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Abstract

In drug discovery applications, high throughput virtual screening exercises are rou-

tinely performed to determine an initial set of candidate molecules referred to as “hits”.

In such an experiment, each molecule from large small-molecule drug library is evalu-

ated for physical property such as the binding affinity (docking score) against a target

receptor. In real-life drug discovery experiments, the drug libraries are extremely large

but still a minor representation of the essentially infinite chemical space , and evaluation
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of physical property for each molecule in the library is not computationally feasible. In

the current study, a novel machine learning framework “MEMES” based on Bayesian

optimization is proposed for efficient sampling of chemical space. The proposed frame-

work is demonstrated to identify 90% of top-1000 molecules from a molecular library

of size about 100 million, while calculating the docking score only for about 6% of the

complete library. We believe that such a framework would tremendously help to reduce

the computational hour and resources in not only drug-discovery but also areas that

require such high-throughput experiments.

Introduction

Drug discovery process is an extremely laborious process and the pipeline involves several

steps each of which is both expensive and time consuming. The first step in the process

after target identification and validation is to identify hit molecules, where potential strong

binding drug–like molecules against a drug target are identified using computational meth-

ods. Once the hit molecules are identified, they are experimentally evaluated typically using

biochemical assays towards lead identification. Further processes involve lead optimization,

in vitro and in vivo evaluation, pre-clinical studies and clinical trials before the drug can

be approved for use. Structure based drug design (SBDD) method, docking, is routinely

used for identification of lead molecules.1–4 In SBDD method, large libraries of ligands5–7

are virtually screened for their binding affinity against a drug target, which is a measure of

the inter-molecular interaction between the target and the ligand.

Recently new methods that use modern deep/reinforcement learning have been proposed

to tackle problems in molecular sciences such as physical property prediction,8,9 and de

novo molecule generation. Most of the deep learning models that tackles the problem of

molecular generation are based on Variational autoencoders10–13 and Generative Adversarial

Networks.14–16 These models typically map a lower dimensional continuous real number space

z to a discrete chemical space and usually combined with Bayesian Optimization(BO),16–19
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or Reinforcement Learning(RL) based algorithms20–22 to bias the generation of compounds

towards a desired property. SMILES based generative models23,24 are combined with RL

methods to generate new molecules but suffer from the problem of generating chemically

invalid molecules.22,25 Recently You et al. proposed a graph convolutional policy network

that considers a molecule as a graph, and iteratively modifies the graph while optimizing for

a target property and maintaining chemical validity at every step. Although these methods

have been seen to perform really well on optimizing for tasks such as QED and LogP, they

have been shown to perform inadequately while optimizing for objective functions involving

docking calculations.26 Moreover, in a recent study by Gao and Coley,27 it was demonstrated

that although the molecules generated by these methods are novel and diverse, they may

be very difficult/infeasible to synthesize and hence cannot be of practical importance in a

real-life drug discovery scenario.

On the contrary to the molecules generated by deep generative models, molecule library

enumerated via simple reactions can be novel, diverse and at the same time practically be

synthesized with a probability of ∼ 86%.27–29 In a recent study performed by Lyu et al.,28

96 million docking calculations were performed against AmpC receptor. Among these the

top ranked 1 million compounds ( 1 % of the initial set) were systematically examined to

identify hit molecules, which were further validated experimentally. In the same study, 138

million docking calculations were performed for D4 dopamine receptor, which was used to

show that the hit-rates fell almost monotonically with the docking-score. Although, Lyu et

al. docked compounds in the order of 108, it is still a small fraction when compared to the

1.6 billion molecules enumerated in ZINC Library. Moreover, their study also shows that

hits for a target can be identified using only the top fraction of the ligands with respect to

the docking score. Hence, a sampling method that can efficiently search the chemical space

for high docking scores would speed up the process.

Recently, Gentile et al. proposed a deep learning based method “Deep Docking” to

augment the process of SBDD.30 In this work, iterative docking is done of a small portion of
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large libraries. The obtained values are used to train ligand-based QSAR models, which are

used to predict the scores of the remaining ligands in the library. A cut-off is set to identify

the hits among these predicted molecules. Molecules are then randomly sampled from these

hits to further train the QSAR model for the next iteration. In this manner, the author claim

that with docking upto 50 times fewer molecules, 60% of the top scoring molecules can be

retrieved. The problem with this approach is that, although the model performs well when

it used to estimate the scores of molecules similar to the ones trained with, the prediction

error is expected to be high for the molecules that have significant deviation from the ones

trained with. This may result in poor selection of molecules after each iteration. Instead, if

one can use a model that can also estimate the confidence in prediction, the confidence score

can be incorporated for better iterative selection of molecules.

In this work, a novel Machine learning framework for Enhanced MolEcular Screening

(MEMES) based on Bayesian optimization is proposed for efficient sampling of molecules

during SBDD process. In the framework, the initial set of molecules are first featurized and

represented as molecular vectors. These are then clustered using the K-means clustering

algorithm. A small set of molecules are sampled from each cluster to build an initial diverse

set of ligands, and their docking scores are calculated. A Gaussian process is trained as

a surrogate function for the protein-ligand docking score. Two variants of the MEMES

framework, ExactMEMES and DeepMEMES are introduced depending upon the choice of

the surrogate function used (see Methods section). The initial training set is iteratively

updated by sampling a small portion of molecules not previously sampled based on an

acquisition function, and the process is repeated, until the maximum number of allowed

docking calculation is reached. The proposed framework successfully samples a very high

fraction of the top hits for a given protein and molecular library, while only calculating

docking scores for 6% of the complete molecular library. Further, extensive analysis has

been done to show the robustness of the framework on different proteins and molecular

libraries with varying size.
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Figure 1: Overview of the proposed method, MEMES

Results and Discussion

The framework proposed in this work “MEMES” is based on Bayesian optimization (Figure

1). Firstly, in the MEMES method, all the ligands in the library are represented as fixed

dimension feature vectors. Secondly, a small fraction of molecules are chosen to be the

initial set. To ensure that this “inital set” is diverse and representative of the complete

molecular library, a K-Means clustering31 is performed on the pre computed feature vectors

and molecules are uniformly sampled from each of the resulting clusters. Docking scores,

for each of the molecule in the initial set is computed against the given target receptor.

A Gaussian process32–34 is then trained on this inital set. A new set of molecules is then

picked from rest of the dataset based on the“Expected Improvement” values calculated

using the trained gaussian process (see Methods). The docking score of these molecules
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are computed and these are added to the initial training set and the gaussian process is

retrained. The procedure is repeated iteratively, until the computational budget is reached

or no improvement is observed.

In this section, the capability of the MEMES framework to sample set of molecules

having high binding affinity and high overlap with the actual top hit molecules while only

performing docking calculations on only 6% of the molecules in the complete library is

demonstrated. Further, the capability of the proposed method to sample a diverse set of

molecules is shown. In this work, performance of MEMES framework is evaluated on two

different surrogate functions ExactGP and DeepGP. Although the ExactGP theoretically

guarantees better performance than the DeepGP, it cannot be extended to be used on ultra

large docking libraries due to computational constraints. Hence, in the subsequent subsec-

tion, the performances of ExactGP and DeepGP as the choice of surrogate function in the

MEMES framework are compared to validate the performance of DeepMEMES against Ex-

actMEMES. In the following subsection, the performance of the MEMES framework with

DeepGP is demonstrated on large docking libraries. Finally, the robustness of the MEMES

framework is demonstrated by applying it on molecular libraries with sizes ranging from 2

million to 96 million compounds.

MEMES Identifies 95 + % of Top Candidates by sampling only 6%

of the Dataset

Zinc-250K dataset contains 250,000 drug like molecules obtained from ZINC 15 database.7

The ExactMEMES (MEMES framework with ExactGP) was applied on the Zinc-250K

dataset against two protein receptors: Tau-Tubulin Kinase 1 (TTBK1) an attractive target

protein to combat many neurodegenerative diseases such as Alzheimer’s and main protease

(Mpro) of SARS-CoV-2, responsible for the outbreak of COVID-19. As the ExactGP used in

this framework cannot be applied to a very large molecular library, the ZINC-250K dataset

was selected to assess the performance of ExactMEMES.
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Virtual screening docking calculation were performed to identify molecules, that have

high docking score against a target receptor, i.e. to find top hits. It is also desired that

the top hits identified in this process are diverse and span the complete molecular library.

Here, we show that ExactMEMES framework (with only 6% docking calculations) is able

to sample molecules that have high binding affinity, high overlap with actual top hits and

are spread across the chemical space of the given molecular library. This demonstrates that

MEMES framework not only identifies molecules exhibiting high binding affinity but most

of the top molecules in the complete library.

Figure 2a and 2b show the mean binding affinity of actual top molecules in the molecular

library, top molecules sampled by ExactMEMES framework with Mol2Vec and ECFP as

molecular featurizer technique and that by random sampling method, against TTBK1 and

SARS-CoV-2 Mpro respectively. Top 20 docking hits in complete docking library for both

target receptor are given in Supplementary Fig. S1 and S2. For, ExactMEMES and random

sampling, 15000 (∼ 6% of the complete molecular library) docking calculations were per-

formed. From the Figure 2 its quite evident that the ExactMEMES methods significantly

outperforms the random sampling baseline and matches the mean binding affinity of actual

top compounds present in the molecular library. Figure 2 also shows that ExactMEMES with

Mol2Vec featurization outperforms ExactMEMES with ECFP featurization. Distribution of

binding affinity of top sampled molecules is given in the Supplementary Fig. S3.

Figure 2c and 2d shows the fraction of top 100 sampled molecules that are actual top hits

for receptors TTBK1 and SARS-CoV-2 Mpro against the percentage of molecules sampled

from the docking library using ExactMEMES and random sampling (see Supplementary Fig.

S4 for similar analysis on top 500 sampled molecules). Figure 2c and 2d shows that Exact-

MEMES significantly outperforms random sampling and almost shows a complete overlap

with the actual top hits when the percentage sampled is around 6%. Further intersection of

top 100 molecules sampled by ExactMEMES framework, random sampling, and actual top

hits for receptors TTBK1 and SARS-CoV-2 Mpro from the molecular library is shown in the
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

(c) Target Protein: TTBK1 (d) Target Protein: SARS-CoV-2 Mpro

Figure 2: Performance on Zinc250K using ExactMEMES against both target receptors. (a)
and (b) compares the mean binding affinity of top hits sampled by MEMES and random
sampling against mean binding of actual top hits in the library. (c) and (d) show the
fraction of top 100 sampled molecules that are actual top hits against the percentage of
dataset sampled.

Figure 3 (See Supplementary Fig. S5 for overlap of top 20 and top 500 sampled molecules).

Apart from having a high binding affinity and high overlap with actual top hits, it is

also desirable that the molecules sampled by the proposed framework are diverse and the

method is not biased towards a certain distribution. To analyze the diversity of sampled
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure 3: Venn diagram showing the intersection of the top 100 molecules identified by
different methods and actual top 100 hits of the docking library

(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure 4: t-SNE plot of top 100 molecules sampled by MEMES framework (red) and complete
dataset (blue), to demonstrate the diversity of sampled molecules

molecules, molecules in the dataset (blue) and top 100 sampled molecules (red) using the

proposed framework are shown as a scattered plot. For reducing the dimensionality of

the molecular embeddings, t-SNE35 technique was used. From Figure 4 we can see that

the sampled molecules marked in red are not confined to a particular region and spread
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across the complete chemical space of molecular library. Hence, we can conclusively say that

the sampled molecules are diverse. t-SNE plot for top 500 sampled molecules is given in

Supplementary Fig. S6.

ExactMEMES vs DeepMEMES

Above experiments shows the ability of ExactMEMES framework to identify top hits only

by performing docking less than 6% of complete docking library but it cannot be applied

on large docking libraries due to computation constraints. Therefore to overcome this issue,

DeepMEMES variant of proposed framework is introduced. In this section, the performance

of DeepMEMES is compared against ExactMEMES. Zinc-250K is chosen as molecular library

and Mol2Vec as molecular embedding for this comparision.

(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure 5: To compare the performance of ExactMEMES and DeepMEMES, fraction of the
top 100 molecules sampled that are actual top hits is plotted against the percentage of
dataset sampled. Mol2Vec was chosen as featurization technique for comparison.

Figure 5 compares the fraction of the molecules matched with actual top hits of dock-

ing library between DeepMEMES and ExactMEMES. From the Figure 5, we can infer that

DeepMEMES has comparable performance with ExactMEMES. See Supplementary Discus-
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sion 2 for performance of DeepMEMES on Zinc-250K. Further sections show the application

of DeepMEMES on different molecular libraries to assess its performance on large datasets.

MEMES framework on large libraries

In real life drug discovery experiments, to find a hit against a target receptors, usually

ultra large docking libraries are screened. Hence, it is essential to validate the performance

of MEMES method on docking libraries that mimic real-life use cases. As, ExactMEMES

cannot be applied on large docking libraries due to computational constrains and since both

are comparable in performance, DeepMEMES framework performance was demonstrated on

two large docking libraries Enamine36 HTS Collection (2 million molecules) and an Ultra

Large Docking Library28 (96 million molecules).

Enamine Dataset

Enamine dataset36 consists of collections of compounds that are used in virtual screening.

Enamine HTS Collection containing 2,106,952 screening compounds was chosen to illustrate

the performance of DeepMEMES. DeepMEMES framework is applied on Enamine HTS

Collection to demonstrate that the top docking hits can be identified only by docking a

small fraction of the complete library against the target receptor TTBK1.

Figure 6a compares distribution of binding affinities and Figure 6b shows the overlap

of top 100 molecules sampled using the DeepMEMES framework (using both Mol2Vec and

ECFP embedding), random sampling and actual top hits for target protein TTBK1. Similar

analysis for top 500 molecules is given in Supplementary Fig. S7. From the Figure 6a and

6b, we can infer that a high percentage of molecules sampled by DeepMEMES matches with

the actual top hits by performing only 125,000 docking calculations, which is ∼ 6% of chosen

docking library (Supplementary Fig. S8 shows the fraction of top sampled molecules that

are actual top hits against the percentage of molecules sampled).
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(a) (b)

(c) (d)

Figure 6: (a) and (b) show the performance of DeepMEMES on Enamine dataset against
target protein TTBK1. (c) and (d) show the performance of DeepMEMES on Ultra Large
Docking Library against target protein AmpC. (a) and (c) show the distribution of binding
affinities for top 100 molecules and top 1000 molecules sampled by MEMES, respectively.
Venn Diagram (b) and (d) demonstrate the overlap of top 100 hits and top 1000 hits identified
by different methods, respectively.

Ultra Large Docking Library

In a recent study, Lyu et al.28 introduced a large compound library containing 96 million

molecules. The whole library was docked to find potential molecules against AmpC β-
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lactamase (AmpC) receptor. DeepMEMES framework is applied to this molecular library to

show that top docking hits can be identified by performing docking calculations on a fraction

of the complete library. Figure 6c compares distribution of binding affinities, and Figure 6d

shows the overlap of top 1000 molecules sampled using the DeepMEMES framework (using

Mol2Vec embedding), random sampling, and actual top hits for target protein AmpC. Similar

analysis for top 500 and top 5000 molecules is given in Supplementary Fig. S9. From the

Figure 6c and 6d we can infer that 90% of molecules sampled by the DeepMEMES framework

matches the actual top hits only by performing 5,800,000 docking calculations, ∼ 6% of the

complete library (Supplementary Fig. S10 shows the fraction of top sampled molecules that

are actual top hits against the percentage of molecules). It is a significant improvement over

random sampling where only 5.5% of sampled molecules matches actual top hits.

Effect of docking library size on the performance of DeepMEMES

The previous section shows the application of DeepMEMES on Enamine HTS Collection36

and Ultra Large docking library28 for target protein TTBK1 and AmpC, respectively. The

purpose of this experiment is to demonstrate the robustness of the proposed framework on

docking libraries of varying sizes. K-Means clustering was performed on Ultra large docking

library,28 creating 1000 clusters, and subsets of different sizes ranging from 2 million to 96

million were created by uniformly sampling from each of the resulting clusters. Finally,

DeepMEMES performance was assessed on each of the resulting subset.

Figure 7 shows the fraction match of the sampled molecules that matches actual top hits

for different docking library sizes. 85%−95% of the molecules sampled by the DeepMEMES

framework with Mol2Vec featurization matches the actual top hits irrespective of the docking

library’s size, demonstrating the consistent performance of the proposed framework.

In summary, high throughput virtual screening requires exhaustive evaluation of each

molecule in a complete docking library to find potential candidate molecules. In this study,

MEMES framework based on Bayesian optimization for efficient sampling of chemical space
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(a) Fraction match for top 100 molecules (b) Fraction match for top 500 molecules

Figure 7: Fraction of top molecules sampled by DeepMEMES (with Mol2Vec as featurization
technique) that matches with actual top hits against the percentage of the dataset sampled.

for high throughput exercises is proposed. We showcase the MEMES framework applica-

tion in hit identification, i.e., to sample molecules with high docking scores against tar-

get receptors. Two variants of the MEMES framework are introduced, ExactMEMES and

DeepMEMES, depending on the choice of surrogate function. Various experiments were

performed with Mol2Vec and ECFP as molecular embedding techniques, and with different

sized molecular library ranging from 2 million to 96 million to find hit molecules against

different target receptors to showcase the efficiency of the proposed framework. MEMES

framework was able to identify more than 90% of the actual top hits while only calculating

the docking score for about 6% of the complete molecular library showing the robustness of

the proposed framework. In this work, MEMES framework application was demonstrated

on virtual screening of molecular libraries, but it can also be applied on other screening

applications where exhaustive evaluation is infeasible.
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Method

In this section, the various components in the proposed framework (Figure 1) are explained.

The docking methods, ligand libraries, and target receptors used for the experiments are

described in the section Docking Methodology. In the section Molecular Representation, the

choice of different molecular embedding techniques used in this work are explained in detail.

Further, Bayesian Optimization, the techniques used to approximate protein-ligand scoring

function and point selection methods are explained.

Docking Methodology

Molecular docking is useful in drug discovery projects to identify potential inhibitors against

a protein receptor from small molecule libraries. The first step is ligand preparation, and

protein preparation that was carried out using AutoDock 4.2 (AD 4)37 in this study. Three

different small-molecule libraries of varying sizes were used in this study. First is Zinc-250K

dataset used earlier in molecular generation studies18,21,38 which contains 250,000 drug-like

molecules obtained from ZINC15 database.7 Second is the Enamine dataset36 containing

screening compounds that are grouped into different collections. Enamine HTS Collec-

tion containing 2,106,952 molecules is used in this study. The last one is the Ultra Large

Docking Library introduced by Lyu et al.,28 which contains 96 million molecules docked

against AmpC β-lactamase (AmpC) receptor. Target proteins, Tau-Tubulin Kinase 1 (PDB

ID:4BTK) and SARS-CoV-2 Mpro complexed with N3 inhibitor (PDB ID:6LU7) used in

the experiments were obtained from Research Collaboratory for Structural Bioinformatics

– Protein Data Bank (RCSB – PDB).39 The next step in molecular docking is grid map

generation carried using AutoGrid 4 utility in AutoDock. Finally, docking calculation was

done, keeping the protein active site rigid to get binding affinity. Detailed information about

docking methodology is given in Supplementary Methods.
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Molecular Representation

The first step in the pipeline is to encode molecules as fixed-dimensional vectors. It is essen-

tial to choose encoding methods that effectively encode molecular structures and are sensitive

to small changes in configurations. In this work, we experimented with two molecular em-

bedding techniques - ECFP and Mol2Vec.

Extended-connectivity fingerprints (ECFP)

Figure 8: Overview of the ECFP algorithm. A unique integer value is assigned to each
atom in Step 1. Step 2 involves iterative updating of the atom identifier. In Step 3 duplicate
substructures are removed. Finally in Step 4 substructures are transformed into a bit vector.

Extended-connectivity fingerprints40 encode molecules into a bit vector, each bit indica-

tive of presence or absence of a specific substructure. A basic overview of the algorithm for

fingerprinting is described here. First, each atom is assigned a unique integer value based
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on the Morgan algorithm. The atom identifier is augmented with information gathered from

neighboring atom and bond information and a unique identifier is obtained. This step is

repeated for a desired number of iterations (defined by radius) indicating the depth of the

information captured at each atom center. Duplicates are removed in case the same sub-

structure multiple identifiers. The substructures are finally constructed into a bit vector.

The algorithm is schematically described in Figure 8.

Mol2Vec

Figure 9: In this figure the procedure to obtain Mol2Vec vectors is depicted. Step 1: Mol2Vec
model is pretrained on a corpus generated from a molecules database. Step 2: Mol2Vec
vectors is generated for a new molecule using pretrained model.

Mol2Vec41 is a molecular embedding technique inspired by Natural Language Processing

technique, Word2Vec.42 In the Word2Vec technique, words are encoded as vectors that

are representative of semantics through unsupervised machine learning over a large text

corpus. The Mol2Vec algorithm extends this methods for application to small molecules.

In the Mol2Vec algorithm, substructures are first extracted using the Morgan algorithm at
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radii 0 and 1 and a unique identifier is assigned to each of them. Using these identifiers,

SMILES sequences of molecules are ordered as sentences, analogous to representing text

sentences with words. The Word2Vec algorithm is then used for unsupervised training to

construct an identifier-vector look up table. For a new molecule, the embedding is obtained

by summing the vectors of all the identifiers in the sentence constructed. Training with

Word2Vec algorithm helps tackle the sparse nature that encoding methods such as ECFP

have, which makes it easier for their use with ML models. The Word2Vec training helps in

contextualizing vectors that are representative of the structures, instead of a single bit value.

The Mol2Vec algorithm is described in Figure 9. The Mol2Vec model is trained on ZINC

15. Mol2Vec descriptor has shown to have superior performance on regression tasks such as

solubility prediction43 and toxicity prediction.44

Bayesian Optimization

Bayesian Optimization is an optimization technique used to optimize black-box functions

that are expensive to evaluate.17,45 There are two main components in Bayesian optimiza-

tion, a surrogate function which is a statistical model that can be used to approximate the

black box, and acquisition function to determine the next points to sample. In this work,

Gaussian Process Regression (ExactGP) and Deep Gaussian Process (DeepGP) are used as

surrogate function in ExactMEMES and DeepMEMES variant, respectively, and Expected

Improvement33 is used as an acquisition function.

Gaussian Process Regression (GPR)

Gaussian process regression is a nonparametric Bayesian regression technique. Consider a

data set of k points, x1, ..xk, whose function values are already known, are represented in a

vector [f(x1), ...f(xk)]. In Bayesian statistics, the set of points is assumed to be drawn at

random from a prior probability distribution. In a Gaussian process, the prior probability

distribution is modelled as a multivariate Gaussian distribution with a mean and a covariance

18



vector. The prior distribution on the set of points [f(x1), ...f(xk)] is given by -

f(x1:k) ∼ Normal(µ0(x1:k),Σ0(x1:k, x1:k)) (1)

In equation 1 the mean vector is obtained by evaluation of the mean function µ0 at each

point xi and the covariance matrix is obtained by evaluation of covariance function or kernel

Σ at each pair of points xi and xj. The kernel function should have a property that the

points closer should have strong correlation and the resulting covariance matrix is positive

semi-definite. Suppose the prior distribution is constructed for n points. For a point x at

k = n+ 1, the distribution is obtained from Baye’s rule -

f(x)|f(x1:n) ∼ Normal(µn(x), σ2
n(x))

µn(x) = Σ0(x, x1:n)Σ0(x1:n, x1:n)−1(f(x1:n)− µ0(x1:n)) + µ0(x)

σ2
n(x) = Σ0(x, x)− Σ0(x, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x)

(2)

The conditional probability distribution is called the posterior probability distribution.

For faster computations, the matrix inversions are obtained through Cholesky decomposi-

tions and solving a system of linear equations. In this work, the kernel function is chosen

to be Radial Basis Function (RBF).46 The implementation of Exact Gaussian Processes in

GPyTorch47 are used in this work.

Deep Gaussian Processes (DGPs)

Although Exact Gaussian processes help approximate black-box functions and provide a

good estimate of uncertainty, the algorithm has a time complexity of the order, O(n3). As a

result, Gaussian processes cannot be applied when the dataset is larger than a few hundred

thousand points. Instead, Deep gaussian processes provide a scalable alternative.
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Deep Gaussian Process is a type of Deep Belief Network where every hidden unit is a

Gaussian Process. The output of the l− 1th layer is used as the input to the lth layer. It can

be defined as composition of functions. Formally we can define DGP for training data set of

k points x1, ..xk whose function values are known represented in a vector y, as

f(1:L)(x1:k) = f(L)(f(L−1)(...f(2)(f(1)(x1:k))...))

wheref
(l)
d ∼ GP (0, k

(l)
d (x, x′)) forf

(l)
d ∈ f(l)

(3)

In Equation 3 L denotes the number of layers. Each layer has their own kernel and the

noise between layers is assumed to be independent and identically distributed gaussian, which

is absorbed into the kernel knoisy(xi, xj) = k(xi, xj) + σ2
l δij where δij is the Kronecker Delta

and σ2
l is the noise between layers.34 The joint probability distribution for Deep Gaussian

Process is given by

p(y, {f(l)}(L)l=1) =
N∏
i=1

p(yi|f(L)i )
L∏
i=1

p(f(l)|f(l−1)) (4)

In equation 4 the first term corresponds to likelihood, and the second corresponds to

the GP prior. Non linear transformation is applied on the output of every hidden layer

due to which exact inference is not tractable.34 To overcome this problem various number

of approximations have been developed such as Expected Propagation,48 Variational Auto-

Encoded Deep Gaussian Processes,49 and Doubly Stochastic Variational Inference for Deep

Gaussian Processes.50 In this work, Doubly Stochastic Variational Inference is used here.

The implementation of Deep Gaussian Processes in Gpytorch47 is used in this work.

Expected Improvement (EI)

As discussed, in Bayesian optimization, an acquisition function is necessary to determine the

next points to be chosen. The acquisition function should be able to choose points that are

estimated to have high binding affinity (exploitation), while also exploring unseen/uncertain

regions. One such metric, Expected Improvement(EI), that can help balance exploration-
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exploitation is used in this work and is described in this section.

Improvement at a point x is defined as -

I = max(0, f(x)− f ∗) (5)

In equation 5 f∗ is the best function value found so far and f(x) is the value of the

function at x. When a Gaussian process is used, f(x) is not a value, but a random variable

∼ N(µ, σ2), where µ and σ correspond to the mean and variance evaluated at point x. The

expected improvement is defined as -

EI(x) = Exp[max(0, f(x)− f ∗)] (6)

Using the reparameterization trick, x = µ + σε and integrating over the distribution, it

can be shown that expected improvement can be obtained as:

EI(x) = (µ(x)− f ∗ − ζ)Φ(Z) + σ(x)φ(Z) (7)

where

Z =
(µ(x)− f ∗ − ζ)

σ(x)
(8)

Here Φ and φ are the cumulative distribution function(CDF) and the probability dis-

tribution function(PDF) of the standard normal distribution. In equation 7, the first term

determines the exploration and second term determines the exploitation. The parameter ζ

denotes the amount of exploration during optimization. In this work, ζ is chosen to be 0.01.

21



Data availability

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author

upon reasonable request.
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