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Abstract. Chemical language models enable de novo drug design without the 

requirement for explicit molecular construction rules. While such models have been 

applied to generate novel compounds with desired bioactivity, the actual prioritization and 

selection of the most promising computational designs remains challenging. In this work, 

we leveraged the probabilities learnt by chemical language models with the beam search 

algorithm as a model-intrinsic technique for automated molecule design and scoring. 

Prospective application of this method yielded three novel inverse agonists of retinoic acid 

receptor-related orphan receptors (RORs). Each design was synthesizable in three 

reaction steps and presented low-micromolar to nanomolar potency towards ROR. This 

model-intrinsic sampling technique eliminates the strict need for external compound 

scoring functions, thereby further extending the applicability of generative artificial 

intelligence to data-driven drug discovery. 
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Introduction 

 

Generative deep learning1,2 can be applied to design pharmacologically active 

compounds de novo3–5. Deep learning-based molecular design algorithms can extract 

high-level molecular features from “raw” molecular representations6–9, such as molecular 

graphs and the Simplified Molecular Input Line Entry System (SMILES)10, potentially 

allowing them to access unexplored regions of the chemical space11. Previous studies 

demonstrated that “chemical language models” (CLMs)12,13 that were trained on SMILES 

strings can generate novel molecules with experimentally validated bioactivity9,14. CLMs 

have shown the ability to learn focused chemical features from small collections of 

template molecules thanks to transfer learning which reuses previously learned 

knowledge on a new task14–16. A CLM is first pre-trained on a large amount of unlabeled 

data to capture the SMILES ‘syntax’ (i.e., how alphanumeric characters should be 

assembled to generate strings that correspond to valid molecules) and the 

physicochemical properties of the pre-training dataset. Then, the pre-trained CLM is “fine-

tuned” with a smaller set of task-specific data12,17,18. During this transfer learning process 

the CLM is biased towards the chemical space of interest, that is, molecules with desired 

biological and physicochemical properties. This “few-shot”19,20 learning ability renders 

CLMs particularly useful for application to biological targets, for which only few ligands are 

known. 

Previous prospective applications of CLMs for de novo molecule generation relied 

on “temperature sampling” of virtual molecule libraries. Temperature sampling generates 

molecules by weighted random sampling from the probability distributions learnt by the 

CLM during training. Such generated SMILES strings might not always be chemically 

meaningful (invalid strings) or they do not match the feature distribution of the training 

data. Additional methods are usually needed to select the most promising designs from 

the virtual molecule libraries, e.g., based on the similarity to known bioactive molecules or 

activity predictions9,12,14.  Here, we used the beam search algorithm as a model-intrinsic 

alternative to temperature sampling21,22. This method enables the automatic generation 

and prioritization of the designs, without strictly requiring additional compound scoring. 

Beam search scoring was  successfully validated in a prospective application aiming to 

generate new retinoic acid related orphan receptor (ROR)23 ligands from scratch.  

RORs were chosen as molecular targets because these receptor proteins are an 

attractive but not extensively studied family of potential drug targets. They constitute a 

family of ligand-activated transcription factors that mainly act as monomers involved in the 

circadian control of energy homeostasis24,25 and immune system regulation26,27, among 

other functions. RORs hold promising pharmacological potential for various indications, 

specifically for autoimmune diseases26,27. No ROR ligand has reached drug approval to 

date, partially owing to compound-related issues such as poor aqueous solubility, lack of 

selectivity, and clinical safety concerns26,28,29.  
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Results & Discussion 

 

Chemical language model and beam search sampling for de novo design 

 

We explored the beam search algorithm30 to generate molecules from a CLM as a 

potential alternative to temperature sampling combined with an external ranking method. 

Given the probabilities learnt by a CLM, a vast number of SMILES strings could be 

sampled. As it is computationally not feasible to sample all outputs, a heuristic method 

such as beam search can be used to find the likely outputs. Here, the motivation to find 

the most likely SMILES strings was based on the hypothesis that the probability for 

generating a certain SMILES string correlates with the quality of the corresponding 

molecule with regard to the implicit design objective encoded in the fine-tuning set (e.g., 

desired bioactivity, physicochemical properties). During molecule generation by beam 

search sampling, the algorithm progressively adds characters (“tokens”) to a SMILES 

string while keeping track of the k most likely SMILES string(s). When adding a new token, 

the algorithm computes the probability of each possible growing SMILES string to define 

the k most likely SMILES string(s) for the next step (Fig 1c). This process is repeated until 

the SMILES sequence is completed (i.e., the ‘end-of-sequence’ character is added) or a 

predefined maximal string length is reached. Thus, beam search can be used to 

approximately find the most probable molecules, as predicted by (i) the underlying model 

and (ii) the scoring function, which is computed as the product of the probabilities of each 

character (Fig. 1c). This scoring function (“beam search score”) allows to rank the de novo 

designs according to the probability of their SMILES tokens. 

As a framework to probe beam search sampling, we employed a recently published 

CLM based on a recurrent neural network with long short-term memory (LSTM)31 cells.  

The CLM was trained on 365,063 molecules from ChEMBL32, encoded as SMILES strings 

(Fig. 1a), to iteratively predict the next character of each SMILES string, given the 

preceding tokens (Fig. 1b). This pre-trained CLM was then biased towards the design 

objective, i.e., the generation of new molecules with bioactivity on RORs, by transfer 

learning using collections of known ROR ligands (Supplementary Figure 1, 

Supplementary Table 1). 
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Figure 1 | Molecule generation with a chemical language model (CLM) and beam search 

sampling. (a) Kekulé structure of an example molecule and corresponding SMILES string. (b) 

CLM training. The CLM learns to predict the probability of each character of a SMILES string 

based on the sequence of the respective previous characters. (c) Beam search decoding of width 

two (k = 2): The design algorithm keeps track of the two most likely SMILES strings (highlighted 

in color). In this example, the SMILES string generation proceeds from left to right. 

 

 

Application of beam search sampling to designing inverse RORγ agonists 

 

For prospective evaluation, we applied the beam search to the design of natural-product 

inspired RORγ ligands. Learning from natural products as a traditional source of 

inspiration for drug discovery33,34 may hold several advantages over learning from purely 

synthetic molecules, because of the overall higher structural diversity, greater three-

dimensionality, and often superior selectivity of bioactive natural products35,36. We aimed 

to obtain de novo designs possessing three properties: (i) natural product inspired 

chemical structure, (ii) synthesizability, and (iii) bioactivity on RORγ. Aiming to fulfil all 

three objectives during transfer learning, the CLM that was previously pre-trained on 

bioactive molecules from ChEMBL15 was fine-tuned on one synthetic and four natural 

product RORγ modulators (Suppl. Fig. 1). Beam search sampling was started after the 

fifth epoch of fine-tuning, to ensure that the CLM had sufficiently captured the molecular 

features of the small fine-tuning set. 

All valid SMILES strings generated between epochs 5 and 16 (last fine-tuning 

epoch) were ranked by beam search scoring. The top five designs according to the beam 

search score (Fig. 2a) were deemed synthetically inaccessible by medicinal chemists. 
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This was further highlighted by a machine learning algorithm for retrosynthetic analysis 

(IBM RXN)37 which did not find a synthetic route for any of these molecules. Apparently, 

the CLM failed to meet the fundamental design criterion of synthesizability, suggesting 

that a different fine-tuning strategy might be required.  

These findings show a first important benefit of the beam search sampling 

technique. Beam search sampling reveals the most likely designs from a CLM which can 

be assessed regarding their compliance with the design objectives to evaluate model 

performance and the success of fine-tuning. 

 

 
Figure 2 | Top ranking designs obtained by beam search sampling. (a) Single fine-tuning, (b) 

double fine-tuning. Ranks are based on the beam search score of the molecular designs. For the 

top ranking molecules from the double fine-tuning experiment, the similarity values refer to the 

Jaccard-Tanimoto similarity computed on Morgan fingerprints (length=1024, 2-bond radius) to the 

closest known active molecule annotated in ChEMBL with an IC50 value for RORγ. 

 

Aiming to improve upon these results, we performed a second experiment, in which 

we applied a stepwise fine-tuning strategy. First, the pre-trained model was fine-tuned for 

20 epochs on 255 synthetic RORγ ligands from the US patent subset of the Protein Data 

Bank38 (255 molecules, Suppl. Table 1) to capture both bioactivity and synthesizability. 

Then, the model was fine-tuned with four natural product RORγ modulators (Suppl. Fig. 

1) for 16 epochs, aiming to bias the model towards natural-product-likeness. With this 

second approach, the top 5 sampled molecules (Figure 2b) were synthetically accessible 

according to IBM RXN37, which could propose a synthetic route for each of them. 

Importantly, the computer-generated molecules possess certain natural product 

characteristics (Fig. 3, Suppl. Table 2), as indicated by a high fraction of sp3-hybridized 

carbon atoms (Fsp3). The top five designs have Fsp3 values ranging from 50% to 75%. 

These values are comparable to the values computed for the MEGx natural product library 

(Analyticon Discovery GmbH, rel. 09-01-2018), and exceed the average Fsp3 content of 

the ChEMBL molecules used for pre-training (51±30% and 33±20%, respectively). These 
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data suggested that the two-step fine-tuning procedure complied with the design 

objectives. The two-step approach was chosen for prospective application. 

We then compared the beam search designs obtained with the chosen 

computational strategy to known RORγ modulators and to the fine-tuning molecules (Fig. 

3). Despite being a “greedy” algorithm, the beam search sampling still allowed to explore 

the chemical space beyond the regions that are populated by the fine-tuning compounds 

(Figure 3a). Compared to the inverse RORγ agonists annotated in ChEMBL (IC50 <1 µM, 

Figure 3b), the beam search designs are structurally more diverse in terms of substructure 

fragments encoded by Morgan fingerprints39. The designs possess a certain degree of 

similarity to the known active molecules in terms of their three-dimensional shape and 

partial charge distribution (WHALES descriptors40). Apparently, the CLM, on top of 

learning the SMILES “syntax”, also learned certain “semantic” ligand features that are 

relevant for binding to macromolecules, such as their molecular shape and partial charge 

patterns.  

 

 

 
Figure 3 | Characteristics of designs from the balanced CLM. (a) Stochastic neighbor 

embedding (t-SNE)41 projection of the compounds sets based on Morgan fragment fingerprints 

(length = 1024, 2-bond radius, Jaccard-Tanimoto similarity). The location of the two-fine tuning 

sets, the RORγ modulators annotated in ChEMBL (IC50 <1 µM, 1091 compounds), and the beam 

search designs are shown. (b) Comparison of the sampled molecular designs with known RORγ 

modulators (IC50 <1 µM) in terms of Morgan fragment fingerprints (“Morgan”) and three-

dimensional shape and electrostatics descriptors (WHALES). The pairwise distance distribution 

among known ChEMBL modulators is shown as a reference. “Beam (15)” and “Beam (5)” indicate 

the top 15 and top 5 designs, respectively. Boxplots indicate 25th, 50th, and 75th percentiles (lines), 

mean values (circle), and outlier boundaries (whiskers, 1.5 × interquartile range). 
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Prospective experimental validation 

 

Three beam search designs were synthesized and characterized in vitro. We selected 

them based on their beam search score. From the five most likely designs (Figure 2b), we 

selected molecules 1 and 2, which were ranked first and third. Compound 2 showed the 

highest Tanimoto similarity (Morgan fingerprints) to a known RORγ modulator (Figure 2b). 

The scaffolds of both compounds were also prominent among the beam search designs 

not included in the top 5, suggesting a structural preference. The scaffold of 1 also 

appeared in the design ranked 6th. Molecules ranked 10th and 13th resembled compound 

2. Hence, we additionally chose compound 3 of this abundant chemotype from rank 13 

for prospective validation. Compounds 1-3 were synthesized according to Scheme 1. 

For preparation of 1, (4-chlorophenyl)-piperazine (4) was treated with 4-bromobutyl 

acetate (5) to obtain the ester protected intermediate 6 which after alkaline ester 

hydrolysis to 7 was suitable for Mitsunobu reaction with 8-azaspiro[4.5]decane-7,9-dione 

(8) to obtain the top-ranking computational design 1. Preparation of 2 started from 4-

bromo-2-fluorobenzaldehyde (9) which was reacted with amine 10 to obtain 11 by 

reductive amination followed by sulfonamide coupling with 12 to yield 13. Eventually, the 

4-trifluoromethylpiperidine substituent was introduced to 13 under Buchwald-Hartwig 

conditions with 14 yielding compound 2. The structurally related design 3 was not 

accessible via this route and was prepared in a different reaction sequence starting from 

4-fluorobenzaldehyde (15), which was reacted with 4-trifluoromethylpiperidine (14) to 16 

in a nucleophilic aromatic substitution. Reductive amination with cyclobutaneamine (10) 

to 17, followed by sulfonamide formation with phenylmethanesulfonyl chloride (12), 

afforded the computationally designed compound 3. 

In vitro characterization of compounds 1, 2, and 3 in Gal4-ROR hybrid reporter 

gene assays confirmed inverse RORγ agonism with micromolar to sub-micromolar IC50 

values (Table 1). The top-ranking compound 1 counteracted RORγ activity with an IC50 

value of 4.6 µM. It was additionally active on RORα and RORβ, but precise IC50 values 

could not be determined due to cytotoxicity. Compounds 2 and 3 counteracted RORγ 

activity with IC50 values of 0.37 µM (2) and 0.68 µM (3), respectively. In addition to being 

inverse RORγ agonists, all three synthesized designs revealed pronounced preference 

for the RORγ subtype, with compounds 2 and 3 possessing more than tenfold higher 

potency on RORγ compared to the related RORα and RORβ isoforms. These results show 

that the CLM with beam search sampling conserved the bioactivity of the training 

molecules in the computational designs. 
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Scheme 1 | Synthesis of the CLM designs 1, 2 and 3. Reagents & Conditions: (a) DMF, 4-DMAP, 

60°C, 16 h, 48%; (b) KOH, H2O/THF/MeOH, µw, 100°C, 30 min, 98%; (c) DIAD, PPh3, THF, 0°C 

to rt, 16 h, 42%; (d) NaB(OAc)3H, HOAc, DCE, r.t., 50 h, 73%; (e) 4-DMAP, pyridine, CH2Cl2, 

reflux, 16 h, 37%; (f) Pd2(dba)3, xantphos, Cs2CO3, 1,4-dioxane, reflux, 16 h, 18%; (g) K2CO3, 

DMSO, reflux, 48 h, 82%.  

 

 

Table 1 | Activity of de novo designs 1, 2 and 3 on RORs in Gal4 hybrid reporter gene assays. 

Data are the mean±S.E.M., n ≥4. 

ID structure IC50(RORα) IC50(RORβ) IC50(RORγ) 

1 

 

>10 µM >10 µM 4.6±0.5 µM 

2 

 

23±3 µM 22±1 µM 0.37±0.05 µM 

3 

 

10±1 µM 7.6±0.5 µM 0.68±0.07 µM 
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Conclusion 

 

In this work, beam search sampling from CLMs was applied to generating new molecules 

with desired bioactivity on the ligand-activated transcription factor RORγ. The algorithm 

successfully generated and scored new molecules. Prospective experimental validation 

yielded three novel, potent inverse agonists of the nuclear receptor. The selected 

compounds have various degrees of similarity to known RORγ modulators (ranging from 

0.28 to 0.71, as captured by Jaccard-Tanimoto similarity on Morgan fingerprints). 

Apparently the beam search approach coupled with a CLM conserves structural features 

necessary for the desired bioactivity but still generates innovative and structurally diverse 

compounds. This result corroborates beam search sampling as a technique for de novo 

design of bioactive molecules by a CLM. The computational and experimental results 

suggest two advantages of the beam search algorithm that could further the applicability 

of AI for de novo design. Firstly, by searching for the most likely molecules a CLM can 

generate with greedy decoding, the beam search algorithm can serve as an internal 

measure to probe the suitability of a CLM for the task under analysis. Analysis of the beam 

search designs can serve to analyze compliance of the CLM designs with the design 

objectives and hence to evaluate the success of fine-tuning. This is in contrast with 

temperature sampling, which might lead chemists to consider designs that are not likely 

according to the model. Beam search may thus be considered an alternative to 

temperature sampling. It should be noted, however, that the number of designs that can 

be sampled by beam search is limited compared to temperature sampling, which can 

virtually generate an infinite number of chemical structures. The two techniques 

complement each other as alternatives, each with characteristic advantages. The desired 

application should guide the choice of either strategy. Secondly, beam search sampling 

could potentially overcome the need for external compound prioritization. If corroborated 

in future prospective studies, this feature may help to further the applicability of CLMs for 

de novo molecular design in medicinal chemistry. 

 

Methods 

 

Data processing. Molecules were encoded as canonical SMILES strings10 using the RDKit 

package (v.2018.03, www.rdkit.org) and only SMILES strings with a length of up to 140 

characters were retained. SMILES strings were standardized in Python (v3.6.5, 

www.python.org) by removing stereochemical information, salts and duplicates. 

 

Datasets. We used the processed data (https://github.com/ETHmodlab/virtual_libraries)15 

we recently published for both ChEMBL (used for pretraining the CLM) and for the 

representative natural products library, MEGx (released 01 September 2018, Analyticon 

Discovery GmbH). In total, the processed version of ChEMBL contains 365,063 

molecules, and the processed version of MEGx 2,931 molecules. The 255 modulators of 

https://github.com/ETHmodlab/virtual_libraries
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RORγ used for double fine-tuning were taken from the US patent subset of the protein 

data bank (rcsb.org)38, and the four natural products, along with the synthetic compound 

were taken from the study of Solt and Burris42. The most similar known RORγ modulators 

with reported IC50 were extracted from ChEMBL (organism: Homo sapiens). 

 

Chemical language model. We used our recently published framework to implement the 

CLM (https://github.com/ETHmodlab/virtual_libraries)15, which is based on a long short-

term memory (LSTM)31. The model implementations differed based on the transfer 

learning strategy used: (i) For single fine-tuning, the model was composed of four layers 

that have a total of 5,820,515 parameters (layer 1: BatchNormalization, layer 2: LSTM 

with 1,024 units, layer 3: LSTM with 256 units and layer 4: BatchNormalization). We 

pretrained the CLM for 10 epochs with a learning rate of 10-3 and performed the fine-

tuning for 16 epochs with a learning rate of 10-4 by keeping layer 2 frozen. (ii) For double 

fine-tuning, the model was composed of five layers that have a total of 8,444,003 

parameters (layer 1: BatchNormalization, layer 2: LSTM with 1,024 units, layer 3: LSTM 

with 512 units and layer 4: LSTM with 256 units, layer 5: BatchNormalization). We 

pretrained the CLM for 10 epochs with a learning rate of 10-3 and performed two rounds 

of fine-tuning. The first round was applied for 20 epochs with a learning rate of 10-4 by 

keeping layer 2 frozen. The second round was applied for 20 epochs with a learning rate 

of 10-4 by keeping layer 2 and 3 frozen. The CLMs for both strategies were trained on 

SMILES strings encoded as one-hot vectors. We used the categorical cross-entropy loss 

and the Adam optimizer43. We applied a 10-fold data augmentation to all molecules. 

 

Beam search ranking. We applied the following procedure for the beam search algorithm: 

 
We used a beam width (k) of 50 and defined the maximum SMILES strings length (l) as 

140 tokens. We considered in the ranking molecules sampled from epoch 5 to epoch 16 

https://github.com/ETHmodlab/virtual_libraries
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of fine-tuning; the first epochs were not used to ensure the model was sufficiently biased 

toward the fine-tuning set. 

 

Stochastic Neighbor Embedding. The t-SNE projection was performed with the “tsne” 

function of MATLAB R2020a44 on Morgan Fingerprints (‘Distance’ = 'jaccard'). The 

perplexity value was optimized from 5 to 50 with a step equal to 10 to minimize the 

compression error. A perplexity equal to 5 was chosen, corresponding to the minimum 

compression error (0.328). 

 

Molecular descriptors. Molecular geometry and the corresponding WHALES descriptors 

were computed with the code freely available at 

https://github.com/grisoniFr/scaffold_hopping_whales (v1), with default settings, as 

previously described45. Morgan fingerprints39 (length=1024, 2-bond radius) were 

computed using RDKit (v.2018.03) in Python (v3.6.5). 

 
IBM RXN. We used the web interface with default parameters (https://rxn.res.ibm.com/). 
 

Synthetic and in vitro pharmacological procedures are described in the Supplementary 

Information. 
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