produced 35% fatality [2] and now, SARS-CoV2 is 37 

responsible for 2.35 % fatalities [3]. The experiences gained from managing previous novel coronavirus infections in 38 

healthcare facilities were associated the lower the fatalities of SARS-CoV2 [4,5]. However, the virulence of SARS-CoV2 lead 39 

to national-based quarantine and standard operating procedures were the only feasible approach to break the chain of infections 40 

while the entire world patiently waited for an effective vaccine against SARS-CoV2 [6]. SARS-CoV2 has high RNA 41 

polymerase mutation rate that made this pathogen-resistant against antiviral drugs and thus, increases the chances of re-42 

infection [7-8]. Experience from using lopinavir/ritonavir and remdesivir during SARS-CoV led to identical treatment 43 

measures for SARS-CoV-2, however, the efficacy of these drugs is not as expected and patients in critical conditions have 44 

slimmer chances for recovery [9, 10]. In a recent survey, the willingless to take these vaccines were affected by its halal status 45 

and cost. The study recommended that the governments should subsidize the cost [10]. For developing countries these vaccines 46 

might not be affordable. Moreover, Healthcare facilities are restricted to developed areas, while rural communities rely on 47 

herbs to treat diseases and infections. Previous studies indicated that natural products were therapeutic for coronavirus, 48 

coxsackievirus, dengue virus, enterovirus, hepatitis virus, herpes simplex virus, human immunodeficiency virus (HIV) and 49 

respiratory syncytial virus symptoms [11]. Unfortunately, technical barriers and certifications favors the use of modern 50 

medicine which led to natural compounds being gradually forgotten [12]. Recent studies showed that compounds from 51 

Andrographis paniculate were effective against SARS-CoV2[17]. At then end of 2020, various news outlets such as 52 

Bloomberg, the business times, and straits times reported that Thailand have approved A. paniculate’s usage for patient in 53 

lower stage of Covid-19 infections. Antiviral research targets the inhibition of various virus parts such as spike proteins, 54 



 

 

reverse transcriptase, integrase, RNA and protease enzyme (e.g. Mpro and 3CLpro) [13]. In silico identification is low-cost, 55 

efficient, brief and virtual to quantify activity relationships between target biomolecules such as DNA, RNA and proteins), and 56 

inhibitors from synthetic and natural sources during drug discovery [14, 15]. Research on SARS-CoV-2 identified 29 proteins 57 

comprising of structural, spike, envelope, membrane, nucleocapsid, non-structural and adjunct proteins. Among all, an 58 

encoding protease was determined to be responsible in the process of making about 16 of these 29 proteins [16] 59 

The macrolactin compounds are known to have a broad range of pharmacological activities including antiviral, antitumor, 60 

antibacterial, antiangiogenic, neuro‐protective, antiproliferative activities, intestinal bowel disease protecting and bone-61 

remodeling activities [18]. The macrolactins are polyene macrolides containing a 24- membered lactone ring containing with 62 

conjugated double bonds [19]. So far, six macrolactins (A-F) have been chemically characterized, and only macrolactins A and 63 

E have been studied for total synthesis [20]. Macrolactin A showed selective antibacterial activity, inhibited B16-F10 murine 64 

melanoma cancer cells in vitro assays, showed significant inhibition of mammalian Herpes simplex viruses (types I and II), 65 

and protected T-lymphoblast cells against human HIV viral replication [19]. 66 

Briefly, it can be said that the present study aimed to identify bioactive compounds from natural aquatic and terrestrial 67 

sources using in silico screening via molecular docking and molecular dynamics (MD) simulations to analyze and predict the 68 

consistency of the protein-ligand complexes for selected inhibitors of SARS-CoV-2 viral protease. 69 

     2. Result and Discussion 70 

2.1. Screening Process and Molecular Docking Analysis 71 

Natural compounds (30) (Supplementary Table S1) with antioxidant, antimicrobial, antiviral and anticancer properties 72 

were identified from plants and animals for screening using Lipinski’s rule against Mpro to assess the binding activity following 73 

published methods from the literature [21, 22, 23, 24]. From 30 compounds, a total of 17 compounds were possessing suitable 74 

drug-likeness properties (Supplementary Table S2). These compounds were then selected for the prediction of structure-based 75 

antiviral activity by using PASS online server. It gives a probability active (Pa Score) that ranges from 0 to 1 and a value of 76 

>0.3 can be considered as active [25]. A total of 5 compounds have predicted to possess the antiviral activity score (Pa) of 0.6 77 

(60%) (Supplementary Table S3). These 5 compounds were further investigated for molecular docking study to explore a 78 

possible SARS-CoV2 Mpro inhibitor. Two compounds namely, Macrolactin A (PUBCHEM ID: 6451096), and Stachyflin 79 

(PUBCHEM ID: 493326) showed low binding energy (-9.22 to -8.00 kcal/mol) which indicated effectiveness (Supplementary 80 

Table S4). These top 2 hit inhibitory compounds with good binding energy to the selected receptor and were further analysed 81 

for ADME properties (Table 1). All the 2 compounds have shown good physico-chemical parameters where almost all the 82 

parameters were in suggested ranges, hence they were further investigated by performing MD simulations which showed 83 

Macrolactin A and Stachyflin formed a stable protein-ligand complex. Finally, MM-GBSA analysis was carried out and 84 

Macrolactin A was the best inhibitors of the Mpro. Various literature has reported different compounds that possess binding 85 

energy ranges from -7.0 to -8.5 kcal/mol, which might be a key to inhibit SARS-CoV2 infection [26, 27]. The overall 86 

strategies for screening naturally occurring compounds against Mpro are depicted in Figure 1. Presently, in our study, only 87 

Macrolactin A binds with energy of -9.22 kcal/mol to SARS-CoV-2 Mpro(PDB ID: 6LU7) protein was the top inhibitors of the 88 

Mpro having a good pharmacokinetic property and could be a treatment to SARS-CoV-2 infection. 89 

 90 

 91 

Figure 1. Virtual screening strategy of naturally occurring compounds against Mpro as inhibitor. 92 

Docking interactions of these two naturally occurring compounds with the binding site residues are shown (Figures 3, 4 93 

and Table S4). The compound Macrolactin A (Figure 2) interacted with the residues HIS 41, MET 49, PHE 140, LEU 141, 94 



 

 

ASN 142, GLY 143, SER 144, CYS 145, HIS 163, HIS 164, MET 165, GLU 166, ARG 188, and GLN 189 in the binding site 95 

of Mpro to form the docking complex (Figure 3). The Macrolactin A compound showed good binding affinity(-9.22 kcal/mol) 96 

with 0.175 µM, forming 3 hydrogen bonds, 9 Van der Wall’s interactions, hydrophobic interactions, carbon-hydrogen bond 97 

and alkyl interactions (Figure  3). Stachyflin (Figure 2) also showed good binding affinity (-8.00 kcal/mol) with 1.37 µM with 98 

the residues THR 25, LEU 27, HIS 41, MET 49, LEU 141, ASN 142, GLY 143, SER 144, CYS 145, HIS 163, HIS 164, MET 99 

165, GLU 166, ARG 188, and GLN 189 of Mpro active site. Stachyflin formed two hydrogen bonds, 9 Van der Wall’s 100 

interactions, hydrophobic interactions, π donor-hydrogen bonds, alkyl and π-Alkyl interactions (Figure 4). This result was in 101 

agreement with a previously published report that candidate and lead compounds formed the highest number of hydrogen with 102 

GLU 166 [28]. 103 

Previous studies also showed that natural compounds can interact with the catalytic site of Mpro proteases at HIS41 and 104 

CYS145 [24, 29]. Previous research indicated that binding energy of -7.0 kcal/mol or less could be effective against SARS-105 

CoV-2 which causes COVID-19 [26]. Previous studies reported that the inhibitor N3 docks in the active binding site of 6LU7 106 

and forms hydrogen bonds with THR190, GLN189, GLU166, HIS 164, PHE 140, and GLY 143 [30]. As mentioned 107 

previously, Thailand approved the use of A. paniculate for mild Covid-19 cases. Phytochemicals from A. paniculate also 108 

formed hydrophobic interactions and hydrogen bonding interactions with different residues THR24 to GLN192[17].  The 109 

binding energy of co-crystallized N3 inhibitor was previously reported to be −7.6 kcal/mol [28]. The biding energy of 110 

andrographolide (-6.26 kcal/mol) and dihydroxy dimethoxy flavone (− 6.23 kcal/mol) from A. paniculate were better 111 

compared to hydroxychloroquine (-5.47 kcal/mol) [17]. Amentoflavone, a natural compound synthesized by plants, formed 3 112 

hydrogen bonds and numerous hydrophobic interactions with 6LU7 had binding energy of -10.2 kcal/mol in a previous study 113 

[28]. Although all the three compounds showed comparatively good binding energies, the physicochemical properties and 114 

stability of the docking complexes needed to be tested. 115 

 116 

 117 

Figure 2. 2D structures of top two selected hit compounds that required the lowest binding energies during the protein-ligand 118 
formation. 119 

 120 

Figure 3. Molecular docking displaying the interaction of Macrolactin A with 6LU7 protein. (A) 3D ligand interaction representing the 121 
docked pose in the binding site (B) 2D plot of the ligand interaction with the amino acids residues. 122 
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Figure 4. Molecular docking interaction of Stachyflin with 6LU7 protein. (A) 3D ligand interaction representing the docked pose in 125 
the binding site (B) 2D plot of the ligand interaction with the amino acids residues. 126 

2.2. ADME Properties Analysis 127 

Evaluations of physicochemical properties via ADME analysis are essential for assessing the efficacy of potential drug 128 

candidates and predict the drug-likeness properties. The calculated ADME properties and predicted physicochemical 129 

properties of the two-hit compounds are given in Table 1. All the analyzed parameters of the three top compounds were in the 130 

recommended range. Although some compounds showed higher % of Human oral absorption the drug-likeness score (# star) 131 

of both the compounds were in the recommended range except % Human oral Absorption and dipole moment. Macrolactin 132 

A(94.59%)  which was the best compound however, further derivatization in molecular structure could improve 133 

pharmacokinetic descriptors generally. Previous studies showed that the percentage of human oral absorption of 134 

andrographolide (77.65%) and dihydroxy dimethoxy flavone (93.829%) from A. paniculate were better compared to 135 

hydroxychloroquine (93.21%)[17].  136 

Table 1. ADME prediction of Macrolactin A and Stachyflin. 137 

Properties and functions 

Predictive results 

 Recommended range 

Macrolactin a Stachyflin 

Mol. Wt. (Da) 402.53 385.502 130–725 

#Stars 1 0 0–5 

SASA 710.02 592.553 300–1000 

Dipole 0 0 1.0–12.5 

Donor H-bond 3 3 0–6.0 

Acceptor H-bond 7.1 5.7 2.0–20.0 

QPlogPo/w 3.704 2.619 -2-6.5 

QPlogS 3.062 -4.597 -6.5–0.5 

QPlogkhsa 0 0.47 -3-1.2 

QPlogBB -2.125 -1.02 -3.0-1.2 

No. of Metabolites 6 4 1–8 

% Human oral Absorption 94.59 84.45 
> 80% is high 

< 25% is poor 

 138 

2.3. Molecular Dynamics (MD) Simulation 139 

The MD simulation (MDS) was performed for Mpro-Macrolactin A, and Mpro-Stachyflin docking complex with 100ns 140 

simulation time and results were analysed for Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), 141 

and the number of hydrogen bonding. RMSD calculation of Mpro-Macrolactin A complex is more stable throughout simulation 142 

as compared to the Mpro-Stachyflin docking complex (Figure 6). The compound Macrolactin A showed RMSD values between 143 

2 to 3 Å with an average value of 2.8 Å However, the compound Stachyflin showed RMSD value between 2 to 3.5 Å with an 144 

average of 3.06 Å. The overall RMSD of the compound Macrolactin A throughout the 100ns of simulation remained uniform 145 

and hence these results confirmed the stability of the protein-ligand complex. While in case of Stachyflin slight increase in the 146 

RMSD value was observed after 50ns of simulation which increases up to 4 Å. This shows the less stability of the protein-147 

ligand complex. This study supports the finding as previously reported [26, 30]. RMSF results revealed the Cα of Mpro bound 148 



 

 

to Macrolactin A has an average RMSF value of 1.48 Å which depicted less fluctuations in the complex structure (Figure 7). 149 

Though, residues GLY 23 (1.71Å), LEU 50 (3.69Å), SER 139 (1.76Å), ASN 142 (1.81Å), ARG 222 (2.02Å), ASP 245 150 

(1.81Å), GLY 278 (2.40Å), and CYS 300 (2.94Å) have shown slight fluctuations of residues in the Macrolactin A-Mpro 151 

complex during the simulation. While, in case of Stachyflin bound Cα of Mpro exhibited RMSF value of 1.77 Å, which is 152 

higher than Mpro bound Macrolactin A. The residues GLY 23 (1.5Å), ASP 48 (3.48 Å), GLN 127 (2.24 Å), TYR 154 (2.60Å), 153 

THR 169 (3.22 Å), GLY 278 (2.85Å) exhibit higher fluctuations during simulations. Interactions of hydrogen bonds between 154 

ligands (Macrolactin A and Stachyflin) and Mpro through the 100 ns of MD simulations were evaluated (Figure 8). Analysis of 155 

the results showed that the compound Macrolactin A formed 3 hydrogen bonds in average, during 100 ns of simulation with 156 

the Mpro. On the other hand, Stachyflin formed 1 hydrogen bond. This result confirmed the strong inhibition of Mpro by the 157 

Macrolactin A compound in the MD system and also showed similar to molecular docking results of 3 hydrogen bonding 158 

within active site residues in Mpro protein. Hence, MD simulation analysis of Mpro-Macrolactin A complex and Mpro-159 

Stachyflin showed better binding interaction in the pocket of Mpro. The protein-ligand total contacts timeline diagram is 160 

prepared to study the intermolecular interactions between Mpro residues and Macrolactin A compound (Figure 9 (A)) after 161 

performing 100 ns of MD simulation. The top panel showed a maximum of 9 specific contacts formed between the protein and 162 

the ligand over the course of simulations and the bottom panel shows that the residues, ASN 142, TYR 154, GLU 166, and 163 

GLN 189 showed crucial interactions with the ligand which is represented by a darker shade. On the other hand, Stachyflin 164 

formed a maximum of 6 numbers of contacts with only GLU 166 as significant contacts (Figure 9 (B)). Thus we may conclude 165 

that the compound Macrolactin A are successful in making good interactions with the binding site residues of Mpro then 166 

Stachyflin and are involved in the stabilizations in the complex. Mpro protein interactions with the ligand Macrolactin A and 167 

Stachyflin were plotted as stacked bar chart plot (Figure 10), which was mainly categorized into four types: hydrogen bonds, 168 

hydrophobic, ionic and water bridges. In case of Macrolactin A -Mpro protein complex, water bridges plays followed by 169 

hydrogen bonds and hydrophobic interactions play a very important role in interactions. The amino acids ASN 142, GLU 166 170 

and GLN 189 exhibited hydrogen bond contact with the protein. While in case of Stachyflin the amino acids LEU50 and 171 

GLU166 form hydrogen bond interactions. This indicated that the Macrolactin A -Mpro protein complex was stable throughout 172 

the simulation time. The conformational strains that might destabilize the complex were studied via ligand torsions dynamics 173 

and detailed information was obtained. The ligand torsions dynamics for the rotatable bonds present in the Macrolactin A 174 

compound are plotted in Figure. 11, while for Stachyflin they were added to Supplementary Figure S1. The plot showed the 175 

simulation trajectory of the ligand from 0.00 to 100 ns and the conformational evolution of rotatable bonds (RB). Rotatable 176 

bonds torsions were plotted in 2D and the bonds were color-coded. Dial plots showed the conformation of the torsion 177 

throughout the simulation. The beginning of the simulation is plotted in the center of the radial plot, while the time evolution is 178 

plotted radially outwards. The probability density of the torsions showed in bar plots that summarized the information obtained 179 

from the dial plots. The values on the left Y-axis of the charts are expressed in kcal/mol. The compound Macrolactin A in total 180 

showed 20 rotatable bonds and the dial plots clearly showed that the rotatable bonds rotate around -180° to 180°. Whereas, in 181 

Stachyflin only two rotatable bonds are observed. This showed that the ligand Macrolactin A has more flexibility to bind and 182 

maintain a stable conformation in the active site residue of the protein. 183 

 184 

Figure 6. Plot of RMSD values, during 100ns MD simulation of Mpro in complex with (A) Macrolactin A and (B) Stachyflin. 185 



 

 

 186 

Figure 7. Plot of RMSF values, during 100ns MD simulation of Mpro in complex with (A) Macrolactin A and (B) Stachyflin. 187 

 188 

Figure 8. Plot of Hydrogen bonding interactions, during 100ns MD simulation of Mpro in complex with (A) Macrolactin A and (B) 189 
Stachyflin. 190 

 191 



 

 

 192 

Figure 9. Analysis of total contacts timeline formed between Mpro residues and (A) Macrolactin A and (B) Stachyflin during MD 193 
simulation. Darker shades correspond to a higher number of contacts. 194 
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 196 

Figure 10. Protein–Ligand stacked bar chart plot of the interactions formed between ligand and protein residues during 100ns MD 197 
simulation of Mpro in complex with (A) Macrolactin A and (B) Stachyflin. 198 
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 203 

Figure 11. Analysis of rotatable bonds present in the Macrolactin A during 100ns of MD simulation. 204 

2.4. Molecular Mechanics Generalized Born Surface Area (MM-GBSA) Calculations 205 



 

 

Utilizing the MD simulation trajectory, the binding free energy along with other contributing energy in form of MM-206 

GBSA were determined for each Mpro (PDB ID: 6LU7) complex with the 2 ligands.  The results (Table 2) suggested that the 207 

maximum contribution to ΔGbind in the stability of the simulated complexes were due to ΔGbindCoulomb, ΔGbindvdW and 208 

ΔGbindLipo, while, ΔGbindCovalent and ΔGbindSolvGB contributed to the instability of the corresponding complexes. The Mpro- 209 

Macrolactin A docked complexes showed comparatively higher binding free energy compared to other docking complexes of 210 

SARS CoV-2 Mpro-Stachyflin. These results supported the potential of screened compounds in inhibiting Mpro, showed the 211 

efficiency in binding to the selected protein and the ability to form stable protein-ligand complexes. 212 

Table 2. Binding free energy components for the docking complexes of 6LU7 protein with ligands calculated by MM-GBSA analysis. 213 

Compound 

code 

MM-GBSA (kcal/mol) 

ΔGbind ΔGbindLipo 
ΔGbindvd

W 

ΔGbindCoul

omb 

ΔGbindSo

lvGB 

ΔGbindCov

alent 

Macrolactin 

a 

-42.58 ± 

6.35 

-12.24 ± 

1.23 

-36.13 ± 

2.17 

-13.83 ± 

5.54  

19.73 ± 

2.78  
2.97 ± 1.90 

Stachyflin 
-38.35 ± 

8.40 

-11.65 ± 

2.08 

-29.78 ± 

6.17 

-13.31 ± 

8.69 

16.30 ± 

7.42 
1.83 ± 1.28 

 214 

Figure 12. Position and movement of Macrolactin A at the binding site before simulation (red, 0 ns) and after simulation (blue, 100 215 
ns). Conformational variances between first and last frame of MD simulation trajectories after 100 ns. 216 

The analysis of the trajectories of the first and the last frame of displayed significant differences in the conformation of 217 

Macrolactin A bound 6LU7 (Figure. 12). It was observed that at the beginning of the simulation, the ligand Macrolactin A was 218 

outward from the binding site (Figure 11, red, 0 ns) whereas, at the final stage of 100 ns simulation, the ligand moved more 219 

inside the binding cavity (Figure 12, blue, 100 ns). Apart from the movement of the ligand (around 270  0 rotation) toward 220 

binding cavity and stable fitting, that conformed into more stabilized helical turn at GLY11-GLU14 and LEU227-TYR237 in 221 

6LU7. These conformational variances were absent before simulation and visibly clear from the last trajectory of 100 ns 222 

dynamics. 223 

  224 



 

 

2.5. Dynamic Cross-Correlation Matrix (DCCM) and Principal Component Analysis (PCA) of the MD Simulation Trajectories 225 

DCCM was generated in order to analyze the correlative motion of structural domains to attain a stable conformation of 226 

6LU7 after Macrolactin A binding from MD trajectories (Figure 13A). The correlation scores on the central mean line (blue) 227 

displayed four distinct blocks having a high correlation of movement of amino acids in 6LU7 (Figure 13A). The domain D1 228 

comprised of residues 61-90 conforming into three distinct β-sheets and extended loop (green, Figure 13B). Whereas, D2 229 

domain having the highest cross-correlation between residues 95-165 conforming into more flexible extended loops and four 230 

β-sheets (red, Figure 13B). While D3 and D4 domains conforming into α-helices from 245-265 (cyan) and 270-280 (purple) 231 

residues, respectively. Therefore, dynamics cross correlation matrix enables the domain conformations into better stability of 232 

6LU7 at Macrolactin A bound state.  DCCM analysis also corroborates with the RMSF of C-α backbone of 6LU7 (discussed in 233 

the previous section) of Macrolactin A bound state with moderate to less fluctuations of respective amino acid residues 234 

confirming good stable structure. Similarly, Piao and coworkers (2019) reported the domain conformation and stability of N-235 

PDZ and E-PBM proteins by their correlation function from DCCM analysis [31]. 236 

 237 

 238 

Figure 13. DCCM plot (A), highly correlated dynamic domains of 6LU7 (B) and PCA (C) of global (PC1) and local motion (PC2) 239 
components of 6LU7 at Macrolactin bound A state from MD trajectories. 240 



 

 

PCA analysis displayed the contribution of principal dynamic global motion (PC1) and local motion (PC2) from the MD 241 

trajectories of 6LU7 with Macrolactin A bound complex (Figure 13C). The eigenvalues (covariance) were plotted in the PCA 242 

contour plot indicated the motion magnitude as well as directions of residues in MD trajectories. It was observed that 243 

Macrolactin A bound 6LU7 showed large movement toward positive eigenvectors and the majority of the domain movements 244 

were contributed by global slow motion (PC1) and conforming into the more stable conformation of 6LU7 depicting the 245 

significant binding of Macrolactin A thus corroborating MMGBSA result. Therefore, it may be suggested that Macrolactin A 246 

binds strongly and giving a stable conformation of C-α backbone of 6LU7.   247 

3. Materials and Methods 248 

3.1. Drug Likeness Profilling of Selected Natural Compounds 249 

Virtual screening of the naturally occurring compounds (n = 30) for drug likeliness properties were performed in 250 

accordance with Lipinski’s rule of five [32]. The DruLiTo stand-alone software 251 

(http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html) is implemented for the drug-likeness screening 252 

[33]. The compounds were selected from literature based on effective cost, sustainable harvest and year-round availability in 253 

India (Table S1). The drug-likeness compounds were then predicted for antiviral activity by in silico using the PASS online 254 

server (http://www.pharmaexpert.ru/passonline/predict.php). The predicted antiviral activity score (Pa) ranges between 0 to 1, 255 

where the value 1 is considered as the best antiviral activity, and zero stand for no antiviral activity (Table S4). The ADME 256 

properties of the selected lead compounds were calculated by using a QikProp module in Schrodinger suite [34, 35]. Results 257 

from ADME properties like SASA, QPlogPo/w, QPlogS, QPlogkhsa, QplogBB, No. of Metabolites and % human oral 258 

absorption were compared with a recommended range of values provided in the manual. The QikProp generates descriptors 259 

which use them to perform ADMET predictions or drug-likeness parameter (indicated by # stars). The #stars parameter 260 

describes the QikProp pharmacokinetic properties that fall outside the optimum range of values for 95% of known drugs 261 

within the ConMedNP library [36, 37, 38]. 262 

3.2. Preparation of Ligands and Receptors 263 

The Ligand was prepared using the LigPrep tool in Maestro module of Schrodinger [39, 40]. Epik was selected and 264 

Optimized Potential Liquid Simulations (OPLS3)force field [41], (pH 7.0 ± 2.0, allow 32 stereoisomers per ligand) was 265 

applied for optimization and energy minimization for each ligand compound. The receptor protein crystal structures in PDB 266 

format of the Mpro (PDB ID: 6LU7, Resolution: 2.16 Å)were obtained from the Protein Data Bank (www.pdb.org) [42]. The 267 

PDB structure and the protein–ligand structures were prepared using the Protein Preparation Wizard in the Schrödinger suite 268 

[40]. The water molecules in all protein structures were deleted before the missing residues and side chains were corrected 269 

using a Prime module [43]. The protein and the protein-ligand complexes are subjected to geometry refinement using 270 

OPLS2005 force field.  271 

3.3. Molecular Docking 272 

The crystal structure of Mpro (PDB ID: 6LU7) was used for molecular docking studies. All the protein-ligand docking 273 

complexes were performed using Autodock 4.2 [44, 45, 46].  The catalytic site of Mpro (His41 and Cys145), were chosen as 274 

binding sites for docking analysis [42]. 275 

In our docking study protein are kept rigid and ligands were kept flexible. Polar hydrogen and gasteiger charges were 276 

added to the Mpro protein (Mpro) and natural compound structures (ligand). AutoDock Tools (v.1.5.6) of the MGL software 277 

package was used to prepare PDBQT files of the ligands and proteins. Lamarckian Genetic Algorithm (LGA) method was used 278 

to analyze the protein-ligand docking complexes. The grid box size was set to 22.5 Å, with a grid point spacing of 0.375Å, 279 

centered on x =-13.01, y =18.361, and z = 71.031Å. The binding interactions of the docking complexes were analyzed and its 280 

3D and 2D interaction plot were analyzed by using Discovery studio visualizer [47]. Only molecular docking complexes with 281 

the least binding were considered for further study. 282 

3.4. MD Simulations 283 

The top inhibitory compounds Macrolactin A and Stachyflin were further analyzed by molecular dynamics simulation 284 

under Linux environment using the Desmond modules of the Schrodinger [48, 49]. The SPC (simple point charge) water box 285 

solvent model was used and OPLS2005 force field was applied for the protein-ligand docking complexes. An orthorhombic 286 

periodic boundary box (X, Y, and Z-axis) conditions were set up at 10 Å distances to specify the shape and size of the protein-287 

ligand docking complex. Counter ions (14 Na+, and 18 Cl- ions) were added to neutralize charges. 0.15M NaCl salt 288 

concentrations were added to make the system close to mimic the human physiological condition. The MD simulation was 289 

operating for 100 ns at NPT (Isothermal-Isobaric ensemble, constant temperature, pressure, and the number of particles) 290 

ensemble temperature of 300k and 1.01325 bar of pressure. The Desmond simulation interaction diagram tool of Maestro was 291 

used to generate the simulation interaction diagram. root-mean-square deviation (RMSD), root mean square fluctuation 292 

(RMSF), number of H-bonds, total contacts timeline and Protein-Ligand interactions were recorded throughout the simulation 293 

data and were analyzed to validate our findings in molecular docking.  294 

3.5. Molecular Mechanics Generalized Born Surface Area (MM-GBSA) Calculations: 295 

http://www.pdb.org/


 

 

The binding free energy calculation of the protein-ligand docking complexes was estimated by using the Prime-296 

MM/GBSA by using OPLS2005 force field [49, 50, 30] by using the methods described in previously published manuscript 297 

[51]. Prime MM-GBSA method calculates the binding free energy as follows:     298 

∆Gbinding = Gdocking complex–(Gprotein+ Gligand)  
Where, ∆Gbinding = total binding free energy, Gdocking complex, Gprotein, and Gligand are the free energies of the docking complex, 299 

protein and ligand, respectively. The obtained results were presented as the mean ± standard deviation (SD). 300 

 301 

3.6. Dynamic Cross-Correlation Matrix (DCCM) and Principal Component Analysis (PCA) of the MD Simulation Trajectories 302 

In order to analyze the domain correlations dynamic cross-correlation matrix (DCCM) were generated across all Cα-303 

atoms for Macrolactin A and 6LU7 complex during the MD simulation of 100 ns. PCA analysis was performed to extract the 304 

fast and slow motions of the trajectories during 100 ns simulation of 6LU7 complexed with Macrolactin A. A covariance 305 

matrix was generated to calculate the PCA for global slow motion and local fast motion of the contributing amino acid 306 

residues from each MD trajectory as described elsewhere [31]. The DCCM and PCA analyses were done using 307 

trj_essential_dynamics script of Schrodinger [34, 35, 48]. 308 

4. Conclusions 309 

Virtual screening of 30 natural compounds resulted in the identification of Macrolactin A as a lead compound for further 310 

in-vitro and in-vivo studies and ultimately as a treatment of Covid-19. Macrolactin A showed a very good docking score of -311 

9.22 kcal/mol and formed 3 hydrogen bonds and several other interactions. ADME revealed that it possesses favorable 312 

physicochemical properties and good drug-likeness scores. MD simulations showed that bounds in Mpro-Macrolactin A 313 

complex were strong and stable throughout 100ns. MM-GBSA analysis showed ΔGbind of -42.58 kcal/mol. Contacts timeline 314 

analysis of Macrolactin A showed that HIS 41, ASN 142, TYR 154, GLU 166, and GLN 189 were the crucial interactions. 315 

However, slight modification via derivatization might be required to improve its percentage human oral. Overall, Macrolactin 316 

A was the most promising compound to be used against SARS-CoV-2. This compound is produced by soil bacteria Bacillus 317 

amyloliquefaciens and was first isolated in 1989 [30]. This could make producing this compound on an industrial scale very 318 

easy and cost-effective due to the ease of culturing bacillus species. It has been previously reported to possess strong 319 

antifungal [52] and antibacterial activity even against vancomycin-resistant enterococci and methicillin-resistant 320 

Staphylococcus aureus [53]. It has also been fully synthesized which make it even more accessible to the world [54]. 321 

Supplementary Materials: The following are available online, Table S1. List of Total Molecules with their sources, PDB, and activities; 322 
Table S2. Lipinski Filtered compounds with molecular properties. Table S3. Binding energies (kcal/mol) of selected natural bioactive 323 
compounds with Mpro and their interactions with the binding site amino acid residues. Fig S1. Docking of 14 compound; Fig S2. Analysis of 324 
total contacts timeline formed between Mpro protein residues and Stachyflin during MD simulation. Darker shades correspond to a higher 325 
number of contacts and Stachyflin. 326 
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