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ABSTRACT  

With the advent of make-on-demand commercial libraries, the number of purchasable compounds 

available for virtual screening and assay has grown explosively in recent years, with several 

libraries eclipsing one billion compounds. Today’s screening libraries are larger and more diverse, 

enabling discovery of more potent hit compounds and unlocking new areas of chemical space, 

represented by new core scaffolds. Applying physics-based in-silico screening methods in an 

exhaustive manner, where every molecule in the library must be enumerated and evaluated 

independently, is increasingly cost-prohibitive. Here, we introduce a protocol for machine 

learning-enhanced molecular docking based on active learning to dramatically increase throughput 

over traditional docking. We leverage a novel selection protocol that strikes a balance between 

two objectives: (1) Identifying the best scoring compounds and (2) exploring a large region of 

chemical space, demonstrating superior performance compared to a purely greedy approach. 

Together with automated redocking of the top compounds, this method captures nearly all the high 

scoring scaffolds in the library found by exhaustive docking. This protocol is applied to our recent 

virtual screening campaigns against the D4 and AMPC targets that produced dozens of highly 

potent, novel inhibitors, and a blinded test against the MT1 target. Our protocol recovers more 

than 80% of the experimentally confirmed hits with a 14-fold reduction in compute cost, and more 

than 90% of the hit scaffolds in the top 5% of model predictions, preserving the diversity of the 

experimentally confirmed hit compounds.  
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INTRODUCTION 

The number of organic compounds containing 30 heavy atoms has been estimated to exceed 1060 

molecules1.  According to the most recent release of GDB-17, a partial enumeration of possible 

compounds containing up to 17 heavy atoms and the elements C, N, O, and S yields 166 billion 

molecules2. Until recently, the number of these compounds readily available to biology and 

chemistry has been far less than these staggering numbers, perhaps around 10 million molecules.  

Very recently, however, the number of commercially available molecules has grown substantially, 

owing to the advent of make-on-demand libraries. For instance, the ZINC database (http://zinc15. 

docking.org)3, now exceeds one billion readily synthesizable molecules from commercial vendors, 

with 448 million in the lead-like range (Date of Access: 10/25/2020). In addition, several 

commercial vendors offer DNA-encoded libraries comprising billions of compounds for 

laboratory screening4, 5. 

In recent studies6-9, structure-based, in-silico virtual screening has achieved high hit-rates by 

leveraging the new ultra-large chemical libraries that have emerged from the make-on-demand 

chemistry. Here, we use ultra-large screening libraries to mean those containing more than 100M 

distinct compounds, distinguishing them from traditional, in-stock libraries, which may typically 

contain about 3 to 10 million compounds. The early proof-of-concept studies suggest two benefits 

of docking these ultra-large libraries.  First, their size and high diversity suggests that, if only by 

chance,  ultra-large libraries will fortuitously sample more ligands that can tightly bind to a 

particular target.  Second, the early studies support the idea that, for all their liabilities,  empirical 

docking scoring functions, such as DOCK3.710-12 or Glide SP13-15 and others16-19 can prioritize these 

better ligands from the sea of decoy molecules inevitably also sampled in the ultra-large libraries, 

preventing the true actives from being drowned out by false positives.  



 4 

Docking campaigns utilizing ultra-large libraries remain relatively uncommon in the literature, 

reflecting the substantial computational cost required. Recently, two teams reported structure-

based virtual screens of over one billion compounds. The first such screen was performed by 

OpenEye Scientific on their Orion cloud computing platform, leveraging vast quantities of CPUs 

to explicitly predict the pose and score of each compound20 (detailed experimental outcomes were 

not provided). A second billion compound screen was performed with VirtualFlow, a workflow 

that relies on cheaper, arguably less accurate methods to triage compounds8. Docking an ultra-

large library of one billion compounds on 1000 CPUs would take approximately eleven days with 

DOCK3.7 (at 1 sec/lig), 300 days with Glide SP (at 30 sec/lig), and 173 days with Virtual Flow 

(at 15 sec/lig). This does not account for the cost to prepare the library for screening, which 

typically includes the generation of low energy ionization and tautomeric states as well as 

stereochemical states for unspecified centers.  It is expected that on-demand, synthesized libraries 

will continue to rapidly grow as further reagents and reactions are included.  For example, the 

ZINC library comprised roughly 100 Million compounds in April 2016, 500 million in July 2019 

and 1 billion in January 2020.  If we extrapolate this growth rate, it’s not unreasonable to anticipate 

libraries of tens of billions of compounds in the next five years. 

As chemical libraries continue to grow, explicit docking solutions are expected to become 

impractical due to cost and compute resource requirements. Hierarchical workflows are similarly 

unattractive as they compromise scoring function accuracy for the method that screens all 

compounds in order to achieve acceptable throughput. Accordingly, there is a need for docking 

workflows that can find, with minimal loss of accuracy, the best scoring ligands in multi-billion 

molecule libraries that exceed our capacities to screen or perhaps even build them explicitly, 

through combinatorial enumeration.   
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Advances in machine learning, especially deep learning, have provided great opportunities in 

drug discovery21-24. Studies range from the prediction of compound properties, including on-target 

activity, de novo design of chemical structures to target-specific property spaces, reaction 

predictions and retro-synthetic analysis, and the prediction of protein-ligand interactions via 

convolutional neural networks. Active-Learning is a category of supervised machine learning 

methods that train an increasingly accurate model to act as a stand-in for a difficult or costly to 

compute scoring function. Many applications of active learning in the area of drug discovery have 

been reported recently, including applications to molecular docking25, 26 and free energy 

calculations27, 28. These studies have demonstrated the ability for ligand-based QSAR models to 

“learn” a docking score over a specific domain, greatly reducing the computational cost to screen 

a large library. What has been missing to date, however, are comparisons of hit rates and chemical 

diversity between traditional docking programs and active learning protocols using data from real 

hit-discovery campaigns, which is the subject of this work. To our knowledge, this study presents, 

for the first time, a comparison of different strategies for selecting compounds for active learning 

(selection rule) in a virtual screening context. We introduce a novel selection rule defined by 

choosing the most uncertain of the top scoring compounds, striking a balance in the classic explore-

exploit tradeoff, and demonstrate that it outperforms a selection rule defined by either the best 

scoring molecules or the most uncertain compounds. 

Here we present a retrospective study examining the feasibility of an active learning-based 

approach to focus docking screens on the most productive areas of chemical space. A small 

percentage of docking results of D4 dopamine receptor (D4) and AmpC β-lactamase (AmpC) from 

a previous publication6 were used to train AutoQSAR/DeepChem (AQ/DC) models, followed by 

a prediction of DOCK3.7 scores on the entire library. A subsequent blind test was carried out on 
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MT1 melatonin receptor (MT1)7, where the docking results were not accessible to those training 

the ML method. In addition to prioritizing new chemical space for DOCK3.7 to focus on, we 

demonstrate the versatility of the active learning approach by extending it to the Glide SP docking 

program using the fully-automated Active Learning Glide Program available in the Schrödinger 

Suite29. 

 

MATERIALS AND METHODS 

Datasets 

Three protein systems were used in this retrospective study. Docking results of 99,459,562 

molecules to AmpC β-lactamase (AmpC), and 138,312,677 molecules to the D4 dopamine 

receptor (D4) were obtained from ref 6. A blind test was carried out on 150,927,915 molecules 

docked against the MT1 melatonin receptor (MT1)7, where only randomly selected training sets 

were provided for the training of the model. These systems were chosen because hundreds of 

docking predictions have been experimentally tested, thus experimentally confirmed actives can 

be used to evaluate the method. It is worth mentioning that AmpC preferentially binds anionic 

molecules, while D4 and MT1 favor cationic and neutral molecules, respectively.  

AutoQSAR/DeepChem (AQ/DC) 

Here, we evaluate our implementation of active learning for molecular docking using both the 

DOCK3.7 and Glide SP programs. All machine-learning models in this work were developed using 

the AutoQSAR/DeepChem package available in Schrödinger Suite beginning with the 2019-1 

release.  AQ/DC is an extension of our previously reported AutoQSAR30 engine for building best-

practices QSAR models without the need for specialized knowledge in machine learning or 

cheminformatics.  
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AutoQSAR, as originally implemented, is limited to modest size data sets (fewer than 5,000 

data-points), making it unsuitable for the active-learning approach presented in this work. AQ/DC 

implements an automated approach to neural-networks, by implementing the Graph-Convolutional 

Neural Networks (GCNN) available in the DeepChem package of Pande et. al31. The GCNN model 

has been described as a sort of neural fingerprint that operates on a molecular graph. In addition 

to GCNN neural networks, AQ/DC also constructs random forest models based on Morgan 

Fingerprints from the RDKit32 cheminformatics package.  

In AQ/DC, a user-adjustable parameter, the model search time, is used to define the length of 

model search and selection process. AQ/DC performs a random search of hyper parameters during 

this time. Examples of the hyperparameters sampled during training include the model algorithm, 

number of layers in the GCNN or DNN, the number of training epochs, and the normalization 

scheme applied to the raw response variable. AQ/DC performs 5-fold cross validation scheme to 

select hyper parameters. The output of this procedure is 5 models, each trained to a different fold 

of the data, for a given hyperparameter set. When the search time has been reached, this process 

terminates, and the best performing model sets are combined into a three-membered ensemble, 

where each member is trained on one of five folds, comprising of a total of 15 models. Compound 

evaluation using the trained ensemble is performed by averaging the scores of all 15 models. 

Relevant for this work, a standard deviation across the 15-member ensemble is provided as a 

measure of uncertainty. 

Docking Calculations 

Molecular docking using Glide and DOCK3.7 require prepared 3D structures for all input 

molecules. 3D inputs for Glide calculations were generated using the LigPrep program33 of 

Schrodinger Suite starting from a SMILES representation of each molecule, using the following 
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settings: (1) Tautomers were generated using Schrodinger’s Epik34 with a target pH of 7.0+- 1.0 

and (2) a maximum of 16 stereoisomers were generated for each molecule. Glide was run with SP 

precision using all default docking parameters. 3D inputs for DOCK3.7 where generated with the 

ligand building pipeline in ZINC1535. In brief, ChemAxon’s CXCALC program was used to 

generate protonation and tautomer states at physiologically relevant pH from a SMILES 

representation of each compound36. Protomers were then converted to 3D via CORINA37 and 

conformational ensembles were generated using OpenEye’s Omega38. The details of docking 

settings of DOCK3.7 for AmpC and D4 have been described previously6. 

General Workflow  

The general workflow of the hybrid approach is depicted in Figure 1. First, a random subset of 

the ligand library is selected and docked. The docking scores of the subset are used to train an 

AQ/DC model, which is subsequently used to predict docking scores across the entire ligand 

database. This is followed by one or multiple rounds of active learning, where an attempt is made 

to improve the model by making a selection of the top scoring compounds, according to a selection 

rule, and training a new model using the union of the previously docked compounds and this 

additional batch of docked ligands. For these retrospective experiments, the performance of 

AQ/DC is evaluated by the percentage of top ranked, explicit docking-prioritized molecules 

recalled by the AQ/DC model. Here, we define the top 10K compounds by docking score in the 

explicitly docked library as virtual hit compounds. Different models can be compared by the 

Receiver-Operator Characteristics (ROC) metric where docking hits are the true positives.  

Here, all AQ/DC model training and prediction were done in triplicate, where training sets were 

selected with different random seeds, i.e. Run 1, Run 2, Run 3. As shown in Figure S1, the overlap 

among molecules in the three randomly selected training sets is minimal.  
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Figure 1. General workflow of the presented approach in the study with the option of active 

learning.  

 

Chemical Libraries 

Libraries for virtual screening can vary greatly in both size and chemical diversity. We have 

evaluated the active-learning protocol against different libraries to provide coverage along both of 

these dimensions. We evaluated ~100M subsets of the ZINC15 library of commercially available 

compounds and the Sigma-Aldrich Market-Select collection (~8M compounds) 39. While smaller 

in size, every product in the Sigma-Aldrich type of library should be in-stock. This compares to 

ZINC15, where only about 0.5% of the database is expected to be in-stock. The bulk of ZINC15, 

like other virtual libraries of greater than 100 million compounds, is composed of molecules 

generated by a computational enumeration of building blocks and a reaction database. Of the one 

billion compounds in ZINC15, roughly 11 million are available in commercial  in-stock collections, 

while the rest are expected to be readily synthesizable. The combinatorial design of these libraries 

makes them well suited to the protocol described here, where the higher expected density around 

virtual hit compounds in chemical space could allow for more robust training of the ML models 

in the active-learning workflow as compared to in-stock libraries, where compounds are expected 

to be more sparsely distributed in chemical space.  
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Null Model based on 2D Chemical Similarity 

A simple null model based on 2D topological similarity was constructed to assess the 

effectiveness of the active learning workflow for recovering virtual hit compounds. As with the 

workflow described in Fig. 1, an initial random selection of the ligand database is docked. The top 

compounds by docking score are selected as probe molecules. Pairwise similarities are computed 

for each compound in the database against each of the probe molecules. The final score for each 

compound according to this model is defined as the maximum similarity over the set of probe 

molecules.  Considering the size of the library (~100 million compounds), this analysis requires 

roughly 100 billion pairwise fingerprint similarity calculations against 1000 probe ligands.  

These vast calculations were made possible by the GPU-accelerated FPsimGPU application 

available in Schrödinger Suite. FPsimGPU consists of a cloud server populated with molecular 

fingerprints for each compound in the library. To realize the GPU compute performance for 

similarity operations, the fingerprints of each library compound are stored in GPU memory on the 

server. Molecular fingerprints are “folded-down” to maximize information density and ensure that 

the entire database can fit in memory. This process can be described as follows: For each cycle of 

the folding process the fingerprint size is reduced by a factor of two, lowering the sparsity of the 

fingerprint, but increasing the rate of expected collisions, where a single bit is mapped to multiple 

chemical substructures40, 41. After comparing all folded fingerprints on the GPU, the highest scoring 

matches are rescored on the CPU using the original unfolded fingerprints to get fully accurate 

results 

The server can perform more than 4 billion similarity operations per second. We use Morgan 

Fingerprint with Radius=2 as implemented in the RDKit cheminformatics package. 

 



 11 

RESULTS AND DISCUSSION 

The AQ/DC model was initially trained against a set of 0.1% molecules randomly selected from 

the full dataset for AmpC and D4 systems, respectively. The model was then applied to the entire 

dataset, where an ML score was predicted for each molecule for comparison with the true docking 

score. 

The overall correlation between the docking score and the ML score is shown in Figure S2, 

where the Pearson correlation coefficients are 0.78 and 0.81 for DOCK3.7 and Glide SP, 

respectively, for the D4 receptor and 0.81 and 0.72 for DOCK3.7 and Glide SP, respectively, for 

AmpC. When focusing only on the region with the best true docking scores, the correlation 

coefficient drops substantially; the ML models are clearly an imperfect stand-in for the true 

docking scoring function. From the correlation statistic, it is not immediately clear how useful the 

ML models are in a high-throughput screening context. We can reframe the analysis by asking 

how many of the top scoring compounds from the ML model would need to be docked to recover 

a specified number of the virtual hit compounds. The new Active-Learning Glide program 

implements an automated rescoring step where a fraction of the top-ranked compounds by the ML 

predictions are rescored with explicit docking for this purpose. What is really needed then, for the 

models to be useful in reducing the computational cost of the screen, is simply to be sufficiently 

effective in separating compounds that will yield good docking scores from those with poor 

docking scores, so that the desired recovery can be achieved while docking a far smaller number 

of compounds in total. Here, we focus on the recovery of virtual hit compounds as a function of 

the library screened by the ML model. This quantity represents the number of compounds that 

must be rescored in order to recover a given number of virtual hit compounds. 
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Recovery of virtual hits and experiment confirmed actives from AQ/DC model predicted 

rank list 

The plots in Figure 2 present the recovery of the (1) top 10K virtual hits from DOCK3.7 for D4 

and AmpC (Figure 2A & 2B); (2) the experimentally verified hit compounds (actives) (Figure 

2C & 2D); and (3) the top 10K virtual hits from Glide SP (Figure 2E & 2F). 

In sharp contrast with the prediction of docking scores for top-ranking compounds, the 

classification of top-ranking compounds by the models was strong. Most top-ranking compounds 

by both DOCK3.7 and Glide SP can be recovered very early by the AQ/DC model. Docking the 

top 5% of the library from the AQ/DC model, 80% and 98% of the virtual hits from DOCK3.7 and 

Glide SP can be recovered for the D4 screen. For AmpC, 97% and 70% of the virtual hits from 

DOCK3.7 and Glide can be recovered.  Recovery performance using DOCK3.7 is noticeably 

worse for D4 than AmpC, particularly with respect to early enrichment. The opposite behavior is 

seen for models based on Glide SP, where recovery performance is improved, relative to AmpC. 

For AmpC, the docking parameters for DOCK3.7 were adjusted based on benchmark calculations 

6. These target-specific changes largely impacted the treatment of electrostatic interactions in the 

binding site, promoting compounds with plausible warheads. Glide SP calculations were run 

without any adjustment from the default parameters, which may account for the observed 

difference.  

Recovery of experimentally confirmed actives by the AQ/DC model trained to the original 

DOCK3.7 scores is likewise very good. These plots suggest that the ML models are able to separate 

compounds with good docking scores from those with poor docking scores. 
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(A) (B)(DOCK) (DOCK)

(C) (D)(DOCK) (DOCK)

(E) (F)D4: train 0.1%   (GLIDE SP) AmpC: train 0.1%  (GLIDE SP)



 14 

Figure 2. ROC curves showing the percent of top 10K virtual hits and experiment hits 

recovered by the AQ/DC model. The true positives are the top 10K virtual hits from 

DOCK for D4 (A), AmpC (B), experiment confirmed actives for D4 (C), AmpC (D), and 

top 10K virtual hits from Glide SP for D4 (E), AmpC (F) respectively. Three replicates 

of random selection of training set are indicated by Run 1, Run 2, and Run 3, where no 

significant difference is observed. 

 

We considered two routes to improve the performance of our model while maintaining a 

reasonable training time. First, we increased the size of the training data set, from 0.1% to 0.2% 

and 0.5% of ZINC screening subset. For the workflow presented in this work, a larger data set 

should always be beneficial for model accuracy, eventually reaching a point of diminishing returns. 

The other route is to increase the information content of the training set to gain higher accuracy.  

In the following study, we show the impact of 1) the size of the training set of docked compounds, 

2) the selection rule used in the active-learning scheme to select the compounds for model training. 

Role of Training Set Size 

We varied the training set size for the AQ/DC model with set sizes of 0.01% to 0.02%, 0.05%, 

0.1%, 0.2%, and 0.5%. As the size of the training set is increased, recovery of virtual hit 

compounds is improved (Table S1). For D4, evaluating the top 2% scoring compounds according 

to the AQ/DC model, the percent recall of DOCK3.7 virtual hits significantly improved from 23% 

to 67%; similarity, when evaluating the top 5% compounds by ML-score, the percent recall 

increased from 47% to 86%. Although great early recovery of virtual hits was seen for AmpC, 

improvement in percent recall of virtual hits was still observed.  

Selection rules used in active learning 
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Next, we consider the impact of the selection rule used to select the training set. In the AL 

workflow of the present work, an ML model is first built using a small training set (0.1% of the 

ligand database). After the prediction, another 0.1% of molecules are selected and docked. The 

docking scores of these compounds are combined with the initial selection to form a new training 

set used to retrain the AQ/DC model. Four types of selection rules have been tested here: 1) top 

0.1% by ML score; 2) most uncertain 0.1% according to the ML model, as defined by the standard 

deviation of the ensemble predictions for a given compound; 3) 0.1% randomly selected 

compounds from top 10% by ML score; and 4) most uncertain 0.1% from the top 5% compounds 

by ML score. The detailed recall for each selection rule is reported in Table S1 and Figure S3. 

The addition of the top 0.1% of compounds by ML score leads to almost no improvement in the 

percent recall of virtual hit compounds as compared to the initial ML model trained to 0.1% of the 

library, while the addition of the most uncertain 0.1% compounds according to the AQ/DC model 

actually decreases recall. This result suggests that the compounds selected for retraining the model 

should be high-scoring according to original AQ/DC model. Impressively, when the selection rule 

is defined by random selection of 0.1% molecules from the top 10% scoring molecules according 

to the ML model, performance is similar to training an AQ/ML model in to 0.2% of the dataset, in 

a single pass.  Finally, using a selection rule defined by the 0.1% most uncertain molecules from 

the top 5% according to ML yields the best recovery of virtual hits. This leads to an important 

conclusion from our experiments. Selecting the most uncertain compounds for the training set is 

only effective when they are also among the highest-scoring compounds according to the initial 

ML model. This powerful combination of score and uncertainty provides a recipe for the most 

effective way to choose the compounds for active learning. 
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Figure 3 contains bar plots comparing recovery performance across three different models: (1) 

AQ/DC model trained with a random 0.1% subset of the database (blue; train 0.1%), (2) with a 

larger 0.2% training set (orange; train 0.2%), (3) AL protocol with 0.1% most uncertain of top 5% 

from ML prediction (green; active learn 0.1% + 0.1%), (4) even larger 0.5% training set (red; train 

0.5%). ROC curves of the detail recovery are shown in Figure S4 and S5 for D4 and AmpC, 

respectively. 

The effect of increasing the size of training set is most pronounced early in the list. In Figure 

3A and 3B, for example, the AQ/DC model built using a smaller training set (0.1% of the database) 

retrieves 50% of the top 10K compounds, according to DOCK, in the top 2% of compounds scored 

by the ML model. Recovery using a model build to a larger training set (0.5% of the database) 

jumps to more than 60%. The use of a larger training set improves recovery of active compounds 

as well (Figure 3C and 3D).  Figure 3E and 3F show the recovery of Glide SP virtual hits, for 

AmpC, training a ML model to a larger fraction of the ligand database made a large improvement 

in the recovery power of the model. For D4, the improvement is subtle since the recovery is already 

96% from the model trained using a smaller training set (0.1% of the ligand database).  

The performance of the AL protocol is significantly improved from the AQ/DC model trained 

with a smaller training set (0.1% of the ligand database) and is within error of the performance 

achieved with a larger training set (0.5% of the ligand database). The total number of docking 

calculations required to for the AL protocol is 0.2% of the ligand database (e.g. 200,000 ligands 

with 100 million compound database). This compares to the model built using the larger training 

set, which required 0.5% of the ligand database (e.g. 500,000 ligands). This is a powerful 

illustration of the impact of active learning. Thus, with an active learning refinement approach, we 
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can save nearly 300,000 docking calculations. These conclusions are independent of whether 

DOCK or Glide SP is used.  

In all cases, as expected, both having a larger data set (train 0.5%) and using active-learning to 

refine the model (active learn 0.1% + 0.1%) outperforms a model trained to a smaller training set. 

The gain in performance is especially significant in the early part of the screen.   

The comparison between a model trained to 0.5% ZINC database and the active learning 

protocol, however, is a bit more complex. When benchmarking against DOCK, active learning 

shows a consistent, although small, increase in performance as compared to a model trained with 

a larger data set. However, this improvement is eliminated when benchmarking against 

experimental data as shown in Fig 3C. This interesting observation can be understood as follows. 

Active learning is built upon the existing ML model trained using DOCK, and its performance is 

therefore closely associated with the original model trained upon 0.1% of the ZINC database. In 

our previous study, the compounds selected for experimental testing were not simply the best by 

DOCK score. While the DOCK score was used as a guide to select the compounds, human voting 

was ultimately used to form the buy list from a pool of high-scoring compounds. Nonetheless, the 

protocol described here achieves performance on-par with standard approach that required 2.5 

times more training data. This allows more rapid screening of molecules while maintaining good 

accuracy. 

In practice, the top 10k compounds in a docking campaign are sufficient in most cases to form 

a voting pool for human interrogation. We have, however, in previous work, pulled virtual hits 

from further down the ranked list, including the top 100K and top 300K by DOCK score. This was 

done to include additional compounds for post filtering procedures and hit picking6, 7. The recovery 



 18 

of top 100K and 300K virtual hits by AQ/DC model ML prediction have been shown in Figure 

S7. 

 

 

(A) (B)D4: DOCK docking hits AmpC: DOCK docking hits

(C) D4: experiment hits (D) AmpC: experiment hits
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Figure 3. Percent of top 10K virtual hits and experimental hits recovered from AD/DC model 

with three protocols. AQ/DC model trained with a random 0.1% subset of the database (blue). 

With a larger 0.5% percent training set (red). Models trained to 0.2% of the library; One based 

on the AL Protocol (0.1% + 0.1%) (green) and the other to a random set (orange) Recovery of 

virtual hits from DOCK for D4 (A) and AmpC (B). Recovery of experiment confirmed hits for 

D4 (C) and Ampc (D). Recovery of virtual hits from Glide SP for D4 (E) and AmpC(F). The 

error bars were obtained from three replicates of random selection of training set with 95% 

confidence interval. 

 
 

Chemical diversity analysis of recovered hits from AQ/DC model  

GCNN models learn features from graph neighborhoods and the random forest models sampled 

in AQ/DC are based on Morgan fingerprints; both models are trained using a set of features derived 

from a simple 2D representation of molecules (SMILES). These models form the AQ/DC ML 

ensembles used to screen large libraries in this work.  To ensure that these models are not simply 

learning a simple measure of ligand similarity, we assessed the ability of the AQ/DC models to 

(E) (F)D4: GLIDE SP docking hits AmpC: GLIDE SP docking hits



 20 

capture the diversity of the virtual hit compounds according to DOCK3.7 and Glide SP. We 

clustered the virtual hit compounds (Top 10,000) according to both Glide and DOCK3.7 using 

ECFP4 fingerprints.  The clustering was done using the Butina clustering algorithm in RDKit, 

varying the Tanimoto coefficient (Tc) cutoff over from 0.3 to 0.6. The cluster recovery is defined 

as whether any ligand in the cluster was in the ML prioritized ligands. For D4 screening with 

DOCK3.7, more than 60% and 80% of the clusters (ECFP Tc= 0.5) were recovered if we dock top 

2% and 5% of predictions of AQ/DC model with a larger training set (train 0.5%) or with active 

learning protocol (active learn 0.1% + 0.1%) (Figure 4A). For D4 docking with Glide SP, more 

than 90% of the cluster heads (ECFP4 Tc=0.5) are recovered if we dock the top 2% of AQ/DC 

model predictions no matter which training protocol was used (Figure 4B). A similar trend is seen 

clustering with Tc 0.3, 0.4, and 0.6 (Figure S9 and S10).   

 

Figure 4. Percent of cluster heads recovered by AQ/DC model with three protocols. The top 

10K virtual hits from DOCK (A) and Glide SP (B) were clustered based on ECFP4 fingerprint 

with a tanimoto coefficient of 0.5.  AQ/DC model trained with a random 0.1% subset of the 

database (blue). With a larger 0.2% percent training set (orange). With an even larger 0.5% 

percent training set (red). AL protocol with 0.1% most uncertain ML prediction (green).  

(A) D4: cluster heads from DOCK top 10K 
(ECFP4 Tc=0.5) 

(B) D4: cluster heads from GLIDE SP top 10K 
(ECFP4 Tc=0.5) 
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Another way to assess intrapopulation chemical diversity is to count unique Bemis-Murcko 

scaffolds. We plot the number of scaffolds from top 10K virtual hits of DOCK3.7 against D4 

(Figure 5A). A total of 4,515 unique scaffolds are identified from the top 10k compounds by 

DOCK score, compared with 1595 for the AQ/DC model, a reduction of roughly 50%. Such 

observation agrees with a detailed score comparison for compounds with the same Bemis-Murcko 

scaffold (Figure S8), which tend to have more similar ML scores and more diverse DOCK3.7 

scores. If we redock the top 2% and 5% of compounds scored by the AQ/DC model, a much better 

overlap of common scaffolds is achieved with the new top 10K after redock. Thus, we have to 

redock the top 2% to 5% (roughly 2M to 5M) of the scored library by our active-learning protocol 

to recover a similar diversity of the chemical library. The same observation is also seen with Glide 

SP (Figure 5B).  These results suggest strong benefits from using an active learning approach 

followed by rescoring the top-ranked by ML predictions with explicit docking. This result also 

highlights the important role physics-based methods can continue to serve in hit identification 

campaigns. Where pure-ML approaches rely on interpolation, physics-based methods may provide 

greater opportunity to expand the known chemical space for a project.  

 

top 10K virtual hits from DOCK 
vs.

top 10K from ML prediction

top 10K virtual hits from DOCK 
vs.

top 10K from redock top 2% of ML 
prediction

top 10K virtual hits from DOCK 
vs.

top 10K from redock top 5% of ML 
prediction

(A)  DOCK: unique Bemis-Murcko scaffolds  
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Figure 5. Venn diagram showing the overlap of common Bemis-Murcko scaffolds from top 10K 

prioritized molecules from DOCK (A) and Glide SP (B) for the D4 target. Scaffolds of top10K 

virtual hits top 10K (left panel), and new top 10K from redocking the top 2% (middle panel) 

and redocking the top 5% (right panel) from AQ/DC ML prediction.  

 

Null Model 

We compared the performance of our active-learning workflow versus a simple null model based 

on chemical similarity. This experiment is meant to determine the information gain of our ML 

approach beyond simply learning the training set molecules themselves. To construct the null 

model, a random selection of 0.2% of the library was docked. The top 100, 500 and 1000 

compounds by docking score were selected as the probe molecules, forming the basis of three 

models. In addition to the null model, the active learning workflow was run with a 0.1% batch size 

and two iterations of active learning. Both the active-learning model and the null model receive 

the same information – the 2D chemical structures and docking scores for 0.2% of the library. 

Judged by recovery of the top 10k virtual hit compounds, the active learning workflow outperforms 

the null models (Figure 6). The top 1% of predictions by active learning workflow recovered 92% 

top 10K virtual hits from GLIDE SP 
vs.

top 10K from ML prediction

top 10K virtual hits from GLIDE SP 
vs.

top 10K from redock top 2% of ML 
prediction

top 10K virtual hits from GLIDE SP 
vs.

top 10K from redock top 5% of ML 
prediction

(B)  GLIDE SP: unique Bemis-Murcko scaffolds  
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and 47% top 10K compounds by Glide score for D4 and AmpC, respectively. The top 1% of 

predictions based on the null model only recovered around 40% and 20% of the top 10K 

compounds, respectively. This suggests that the ML models are learning features of the docking 

function itself, and not simply memorizing the training set. Fig S11 shows that the conclusion is 

similar when molecule chirality is considered during fingerprint generation. 

 

Figure 6. ROC curves showing the percent of top 10K Glide virtual hits recovered by the active 

learning workflow and 2D fingerprint similarity based null models with different number of 

probe molecules. The true positives are top 10K virtual hits from Glide for D4 (A) and AmpC 

(B). The active learning workflow results are the averaged over three runs with different random 

seed. The 2D fingerprint does not consider the chirality of a molecule. 

 

Comparison of enrichment in on-demand synthesized and in-stock libraries 

Besides the large, make-on-demand libraries such as the ZINC database, we evaluated our 

active-learning protocol on the Sigma Aldrich Market Select database39, a much smaller, traditional 

screening library (8M unique compounds) of in-stock compounds. These comparisons were 

D4 without chirality AmpC without chirality (A) (B)
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performed using the Glide SP program with the same simulation conditions as other Glide SP 

dockings in this work. Results in Fig 7A-7B show that AQ/DC models are able recover virtual hit 

compounds, performing well above random. However, there is a significant degradation in 

performance as compared with the results on the ZINC database shown in Fig 2E-2F. When 

screening the ZINC library against AmpC, redocking the Top 2% of compounds according the 

AQ/DC model recovers roughly 40% of the top 10k virtual hits. When the smaller library is 

screened, only 20% of virtual hit compounds are recovered. A similar trend is observed for the D4 

target. The ZINC screen recovers over 80% of the top 10k virtual hit compounds in the top 2% of 

predictions, as compared with roughly 40% when the Sigma-Aldrich library is used. We conclude 

that the choice of library can strongly impact the effectiveness of the workflow described in this 

work. Our analysis of chemical diversity in the previous section indicated that the ML models 

recovered some scaffolds more completely than others. This loss of diversity could explain the 

degraded performance on the in-stock library, compared to the virtual, enumerated library. It is 

intuitive that an enumerated library should feature greater density in local regions of chemical 

space. In order to test this theory, we selected the top 20 scoring compounds in both libraries from 

the D4 exhaustive docking with Glide SP. We performed a “hit expansion” of each of these virtual 

hit compounds by extracting the set of nearest neighbors within a specified chemical similarity to 

the initial compound. Pairwise similarity was defined as the Tanimoto distance between the 

molecular fingerprints of each compound. Neighbors with similarity greater than 0.5 were binned 

into three groups: (1) Between 0.5 and 0.6, (2) Between 0.6 and 0.7, and (3) Greater than 0.7. The 

ZINC15 subset for the D4 screening in this work is roughly 17x larger than the Sigma Aldrich 

library screened. As shown in the left panel of Fig 7C, a virtual hit compound from the ZINC 

subset can be expected to have 4.5x more neighbors within a chemical similarity of 0.7, 12x more 
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neighbors with a chemical similarity to the reference between 0.6 and 0.7, and 36x compounds 

that are within a chemical similarity of 0.5. The larger ZINC library does offer more close 

neighbors per query on average. When normalized to account for the difference in library size as 

showed in the right panel of Fig 7C, we find that tighter neighborhoods around each compound 

approach the size of the smaller library. The information gained from these extremely similar 

neighbors, > 0.6, may not amount to much for training the ML model, as compounds above this 

threshold are generally very similar. However, as we widen the radius to a similarity of 0.5, we 

find a proportional advantage to screening the larger library. The greater density of points in this 

region could provide a significant boost in the task of learning the parent scoring function.  

 

(A) (B) D4AmpC
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Figure 7. Results of active-learning workflow where the smaller, Sigma-Aldrich Market-

Select library was screened against AmpC (A) and D4 (B).  (C) Hit Expansion for the top 

20 scoring compounds according to Glide SP screened against the D4 target. Average 

neighborhood size at varying radii in chemical space are shown for the ZINC15 subset 

and Sigma-Aldrich libraries screened in this work.   

 

Blind test on MT1 system 

Besides the retrospective test of the AQ/DC model on the D4 and AmpC datasets, a blind test 

was carried out employing DOCK3.7 on the MT1 system. At the time of model training, only the 

training sets were made available to the ML method. Similar to the retrospective study on D4 and 

AmpC, the AQ/DC model was trained with three protocols: a smaller training set (train 0.1%), a 

larger training set (train 0.5%), and active learning protocol (active learn 0.1% + 0.1%) where the 

most uncertain 0.1% from the top 5% of first round ML prediction was added to the original 

(C)



 27 

randomly selected 0.1% training set. The detailed ROC curves for all three protocols are shown in 

Figure S6. Percent recovery of the top 10K virtual hits from DOCK as well as the 104 

experimentally confirmed hits are shown in Figure 8. Roughly 80% of the virtual hits are 

recovered in the top 5% of predictions by the AD/DC model trained with a larger set (train 0.5%; 

orange) or the active learning protocol (active learn 0.1%+0.1%; green) (Figure 8B). The 

advantage of the active learning protocol is most obvious in the early recovery for the MT1 system. 

From the top 2% of predictions according to the AQ/DC model with active learning protocol, 68% 

of virtual hits are recovered, while the AQ/DC model with training sets of 0.1% and 0.5% can 

recover 52% and 62% respectively. A similar trend is seen for the 104 experiment confirmed hits 

of MT1 system, where the AQ/DC model with active learning protocol can recover 65%, 71%, 

78%, and 81% of the experiment hits at the top 2%, 3%, 4% and 5% of the ML prediction (Figure 

8D). 

 

(A) (B)
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Figure 8. ROC curves and percent recovery by AQ/DC model for MT1 system as a blind 

test. Percent recall of top 10K DOCK virtual hits (B) and 104 experiment confirmed hits 

(D) showing AQ/DC model trained with active learning protocol yield best performance 

in recovery hits. ROC curves of the active learning protocol trained AQ/DC model 

prediction showing the recovery of top 10K DOCK virtual hits (A) and experimental hits 

(C). 

 

Comparison of computational costs 

The goal of this study is to apply AQ/DC models to complement docking programs (DOCK3.7 

and Glide) in screening large data sets through the use of an active-learning scheme to identify 

compounds likely to score well by docking methods. By sacrificing a few good candidates, a 

substantial speedup can be achieved. The speed of docking with Glide and DOCK 3.7 as well as 

the AQ/DC model predictions was evaluated on a single core of an Intel i5-8400 CPU with a clock 

speed of 2.80GHz. On average, docking a single molecule with Glide and DOCK took 7.9 and 1.0 

seconds respectively. The AQ/DC prediction for a single molecule took as little as 5 milliseconds. 

With a NVIDIA GTX 1080Ti graphics card, the AQ/DC model training took 16 hours on average.  

(C) (D)
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Based on these benchmarks, it is reasonable to train an AQ/DC model with a random selection 

of 0.5% of the 138 million molecules ZINC subset used to screen the D4 target, followed by a re-

docking the top scoring 5% of compounds by AQ/DC model prediction. The workflow offers a 

savings of 20-fold over explicit docking of all 138 million compounds. The reduction in 

computational time can be seen in Figure 9A, showing the full computational time for the 

exhaustive docking (Glide, DOCK) approach, the hybrid approach combining docking and AQ/DC 

modeling (ML+Glide, ML+DOCK), and the active learning protocol (AL+Glide, AL+DOCK). 

For both DOCK and Glide based workflows, the dominant contributor to the overall compute cost 

is docking, followed by model evaluation, and finally, by model training. For the active learning 

protocol, the total CPU wall-clock time is roughly inversely proportional to the number of CPU 

cores used. Both docking and ML model evaluation tasks are performed on the CPU. Only ML 

model training is performed on the GPU. Currently, the GPU wall-clock time cannot be reduced 

by utilizing additional GPUs, as the AQ/DC backend does not support parallel training.  Figure 

9B presents a typical real-world scenario, with a fixed amount of compute resources. Here, the 

wall-clock time is compared across protocols for a single GPU and 100 CPUs. The wall-clock time 

achieved using the hybrid approach is 16-fold less than exhaustive docking with Glide, and 10-

fold less than with DOCK3.7.  Although a small increase in wall-clock time is seen with active 

learning protocol-mostly from training the AQ/DC model twice, a 14-fold and 7-fold reduction in 

wall-clock time can be realized against the exhaustive docking approach with Glide and DOCK. 

Considering the slight increase in wall-clock time and the additional accuracy of the AQ/DC model, 

the active learning protocol has the best balance of accuracy and time savings and is recommended 

for ultra-large scale docking campaigns. 



 30 

 

 

Figure 9. Wall-clock times for a 138 million molecule virtual screen of the D4 system in CPU 

hours (A) with one CPU and one GPU; (B) with 100 CPUs and one GPU. 

 

 

 

(A)

(B)
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Conclusion 

Ultra-large libraries vastly expand the number and diversity of compounds accessible to 

structure-based docking screens, and indeed other virtual screens. It is clear, however, that such 

large libraries will soon become intractable to prepare for atomistic docking, let alone for explicitly 

docking to a given receptor structure. This already limits the feasibility of conventional docking 

in many interesting applications. Here, we investigate a more cost-effective method to dock ultra-

large libraries. The active-learning workflow can act a fast stand-in for a computationally 

expensive docking, minimizing the number of docking calculations required. The AQ/DC models 

can recover compounds outside of the training-set, as evidenced by the substantial improvement 

over a similarity-based null model. The active-learning workflow does suffer from a loss of 

diversity compared to the hit list ordered by full docking score, as determined by the count of 

unique chemical scaffolds. This loss of diversity can be dramatically reduced by adding a simple 

redocking step to the end of the workflow. We propose a new selection rule for optimizing the 

information gain for the ML model. By combining high-scoring compounds with the ensemble 

uncertainty reported by our ML models, we reach a good balance of the explore vs exploit tradeoff. 

The workflow presented here, and others in reported in the literature8, 25, 26, will expand the scope 

of typical virtual screening campaigns to billions of compounds, democratizing access to ultra-

large chemical libraries. 

Supporting Information Available 

Supporting Information is available free of charge at http://pubs.acs. org/.  

Overlap among three random selected training set (Figure S1), correlation between dock scores 

and ML scores from AQ/DC model prediction (Figure S2), percent recovery of docking virtual 
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hits from different protocols of AQ/DC model (Table 1), recovery performance of top 10K 

virtual hits for D4 and AmpC (Figure S3), D4 ROC curves of top 10K virtual hits and 

experiment hits recovered from three protocols of the AQ/DC models (Figure S4), AmpC ROC 

curves from three protocols of the AQ/DC models (Figure S5), MT1 ROC curves from three 

protocols of the AQ/DC models (Figure S6), recovery performance of top 100K and top 300K 

virtual hits for D4 and AmpC from DOCK and GLIDE SP (Figure S7), example score 

distribution from DOCK and AQ/DC model of molecules with the same Bemis-Murcko scaffold 

(Figure S8), recovery performance of D4 cluster heads from DOCK top 10K virtual hits (Figure 

S9), recovery performance of D4 cluster heads from GLIDE SP top 10K virtual hits (Figure 

S10), ROC curve of AQ/DC model and null model based on 2D fingerprint similarity (with 

chirality) (Figure S11), comparison of computational hours and cost for three protocols (Table 

S2, Figure S12). 
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