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Abstract

Humans prefer visual representations for the analysis of large databases. In this

work, we suggest a method for the visualization of the chemical reaction space. Our

technique uses the t-SNE approach that is parameterized by a deep neural network

(parametric t-SNE). We demonstrated that the parametric t-SNE combined with reac-

tion difference fingerprints could provide a tool for the projection of chemical reactions

onto a low-dimensional manifold for easy exploration of reaction space. We showed

that the global reaction landscape, been projected onto a 2D plane, corresponds well

with already known reaction types. The application of a pretrained parametric t-SNE

model to new reactions allows chemists to study these reactions in a global reaction

space. We validated the feasibility of this approach for two marketed drugs: darunavir
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and oseltamivir. We believe that our method can help to explore reaction space and

will inspire chemists to find new reactions and synthetic ways.

Introduction

Chemical space is the fundamental concept of organic chemistry. One can regard it as a

set of all possible molecules that can exist and satisfy the predefined conditions. If someone

regards only small molecules (below 500 Da.) there are more than 1060 compounds, and that

is enormous size.1 Chemical reactions are tools that make it possible the traverse through the

chemical space to reach new chemical compounds. There are more than 300 name reactions

in organic chemistry that have a precise definition,2 for example, Suzuki coupling,3 Grignard

reaction, etc. At the same time, there are about 108 of described chemical reactions according

to the largest chemical reaction database CASREACT®.4 This known reaction set is too

large to analyze it using humans’ expertise. Researchers need new computational approaches

that aim to support the exploration of chemical reaction space.

However, the space of chemical reactions is not discrete and concrete. It is hard to at-

tribute many reactions to a certain type as they may be carried out with surprising agents or

result in unexpected products.5–7 The current landscape of drugs is biased towards scaffolds

and overpopulated with certain shapes that are reachable with reactions chemists are used

to (e.g. amide bond formation and SNAr reactions).8 The detailed exploration can mitigate

these shortcomings and boost drug discovery. New methods for the visualization of reaction

space can provide useful insights for chemists and lead to a better understanding of nature.

We believe that, in the ”Big-data” era, these methods should have the ability to extract

information directly from data.

Among various machine learning techniques, the dimensionality reduction of multidimen-

sional space for visualization purposes is particularly popular in cheminformatics. Medical

chemists use this technique to achieve better understanding of chemical data.9 The dimen-
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sionality reduction methods can be either linear or non-linear. Linear methods assume that

the multidimensional data points are located near a linear manifold of lower dimension-

ality, whereas non-linear methods allow for non-linear manifolds. Linear methods include:

Principal Component Analisys (PCA),10 Canonical Correlations Analysis (CCA),11 Multidi-

mensional Scaling (MDS)12 and many others.13 Principal Component Analisys (PCA) is the

most common linear approach, it aims to find the directions with the highest variation in the

original multidimensional space. This method is fast and deterministic, but its performance

is limited because of its linear nature. Non-linear methods include: t-distributed Stochastic

Neighbor Embedding (t-SNE),14 Self-Organizing Maps (SOM),15 Generative Topographic

Mapping (GTM)16 and others.17 Chen and Gasteiger18 successfully used SOM to obtain a

map of chemical reactions space with distinct regions corresponding to reactions of aliphatic

substitution, double C-C bond acylation and arene acylation. The GTM method has been

successfully applied in drug design.19 It was also recently used to visualize chemical reac-

tions embedded into the latent space of a generative variational autoencoder.20 The t-SNE

method was used to explore the structure of bioactive organic molecules datasets.21 Probst

and Reymond proposed a fresh view on chemical space mapping to non-euclidean domains:

Tree MAP (TMAP).22 This method is based on the visualization of minimum spanning trees.

In the following research,23 Schwaller et al. proposed neural-based vector representations of

chemical reactions and used these vectors for TMAP visualization of the reaction space in a

fully data-driven way.

In this paper, we describe the application of the parametric t-SNE method to explore

chemical reaction space. First, we describe several parametric t-SNE models trained on

chemical reactions extracted from US patents. Then we evaluate the performance of visual-

izations using a reference dataset with predefined chemical reaction classes. Also, we explore

some regions of the reaction space to reveal the chemical essence behind them. Finally, we

use our approach to overview a set of reactions leading to the synthesis of some marketed

drugs. We believe that our technique reflects the space’s inner structure through similar
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types gathering in distinct clusters. This visualization technique can provide some chemical

insights or aid in synthesis planning to speed up chemists’ work.

Materials and methods

Datasets

In our work we used freely available chemical reactions dataset created by D. Lowe.24 It

contains about 2 million organic reactions in the recent update.25 To train the machine

learning models, we utilized the slightly adjusted dataset, which was used by Schwaller et al.

to predict products of a reaction by a seq2seq model.26 This dataset, further referred to as

dataset A, contains SMILES-strings for single product reactions with atom mapping. Also,

there are no duplicates in this dataset.

To assess the visualization performance, we used a dataset from the paper by Schneider

et al. 27 It comprises 50000 reactions represented as standardized SMILES-strings. These

reactions were labeled by one of the 10 classes (oxidations, reductions, C-C bond formations,

heteroatom acylations, deprotections, etc.) The authors have attributed these reactions

automatically using NameRxn software (version 2.1.84). The NameRxn algorithm is based

on expert-defined SMIRKS patterns.28 We denote this dataset as dataset B.

Parametric t-SNE

The method of t-distributed Stochastic Neighbor Embedding,14 originally described in 2008,

is a common approach in multidimensional data visualization. However, it has two major

shortcomings. First, one can not apply a prepared t-SNE model to new data. Second, the

application of this method is limited only to relatively small datasets. In practice, it is

only viable for datasets comprising 105 or less multi-dimensional points, even with Barnes-

Hut approximation29 on modern computers. In our work, we used parametric t-SNE.30

This approach allows to apply a prepared model to new reactions and requires modest
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computational resources. In the original t-SNE, the coordinates of the embedding points in

the lower-dimensional space are optimized directly. In parametric t-SNE, a neural network

with adjustable weights is used to project higher-dimensional space to the lower-dimensional

one. A loss function of the neural network corresponds to the divergence between high- and

low-dimensional data relations. At each training iteration, a batch of data points is picked to

calculate a distance matrix d for all points in the batch with a predefined metric. The matrix

d has size n × n, where n is the batch size. Then the distance matrix is used to calculate

the matrix of conditional probability distribution p in a high-dimensional space (Eq. 1):

pij =
exp(− d2ij

2σ2
i
)∑

k 6=i exp(− d2ik
2σ2
i
)

(1)

One can interpret a row of the pij matrix as a Gaussian probability distribution over the

batch that the point j will be picked as a neighbor for the point i. Decreasing of σi leads

to the reduction of the number of nearest neighbors that have non-zero probabilities. All σi

parameters are adjusted to achieve the desirable perplexity of distributions in all rows. One

can regard the perplexity as an approximate number of neighbors taken into consideration

in the original space. It is a hyperparameter of the algorithm. There is a connection between

perplexity P and Shannon’s entropy H of a distribution (Eq. 2):

H = −
N∑
j=1

pij log pij

P = 2H

(2)

Similarly to Eq. 1, a probability distribution matrix q is built for low-dimensional embedding

points (Eq. 3):

qij =
(1− d(yi−yj)2

α
)−

α+1
2∑

i 6=k(1−
d(yi−yk)2

α
)−

α+1
2

(3)
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where d(yi − yj) is the distance between the embedding points yi and yj, α is the number

of degrees of freedom of t-distribution. This distribution is heavy-tailed and it helps to

overcome the ”crowding” problem.14 In our work we defined α equal to one. The weights

of the neural network are optimized by backpropagation, minimizing the Kullback-Leibler

divergence L between distributions in a high-dimensional space and in a low-dimensional

space (Eq. 4):

L =
∑
i 6=j

pij log
pij
qij

(4)

Model training

We used a fully connected neural network as a projection function in parametric t-SNE.

The information about the network architecture and the optimization procedure is given

in the Supplementary Material to this article. We trained our network on the dataset A

for 40 epochs with batch size of 7000 and different perplexity values: 10, 30, 100 and 500.

We used several fingerprints available in RDKit package: Morgan Fingerprints (also known

as Extended-Connectivity Fingerprints, ECFP),31 Atom Pair Fingerprints (AtomPairFP),32

and Topological Torsion descriptors.33 One can regard a chemical reaction as a map between a

set of reactants (reagents) and a set of products. Catalysts, solvents, and other molecules that

are not involved in rearrangements of atoms directly on the way from reactants to products

are regarded as agents. By calculating and combining compounds’ fingerprints one can obtain

fingerprint-based representations of chemical reactions. We experimented with two common

types of reaction fingerprints: structural fingerprints and difference fingerprints. Structural

fingerprints are obtained by concatenating fingerprint vectors for reactants, products, and,

optionally, agents. Difference fingerprints are based on the linear combination of fingerprints

for products, reactants and agents. (Eq.5):

FPreaction = wna(
∑

i∈products

FPi −
∑

j∈reactants

FPj) + wa
∑

k∈agents

FPk (5)
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Here wna stands for a non-agent weight and wa for an agent weight. One should note that

structural fingerprints are binary in contrast to difference fingerprints that are continuous.

We used Jaccard dissimilarity as the distance function for binary vectors. In our experiments,

agents were not included in the reaction fingerprints, so wa = 0.

We trained our models on GPU because it significantly boosts the training speed com-

pared to the non-parametric t-SNE working on CPU.

Validation

We used B for the visual evaluation of the quality of reactions mapping. Because this dataset

contains predefined classes for reactions, one can use it as a reference point to evaluate the

projection’s performance. From a bird’s view, our idea was to classify reactions only by their

places at the resulting maps and compare them with known classification. This approach

follows the fundamental chemical tenet: similar compounds (in our case, reactions) should

provide similar properties. We performed this experiments for several parametric t-SNE

models to reveal these abilities to discriminate between reaction classes. These models vary

in both hyper-parameters and types of fingerprints. We assessed the discrimination ability

quantitatively by a gradient boosting models built on top of the 2D projections. We utilized

LightGBM34 Python package. We trained a gradient boosting classifier with a set of fixed

hyperparameters on every parametric t-SNE projection. The accuracy score for classification

was used as the measure of classes separability. We believe that this score follows with the

human’s perception of the projection quality. The accuracy scores are given in Table 1.

Results and discussion

Our goal was to create a method and for chemists to navigate in reaction space. A good

visualization algorithm should group similar reactions in well-shaped clusters, and these

clusters should reflect prior chemical knowledge.
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Figure 1: The map of the dataset B based on difference fingerprints. One can see well-formed
distinguishable clusters. Colors reflect reaction classes.

One can see that well-shaped separate clusters are visible on a parametric t-SNE projec-

tion in Fig. 1. This projection uses difference fingerprints. Colors reflect classes of reactions.

Our experiments revealed that the influence of the type of fingerprints on the qualities of pro-

jections is minor. However, Topological Torsion descriptors demonstrated marginally better

performance of the reaction classes discrimination(Table 1). Subjectively, the projections

that are based on Morgan fingerprints look better by the overall picture quality. We demon-

strate the pictures obtained with Topological Torsion descriptors and Atom Pair fingerprints

in Supplementary Material to this paper. We established that the perplexity value signifi-

cantly influences the projections. At higher perplexity, the clusters do not separate well and

look mixed-up. Decreasing the perplexity leads to emerging of many spurious clusters. Our

experiments revealed that the optimal perplexity value for Morgan fingerprints is about 30.

Each point in the projection represents a reaction. One can see that there are some

compounds or fragments which are present in every reaction within a cluster. These ”core”

structures in a reaction are agents or reactants’ substructures, and they have a heavy influ-

ence on the resulting coordinates. This can be explained regarding the formula for differ-
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Table 1: Accuracy scores (%) for classification of reactions by external LightGBM classifier
on top of projections. A value in bold is the best score. The accuracy scores correspond to
models trained for 40 epochs, except for the cases of MorganFP with perplexities 10, 100,
500. Due to technical reasons, the scores for these cases correspond to models trained for 10
epochs.

Perplexity
Fingerprint & descriptors types

MorganFP AtomPairFP Topological Torsion
10 82.5 74.7 87.4
30 86.0 76.5 87.1
100 83.5 79.1 86.2
500 82.0 73.7 71.2

ence fingerprints. The subtraction of products fingerprints from reagents leads to a vector

representing the vectored form of fragments’ rearrangements. One can think of it, as the

quantified essence of the chemical reaction itself. Larger clusters unite reactions with com-

mon reagents, e.g., acetic acid, and small dense clusters correspond to reactions involving

infrequent reagents (Fig. 2). Sometimes, the set of ”core” agents in reactions in a cluster

defines a specific recognizable reaction type (Fig. 3); however, it is not always the case. The

projection (Fig. 3) contains clusters for Suzuki coupling, Stille reaction, Mitsunobu reaction,

Wittig reaction, etc. Detailed pictures with additional clusters described can be found in

the Supplementary Material to this paper.

The noise in the reaction datasets affects the resulting projections. Commonly, it leads

to the fission of large clusters into smaller ones. In this case, clusters share the same general

reaction type but comprise reactions written with different amounts of detail. An illustrative

example is shown in Fig. 3 where one can see the cluster for Suzuki coupling that splits into

two smaller clusters. One of them comprises less-detailed reactions, where only a reactant and

an organoboron molecule are present. There are reactions with full details in another cluster:

a base or a catalyst are denoted. We found that the visualization quality heavily depends

on the reaction’s representation. For many reactions, the same reagents are written either

as agents or reactants. Because we did not use agents’ fingerprints for training (wa = 0)

we standardized the representation and defined all agents as reactants. We believe that
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Figure 2: The projection of the dataset B based on difference fingerprints. Typical repre-
sentative compounds are emphasized for some of the clusters. The clusters unite reactions
that share typical molecules or fragments representative for that cluster.

Figure 3: The projection of the dataset B based on difference fingerprints. Some clusters
corresponding to reactions of particular recognizable type are highlighted.
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standardization improves the visual quality: large unstructured clusters become clearer, and

some small clusters merge on a reasonable basis.

To demonstrate our method’s applicability to the medicinal chemistry challenges, we

studied and visualized the final stages of the synthesis of two known drugs: darunavir and

oseltamivir. Darunavir is a protease inhibitor that is used for the effective treatment of HIV-

1 infection.35 Oseltamivir (marketed under name Tamiflu), is an antiviral neuraminidase

inhibitor that is used for the treatment and prophylaxis of infection with influenza viruses A

(including pandemic H1N1) and B.36 The structures of darunavir and oseltamivir are shown

in Fig 4. The information about last synthetic stages was taken from the Reaxys37 database.

Figure 4: Structures of darunavir (A) and oseltamivir (B)

In Fig. 5, red and blue circles represent the reactions corresponding to the final stages

of the synthesis of darunavir and oseltamivir. One can regard it as ”global landscape of

chemical reactions”, on which the synthetic pathways can be represented in an illustrative

way. For example, the reactions in which the phthalimide protection is removed from the

amino group fall in the same cluster. Another example is a cluster with nitro group reduction

(see Fig. 5 in Supplementary Material). Also, there are clusters where only darunavir’s or
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oseltamivir’s reactions end up.

Figure 5: The single-step reactions leading to darunavir and oseltamivir drugs (red and blue
circles) depicted on the global landscape of dataset B.

The parametric t-SNE method allows one to explore synthetic ways leading to the com-

pounds of interest in an illustrative manner. However, as we mentioned before, the visual

quality of the projections depends on the quality of the training data. We believe that the

primary way for improving our models is the standardization and curation of original reac-

tions data. The alternative remedy is the usage of BERT fingerprints, described at23 because

they do not require a predefined split of reactants, reagents, and agents.

We utilized difference fingerprints in the models described before. To understand the

applicability of structural fingerprints we trained a parametric t-SNE model with this type

of reaction descriptors. Our experiment revealed that structural fingerprints can not generate

well-separated clusters. In Fig. 6 a parametric t-SNE projection is shown for a model trained

on structural Morgan fingerprints with perplexity 30 for 10 epochs. One can see that the

reactions are totally mixed up. The separability of reaction classes measured by the same

LightGBM classifier as in Table 1 is 48%. All reactions are mixed without a definite structure.

Structural fingerprints are essentially a cumulative fingerprint of all the molecular structures
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Figure 6: The reaction space of the dataset B based on structural fingerprints. One can see
a low discrimination ability of structural fingerprints.

involved in a reaction. This does not reflect in any way the difference between reagents and

products.

Conclusions

In this work, we demonstrated a method for the exploration of the reaction space. Our find-

ings revealed that a parametric t-SNE method combined with difference fingerprints provides

a basis for such a method. We studied two approaches of representing chemical reactions:

structural and difference fingerprints. Our experiments showed that the structural finger-

prints do not afford the discrimination ability, and the projections on the base of structural

fingerprints are mixed. In contrast, the models build on top of the difference fingerprints can

project to form well-shaped clusters with clear chemical meaning. These clusters correspond

to known classes of chemical reactions. We believe that Morgan fingerprints is the optimal

choice for reaction difference fingerprints, albeit quantitative evaluation of projection perfor-

mance revealed that the models based on Topological Torsion descriptors provide marginally
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better projections than other types of difference fingerprints. The parametric t-SNE model

can be easily applied to new reactions and this fact opens the doors for chemists to investi-

gate their own datasets of reactions on the global reaction landscape. We also demonstrated

the applicability of this method for the investigation of the synthetic routes for two mar-

keted drugs. We believe that our findings will inspire new findings in studying of chemical

reactions and synthetic ways.
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