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We present an approach for obtaining a molecular orbital picture of the first dipole hyperpolarizability (β ) from cor-
related many-body electronic structure methods. Ab initio calculations of β rely on quadratic response theory, which
recasts the sum-over-all-states expression of β into a closed-form expression by calculating a handful of first- and
second-order response states; for resonantly enhanced β , damped response theory is used. These response states are
then used to construct second-order response reduced one-particle density matrices (1PDMs), which, upon visual-
ization in terms of natural orbitals (NOs), facilitate a rigorous and black-box mapping of the underlying electronic
structure with β . We explain the interpretation of different components of the response 1PDMs and the corresponding
NOs within both the undamped and damped response theory framework. We illustrate the utility of this new tool by
deconstructing β for cis-difluoroethene, para-nitroaniline, and hemibonded OH.+H2O complex, computed within the
framework of coupled-cluster singles and doubles response theory, in terms of the underlying response 1PDMs and
NOs for a range of frequencies.

I. INTRODUCTION

Nonlinear spectroscopic techniques1–6 provide a powerful
set of tools to interrogate the structure of matter. Higher-
order response properties are also exploited in applica-
tions such as optogenetics7, photodynamic cancer therapy8,9,
photopharmacology10, bioimaging11, optoelectronics12 and
optical data storage13,14. The spectroscopic signals are related
to higher-order response properties of the system, which de-
scribe its nonlinear response to external fields.

The first dipole hyperpolarizability (β ) describes the third-
order response of the energy (E) of a system and the quadratic
response of its dipole moment (µ) in the presence of electric-
field perturbations (E ), according to the following Taylor se-
ries expansion:

E (E ) = E−∑
a

µ
aEa−

1
2 ∑

ab
α

abEaEb−
1
6 ∑β

abcEaEbEc−·· ·
(1)

with E = E (0) is the energy of the system in the absence of
these perturbations, α is the polarizability, and a, b, and c are
the Cartesian components of the perturbation. For exact states
within the many-body perturbation theory, β for state k is
given by the following sum-over-states (SOS) expression15,16:

β
abc
k (ωa;ωb,ωc) =

1
2
C±ωPabc

+ ∑
m 6=k, n6=k

〈Ψk|µ̂a|Ψm〉〈Ψm| ¯̂µb
k |Ψn〉〈Ψn|µ̂c|Ψk〉

(Em−Ek +ωa)(En−Ek−ωc)

(2)

where ωb and ωc are the energies of the absorbed pho-
tons (polarized, respectively, along b̂ and ĉ directions) and
ωa = −ωb −ωc is the emitted sum-frequency photon’s en-
ergy (polarized along â direction); µ̂ is the dipole operator;
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¯̂µk = µ̂−〈Ψk|µ̂|Ψk〉 is the dipole fluctuation operator; Ψm is
the mth eigenstate with energy Em of the zero-order Hamilto-
nian H without external perturbations; the operator 1

2C± in-
volves complex conjugation and a simultaneous sign reversal
of all frequencies; and P+

abc is the symmetrizer with respect
to indices a, b and c. β is related to such physical phenom-
ena as the electro-optical Pockels effect17 (β abc (−ω;ω,0)),
optical rectification18 (β abc (0;ω,−ω)), and second harmonic
generation19 (β abc (−2ω;ω,ω)).

β abc (−ω1−ω2;ω1,ω2) is also the underlying measur-
able quantity in electronic sum-frequency generation (SFG)
spectroscopy3,4,17. SFG is a surface-sensitive nonlinear spec-
troscopy exploiting the macroscopic asymmetry introduced
by the interface. The SFG process can be comprehended as
a sum of a two-photon absorption from the initial state to the
two-photon virtual state (upper dashed line in Fig. 1(a)) via
the one-photon virtual state (lower dashed line in Fig. 1(a))
and an emission of the sum-frequency photon from the two-
photon virtual state to the initial state. The SFG signal can be
enhanced by tuning the energies of the absorbed photons or
their sum or both to be resonant with an excitation energy or
energies of the system (one-photon or two-photon or double
resonant SFG, as shown in Figs. 1(b), 1(c), and 1(d)). The en-
hancement arises due to small Em−Ek+ω and/or En−Ek−ω

in the denominator(s) of SOS term(s) in Eq. (2).
Driven by the desire to identify molecules with large β and

to tailor them for various applications in nonlinear optics (e.g.,
optoelectronics and photonics), theoretical and computational
attention has mainly focused on developing accurate methods.
In addition, many studies have also focused on understanding
the design principles that facilitate the development of tailored
molecules. For example, recently, the impact of open-shell
character20, π-conjugation21, and aromaticity22,23 on β has
been studied. In the context of SFG spectroscopy, understand-
ing the impact of solvent24,25 on β is crucial for characterizing
spectral features.

Fundamental understanding of nonlinear response and
practical understanding of structural factors determining β

hinge on our ability to characterize the underlying one- and
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FIG. 1. Schematic representation of different SFG processes in terms
of many-body states. (a) Non-resonant SFG. (b) One-photon reso-
nant SFG. (c) Two-photon resonant SFG. (d) Doubly (one-photon
and two-photon) resonant SFG. The solid lines represent zero-order
electronic states (e.g., Ψk in Eq. (2)). The dashed lines represent vir-
tual states. In few-state models of resonant SFG, the virtual states are
commonly approximated by zero-order states. In this paper, we show
how these virtual states can be characterized in terms of transitions
between zero-order states and second-order response states and be-
tween first-order response states, without making few-state approxi-
mations.

two-photon virtual states shown schematically in Fig. 1. A
formidable roadblock in understanding molecular nonlinear
property such as β in terms of molecular orbitals is its formal
SOS expressions in Eq. (2). Formally, all electronic states
of the system contribute to β . Several studies that aimed to
understand how the electronic structure relates to β employed
few-state models, wherein the SOS is truncated on the basis of
near-resonance considerations. The accuracy of such models
hinges on the choice of electronic states included in the SOS.
In few-state models of resonant SFG, the virtual one- and two-
photon states are approximated by zero-order states. Even
though such models can provide a qualitative description of
β , a priori evaluation of the error introduced from truncation
is difficult. A similar challenge of deriving a molecular or-
bital picture from truncated SOS expressions applies to other
nonlinear properties such as two-photon absorption (2PA) and
resonant inelastic X-ray scattering (RIXS) cross sections and
polarizabilities.

In this contribution, we extend our framework for com-
puting orbitals associated with nonlinear processes such as
2PA26 and RIXS27 and introduce a novel approach of de-
riving the mechanistic details of β by means of computing
the response reduced one-particle density matrices (1PDMs)
and their analyses in terms of natural orbitals (NOs). By
ascribing orbitals to the transitions in Fig. 1, our approach
enables characterization of the one- and two-photon virtual
states in the SFG process, providing a black-box procedure
of mapping β onto molecular orbitals28. Our scheme does
not invoke arbitrary truncation of the SOS expressions and
is orbital invariant, in contrast to few-state models. The re-
sponse 1PDMs are constructed by computing zero-, first-, and
second-order frequency-dependent response states including
the complex-valued response states from damped response
theory (often used for computing response properties in the

resonant regimes). The approach builds on our prior work on
characterizing 2PA and RIXS cross sections by using response
transition 1PDMs. The novelty lies in its extension to a third-
order (or quadratic response) property such as β . Using exem-
plary systems such as cis-difluoroethene, para-nitroaniline,
and hemibonded OH.+H2O complex, we demonstrate how the
NOs computed from response 1PDMs facilitate the construc-
tion of orbital channels depicting the underlying change in
the electronic distribution during the molecular process (e.g.,
SFG) of β . For the complex-valued response 1PDMs from
damped response theory, we also explain the contributions of
real and imaginary parts and their respective NOs. We also
show how these response 1PDMs provide characteristic quan-
tities such as the degree of delocalization, charge separation,
and charge transfer in the context of the SFG process.

II. THEORY

A. Reduced density matrices and natural orbitals

As stated above, our goal is to extend rigorous molec-
ular orbital analysis, which is commonly used in quantum
chemistry28, to β abc. We begin by reviewing the essential
elements of the theory. The key object, which allows map-
ping between many-body states (Ψ) and orbitals is reduced
one-particle density matrix γ

γpq = 〈Ψ|p†q|Ψ〉, (3)

where p† and q are electron-creation and electron-annihilation
) operators corresponding to orbitals φp and φq, respectively.
Although γ is a much more compact object that the original
many-body wave function, it contains all essential informa-
tion needed to compute any one-electron property because an
expectation value of a one-electron operator Ô is simply:

〈Ô〉= ∑
pq
Ôpqγpq. (4)

For example, the dipole moment is given by

〈Ψ|µ̂|Ψ〉= ∑
pq

µ̂pqγpq. (5)

In a similar fashion, reduced one-particle density matrices can
be defined for a pair of states Ψk and Ψ f and then used to com-
pute one-electron transition properties. The transition 1PDM
γk→ f provides a mapping between the two states in terms of
one-electron excitations28,29:

Ψ f = ∑
pq

γ
k→ f
pq p†q|Ψk〉+higher excitations. (6)

Using γk→ f , one can define exciton’s wave function Ψexc as30

Ψexc (rh,re) = ∑
pq

γ
k→ f
pq φp (re)φq (rh) , (7)

where rh and re are the hole and electron (particle) coordinates
and φ are molecular orbitals. This object is a compact repre-
sentation of the electronic transition and its expectation values
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are exactly equal to the matrix elements between the original
many-body states from which it is derived.

State and transition 1PDMs can be further compressed by
representing them in the basis of their eigenstates. For exam-
ple, by diagonalizing the state 1PDM one obtains natural or-
bitals (NOs). An analogous transformation for the transition
1PDM is given by the singular value decomposition (SVD)
procedure, which defines natural transition orbitals (NTOs).
NO and NTOs provide the most compact description of many-
body states and the transitions between them. Because they
are related to molecular properties, NOs and NTOs repre-
sent physically meaningful orbital description of electronic
structure29–36.

NTOs are obtained from unitary transformation of orbitals
φs by means of SVD

γ = VΣUT. (8)

Here, U and V contain the hole and particle NOs (ψh
S s and

ψe
Ss) and Σ is the diagonal matrix of singular values (σSs) such

that

ψ
h
S (r) = ∑

q
UqSφq (r) , (9)

ψ
e
S (r) = ∑

p
VpSφp (r) , (10)

Using NTOs, one can express molecular properties as matrix
elements between hole and pair orbitals. Using dipole mo-
ment as an example:

〈Ψ f |µ̂|Ψk〉= ∑
S

σS〈ψ p
S |µ|ψh

S 〉. (11)

In this representation, one can, for example, visualize and in-
terpret selection rules between many-body states in terms of
transitions between orbitals. Hence, one of the benefits of
finding similar representation for β (i.e., by expressing it in
terms of a response 1PDM and µ̂) is that it would allow us to
deconstruct its underlying symmetries and to understand the
selection rules in the same fashion as was done for one- and
two-photon processes26,27,30,34,35,37,38; the symmetries origi-
nate in the polarization of the three photons (a, b, and c).

B. Expressing β in terms of response states

β abc in Eq. (2) has poles when the energies of the photons
match the excitation energies of electronic states relative to
state k. For such resonant cases, an alternate SOS formulation
of β based on the Ehrenfest theorem39,40, wherein the exci-
tation energies Em−Ek are augmented by imaginary inverse

lifetimes εm, is given according to

β
abc
k (ωa;ωb,ωc) =

1
2
C±ωPbc

+ ∑
m 6=k, n 6=k(

〈Ψk|µ̂a|Ψm〉〈Ψm| ¯̂µb
k |Ψn〉〈Ψn|µ̂c|Ψk〉

(Em−Ek +ωa− iεm)(En−Ek−ωc− iεn)

+
〈Ψk|µ̂b|Ψm〉〈Ψm| ¯̂µa

k |Ψn〉〈Ψn|µ̂c|Ψk〉
(Em−Ek +ωb + iεm)(En−Ek−ωc− iεn)

+
〈Ψk|µ̂c|Ψm〉〈Ψm| ¯̂µb

k |Ψn〉〈Ψn|µ̂a|Ψk〉
(Em−Ek +ωc + iεm)(En−Ek−ωa + iεn)

)
,

(12)

where P+
bc is the symmetrizer with respect to indices b and c.

Eq. (12) reduces to Eq. (2) if εm = 0 ∀ states m; so, we only
discuss the theory based on Eq. (12) below. For a Hermi-
tian theory (either exact or approximate), β abc is symmetric
with respect to complex conjugation and signs of photon fre-
quencies; this, however, is not true for non-Hermitian meth-
ods (e.g., equation-of-motion coupled-cluster theory41,42) for
which the left and the right transition moments are not equiv-
alent.

It is impractical to compute β directly from Eq. (12) by
computing all electronic states and their excitation energies
and dipole and transition moments relative to the state k be-
yond small systems and basis sets. Many-body damped re-
sponse theory provides a more compact representation of the
SOS expression in terms of response wave functions, which is
the approach taken in our implementation of β in the Q-Chem
package43,44. Within damped response theory45–47, a phe-
nomenological damping factor ε replaces the inverse lifetimes
εm ∀ states m. Fig. 2 explains the effect of this phenomeno-
logical damping on the individual SOS terms of Eq. (12). The
effect of the iε varies for individual SOS terms depending on
whether the two photons (ω ′,ω ′′ ∈ {ωa,ωb,ωc}) are nearly
resonant or off resonant with the corresponding excitation en-
ergies Em−Ek and En−Ek in the denominators or whether
one of the photons is nearly resonant and the other is off reso-
nant. The ranges for the two photons for being nearly resonant
are explained in Fig. 2. When both photons are far from being
resonant with the two excitation energies such that ε < Ωnk−
ω ′′ = χε and Ωmk−ω ′ /∈ { ε(s′s′′−χs′)

(s′′+χ) ,
ε(s′s′′+χs′)

(χ−s′′) } (Fig. 2(f)),
the real part of the corresponding complex SOS term domi-
nates and the imaginary component is negligible. This is also
true when both photons are nearly resonant with the corre-
sponding excitation energies such that 0<Ωnk−ω ′′= χε < ε

and Ωmk−ω ′ ∈ { ε(s′s′′+χs′)
(χ−s′′) ,

ε(s′s′′−χs′)
(s′′+χ) } (Fig. 2(e)). The lat-

ter situation arises when the underlying molecular process of
β involves a double resonance enhancement. However, when
only one of the two photons is nearly resonant with the corre-
sponding excitation energy such that 0 < Ωnk−ω ′′ = χε < ε

and Ωmk−ω ′ /∈ { ε(s′s′′+χs′)
(χ−s′′) ,

ε(s′s′′−χs′)
(s′′+χ) }, the contribution to

the imaginary component of the SOS term dominates.
Following the introduction of the phenomenological damp-

ing, Eq. (12) is recast into a sum of expectation values
between different complex-valued first-order response wave
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Ωmk −ω ′

(d) Ωnk −ω ′′ = 0

ε−ε

U0,0
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(e) 0 < Ωnk −ω ′′ < ε
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FIG. 2. Effect of the imaginary phenomenological damping iε (ε > 0) on β . The individual SOS terms are proportional to
1

(Ωmk−ω ′−iε ′)(Ωnk−ω ′′−iε ′′) = Uε ′,ε ′′ (Ωmk−ω ′,Ωnk−ω ′′), where Ωmk = Em−Ek, s′ε ′ = s′′ε ′′ = ε , sign(ε ′) = s′, and sign(ε ′′) = s′′. Since

the different signs of the two variables, ε ′, and ε ′′ give similar information regarding the corresponding ReUε ′,ε ′′ and ImUε ′,ε ′′ , here, only
the two-dimensional maps of U0,0, ReUε,ε , and ImUε,ε are shown in (a), (b), and (c), respectively. U0,0 has poles when one or both of the
photon energies, ω ′ and ω ′′, are resonant with energy differences, Ωmk and Ωnk, respectively. Nonzero iε brings these poles into the complex
plane, preventing the SOS terms from being indeterminate. Far from the poles, U0,0 and ReUε,ε give similar results. In (d), (e), and (f),
slices of ReUε,ε (blue) and ImUε,ε (red) are shown for different values of the variable Ωnk−ω ′′. (d) Ωnk−ω ′′ = 0: U0,0 is indeterminate;
on the other hand, ReUε,ε (0,0) =− 1

ε2 and ImUε,ε (0,0) = 0. For |Ωmk−ω ′|< ε , the magnitude of ImUε,ε is smaller than ReUε,ε , indicating
that iε brings the contribution of the SOS term predominantly into the real component when both photon energies are (nearly) resonant with
Ωmk and Ωnk. For |Ωmk −ω ′| > ε , the contribution of the SOS term predominantly goes into ImUε,ε . (e) 0 < Ωnk −ω ′′ = χε < ε: For
Ωmk−ω ′ ∈ { ε(s′s′′+χs′)

(χ−s′′) ,
ε(s′s′′−χs′)
(s′′+χ)

}, the damping brings the contribution of the SOS term predominantly into ReUε,ε ; else, the contribution

of the SOS term predominantly goes into ImUε,ε . (f) ε < Ωnk−ω ′′ = χε: For Ωmk−ω ′ ∈ { ε(s′s′′−χs′)
(s′′+χ)

,
ε(s′s′′+χs′)
(χ−s′′) }, the damping brings the

contribution of the SOS term predominantly into ImUε,ε ; else, the contribution of the SOS term predominantly goes into ReUε,ε .
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functions X̃a
ωa and Xa

ωa as follows26,27,48,49:

β
abc
k (ωa;ωb,ωc;ε)

=
1
2
C±ωPbc

+

(
〈X̃a

k;−ε,ωa
| ¯̂µb

k |Xc
k;ε,ωc

〉

+ 〈X̃b
k;ε,ωb

| ¯̂µa
k |Xc

k;ε,ωc
〉

+ 〈X̃c
k;ε,ωc

| ¯̂µb
k |Xa

k;−ε,ωa
〉
)
.

(13)

These response wave functions are computed by solving the
following response equations:

∑
ν

〈X̃a
k;ε,ωa

|Φν〉〈Φν |
(

He f f
k −Ek +ωa + iε

)
|Φρ〉

= 〈D̃a
k |Φρ〉−〈D̃a

k |Ψk〉〈Ψk|Φρ〉
(14)

and

∑
ρ

〈Φν |
(

He f f
k −Ek−ωa− iε

)
|Φρ〉〈Φρ |Xa

k;ε,ωa
〉

= 〈Φν |Da
k〉−〈Φν |Ψk〉〈Ψk|Da

k〉.
(15)

In Eqs. (14) and (15), He f f
k is the Hamiltonian H with the

state k projected out according to

〈Φν |He f f
k |Φρ〉=
〈Φν |(1−|Ψk〉〈Ψk|)H (1−|Ψk〉〈Ψk|) |Φρ〉,

(16)

where both ν and ρ span the configuration manifold. The
amplitudes of intermediates D̃a and Da are

〈D̃a
k |Φρ〉= 〈Ψk|µ̂a|Φρ〉 (17)

and

〈Φν |Da
k〉= 〈Φν |µ̂a|Ψk〉. (18)

In the discussion below, we drop the state index k for brevity.

C. From resonse states to response density matrices and
NTOs

Eq. (13) gives β abc as sum of expectation values between
different pairs of first-order response wave functions. Despite
its closed form, β abc in Eq. (13) cannot be expressed using
a single response 1PDM (γ) contracted with an operator, as
per Eq. (3). In order to express β abc using a single response
1PDM, we compute second-order response states X̃cb

ωc,−ωa and
Xbc
−ωa,ωc using Eqs. (14) and (15) such that the second-order

response intermediates D̃b
ωc and Db

ωc are used instead of D̃a

and Da, respectively. The amplitudes of D̃b
ωc and Db

ωc are
given in terms of first-order response wave functions as fol-
lows:

〈D̃b
ε,ωc |Φρ〉= 〈X̃c

ε,ωc | ¯̂µb|Φρ〉 (19)

and

〈Φν |Db
ε,ωc〉= 〈Φν | ¯̂µb|Xc

ε,ωc〉. (20)

β abc can now be expressed as

β
abc (ωa;ωb,ωc;ε) = ∑

pq
µ̂

a
pq

[
γ

bc
ε,ωb,ωc

]
pq
, (21)

where the bc-component response 1PDM γε,ωb,ωc is given by[
γ

bc
ε,ωb,ωc

]
pq

=
1
2
C±ω

(
〈Ψ|p†q|Xbc

ε,−ωa;ε,ωc〉

+ 〈X̃b
ε,ωb
|
(

p†q− γpq
)
|Xc

ε,ωc〉
+ 〈X̃cb

ε,ωc;ε,−ωa |p†q|Ψ〉
+ 〈Ψ|p†q|Xcb

ε,−ωa;ε,ωb
〉

+ 〈X̃c
ε,ωc |

(
p†q− γpq

)
|Xb

ε,ωb
〉

+ 〈X̃bc
ε,ωb;ε,−ωa |p†q|Ψ〉

)
=
[
γ

bc,+
ε,ωb,ωc

]
pq
+
[
γ

bc,−
ε,ωb,ωc

]
pq
.

(22)

The above construction of the second-order response 1PDM
is not unique. β abc can also be expressed using an alternative
construction for the ac-component response 1PDM according
to

β
abc (ωa;ωb,ωc;ε) = ∑

pq
µ̂

b
pq
[
γ̃

ac
ε,ωb,ωc

]
pq
, (23)

where[
γ̃

ac
ε,ωb,ωc

]
pq

=
1
2
C±ω

(
〈X̃a
−ε,ωa |

(
p†q− γpq

)
|Xc

ε,ωc〉

+ 〈Ψ|p†q|Xac
−ε,−ωb;ε,ωc〉

+ 〈X̃c
ε,ωc |

(
p†q− γpq

)
|Xa
−ε,ωa〉

+ 〈X̃ac
−ε,ωa;−ε,−ωb

|p†q|Ψ〉
+ 〈X̃ca

ε,ωc;−ε,−ωb
|p†q|Ψ〉

+ 〈Ψ|p†q|Xca
−ε,−ωb;−ε,ωa〉

)
=
[
γ̃

ac,+
ε,ωb,ωc

]
pq
+
[
γ̃

ac,−
ε,ωb,ωc

]
pq
.

(24)

The response 1PDMs γ
bc,+
ε,ω1,ω2 and γ

bc,−
ε,ω1,ω2 (γ̃ac,+

ε,ω1,ω2 and
γ̃

ac,−
ε,ω1,ω2 ), obtained by the action of the operator 1

2C±ω , are not
symmetric (except for the static case), in contrast to the full
second-order response 1PDM γbc

ε,ω1,ω2
(γ̃ac

ε,ω1,ω2
).

This non-uniqueness in the construction of the second-
order response 1PDM corresponding to β is a consequence
of the coherent nature of the underlying three-photon process.
There are multiple ways in which one can describe the per-
turbed electronic density resulting from the interaction of the
molecule with any two of the three photons, followed by the
third photon. For example, for the SFG β , Eq. (21) can be
construed as an electronic density in Eq. (22), resulting from
the interaction of the two absorbed photons, interacting with
the emitted photon. Similarly, the underlying process of β in
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Eq. (23) can be construed as an electronic density in (24), re-
sulting from the interaction of the molecule with one of the
absorbed photons and the emitted photon, interacting with the
other absorbed photon.

γbc
ε,ω1,ω2

and γ̃ac
ε,ω1,ω2

are state-specific complex-valued
quantities; each is expressed as a sum of constituent ωDMs
(defined as individual frequency-dependent 1PDMs on the
right-hand side of Eqs. (22) and (24)), which are formed either
between zero-order and second-order response wave functions
or between two first-order response wave functions. These in-
dividual ωDMs thus represent the transitions between zero-
order and second-order states and between two first-order
states, respectively, even though the overall transition is back
to the initial state.

The second-order response states Xbc
ε,−ωa;ε,ωc and

X̃cb
ε,ωc;ε,−ωa in Eq. (22) have bc symmetry. In addition,

the states can be attributed psuedo-energies −ωa and ωa
relative to the initial zero-order state Ψ on the basis of
the second-order response equations, Eqs. (14) and (15),
involving −ωa. Thus, the ωDM between Ψ and Xbc

ε,−ωa;ε,ωc
represents the contribution from the coupling between the
initial zero-order state and a second-order response state
that is −ωa above the initial zero-order state. Similarly,
the ωDM between Ψ and X̃cb

ε,ωc;ε,−ωa represents the con-
tribution from the coupling between the initial zero-order
state and a second-order response state that is −ωa below
the initial state. The first-order response states X̃b

ε,ωb
and

Xc
ε,ωc represent response states that are ωb below and ωc

above the initial zero-order state. The ωDMs between these
states again represents the contribution from the coupling
between the states that are −ωa = ωb +ωc apart. Combining
these ωDMs, γbc

ε,ω1,ω2
therefore carries the contribution of

coupling between states that are separated by the energy of
the sum-frequency photon. In addition, we also note that
when the initial state is the ground state, the contribution
from ωDMs between two first-order response states to an
SFG process would not be dominant due to near-resonance
consideration. However, these ωDMs can be dominant for
excited-state response 1PDMs. γbc

ε,ω1,ω2
also has the same

symmetry as the two-photon virtual state.
The second-order response states Xac

−ε,−ωb;ε,ωc and
X̃ca

ε,ωc;−ε,−ωb
in Eq. (24) have ac symmetry, and have psuedo-

energies of −ωb and ωb relative to the initial zero-order state.
Similarly, the first-order response states X̃a

−ε,ωa and Xc
ε,ωc

also differ by −ωa−ωc = ωb. Therefore, γ̃ac
ε,ω1,ω2

carries the
contribution of coupling between states that are separated by
the energy ωb of an absorbed photon. γ̃ac

ε,ω1,ω2
also has the

same symmetry as the one-photon virtual state.
The SFG process can also be interpreted as a transition be-

tween the two-photon virtual state and the zero-order initial
state, as shown in Fig. 1. β in terms of the transition 1PDM
for this “virtual" transition would also be given by Eq. (21).
Thus, the response 1PDM in Eq. (22) can also be interpreted
as the transition 1PDM between these states. In analogy of
Eq. (6), the two-photon virtual state (Ψ2P-virtual) is given by

Ψbc
2P-virtual,ε,ω1,ω2

=∑
pq
[γbc

ε,ω1,ω2
]pq p†q|Ψk〉+higher excitations.

(25)

The transition to the two-photon virtual state can be character-
ized using the corresponding complex-valued exciton’s wave
function given by

Ψbc
2P-exc,ε,ω1,ω2

(rh,re) = ∑
pq

[
γ

bc
ε,ω1,ω2

]
pq

φp (re)φq (rh) . (26)

Similarly, the one-photon virtual state can be expressed using
response 1PDMs in Eqs. (23) and (24) according to

Ψac
1P-virtual,ε,ω1,ω2

=∑
pq
[γ̃ac

ε,ω1,ω2
]pq p†q|Ψk〉+higher excitations.

(27)
The transition to the one-photon virtual state can be character-
ized using the corresponding complex-valued exciton’s wave
function given by

Ψac
1P-exc,ε,ω1,ω2

(rh,re) = ∑
pq

[
γ̃

ac
ε,ω1,ω2

]
pq φp (re)φq (rh) . (28)

Below, we call both γbc
ε,ω1,ω2

and γ̃bc
ε,ω1,ω2

in Eqs. (22) and
(24) as a general second-order response 1PDM γbc

ω1,ω2
and

drop the index ε for brevity. We also label Ψbc
1P-exc,ε,ω1,ω2

and
Ψbc

2P-exc,ε,ω1,ω2
in Eqs. (28) and (26) as a general Ψbc

exc,ω1,ω2
such that

Ψbc
exc,ω1,ω2

(rh,re) = ∑
pq

[
γ

bc
ω1,ω2

]
pq

φp (re)φq (rh) . (29)

The exciton’s wave function related to the overall transition
underlying β can be expressed using Ψbc

exc,ω1,ω2
s as follows:

Ψexc,ω1,ω2 (rh,re) = ∑
b,c∈{x,y,z}

Ψbc
exc,ω1,ω2

(rh,re) b̂ĉ. (30)

Compared to the one-component Ψexc in Eq. (7) for a one-
photon transition between two zero-order electronic states, the
exciton’s wave function in Eq. (30) has 3×3 components.
This wave function maps the changes in the spatial electronic
distribution due to the interaction with photons onto character-
istic orbitals and can provide physically meaningful quantities
such as the average distance between the electron and hole dis-
tributions (dh→e), the size of the exciton (dexc), and the degree
of charge transfer (Q) from one part of the system to another
(or the probability of finding the hole on one fragment and the
electron on the other)29,30. For example, dexc, which quantifies
the degree of dynamic charge transfer (or charge resonance),
is expressed as follows:

dexc,ω1,ω2 =

√
〈Ψexc,ω1,ω2 |(rh− re)

2 |Ψexc,ω1,ω2〉

=

√√√√∑bc ||γbc
ω1,ω2
||2
(
dbc

exc,ω1,ω2

)2

∑bc ||γbc
ω1,ω2
||2 ,

(31)

with

dbc
exc,ω1,ω2

=
√
〈Ψbc

exc,ω1,ω2
|(rh− re)

2 |Ψbc
exc,ω1,ω2

〉

=

√√√√√ ||γbc,Re
ω1,ω2 ||2

(
dbc,Re

exc,ω1,ω2

)2
+ ||γbc,Im

ω1,ω2 ||2
(

dbc,Im
exc,ω1,ω2

)2

||γbc,Re
ω1,ω2 ||2 + ||γ

bc,Im
ω1,ω2 ||2

,

(32)
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dbc,Re/Im
exc,ω1,ω2 =

√
〈Ψbc,Re/Im

exc,ω1,ω2 |(rh− re)
2 |Ψbc,Re/Im

exc,ω1,ω2〉, (33)

and

||γbc
ω1,ω2
||2 = ||γbc,Re

ω1,ω2 ||2 + ||γ
bc,Im
ω1,ω2 ||2. (34)

dh→e, on the other hand, quantifies the permanent charge
transfer and is given by

dh→e,ω1,ω2 = ||〈Ψexc,ω1,ω2 |re|Ψexc,ω1,ω2〉
−〈Ψexc,ω1,ω2 |rh|Ψexc,ω1,ω2〉||
= ||〈re〉ω1,ω2 −〈rh〉ω1,ω2 ||,

(35)

where the Cartesian components of 〈re〉ω1,ω2 −〈rh〉ω1,ω2 are
given by

〈ze〉ω1,ω2 −〈zh〉ω1,ω2

=
∑bc ||γbc,Re

ω1,ω2 ||2
(
〈ze〉bc,Re

ω1,ω2 −〈zh〉bc,Re
ω1,ω2

)
∑bc ||γbc

ω1,ω2
||2

+
∑bc ||γbc,Im

ω1,ω2 ||2
(
〈ze〉bc,Im

ω1,ω2 −〈zh〉bc,Im
ω1,ω2

)
∑bc ||γbc

ω1,ω2
||2

(36)

and

〈zh/e〉bc,Re/Im
ω1,ω2 = ||〈Ψbc,Re/Im

exc,ω1,ω2 |zh/e|Ψbc,Re/Im
exc,ω1,ω2〉. (37)

The inter-fragment charge transfer between two fragments of
the system (say, A and B) is given according to

Qω1,ω2 =

∑bc ∑ν∈A,ρ∈B

([
γ

bc,Re
ω1,ω2

]2

νρ

+
[
γ

bc,Im
ω1,ω2

]2

νρ

)
∑bc ||γbc

ω1,ω2
||2

+

∑bc ∑ν∈B,ρ∈A

([
γ

bc,Re
ω1,ω2

]2

νρ

+
[
γ

bc,Im
ω1,ω2

]2

νρ

)
∑bc ||γbc

ω1,ω2
||2 .

(38)

In analogy to the exciton’s wavefunction for one-photon
transitions, the most compact representation of the complex-
valued exciton’s wavefunction in Eq. (29) is in terms of
NOs29–36. Following the same steps as in Eqs. (8)–(10), we
can write

Ψbc
exc,ω1,ω2

(rh,re) = ∑
S

(
σ

bc,Re
ω1,ω2

)
S

ψ
bc,e,Re
ω1,ω2,S

(re)ψ
bc,h,Re
ω1,ω2,S

(rh)

+ i∑
S

(
σ

bc,Im
ω1,ω2

)
S

ψ
bc,e,Im
ω1,ω2,S

(re)ψ
bc,h,Im
ω1,ω2,S

(rh) .

(39)

The sum of the squares of the singular values equals the
Frobenius norm of corresponding γ as follows:

||γbc,Re/Im
ω1,ω2 ||2 = ∑

pq

(
γ

bc,Re/Im
ω1,ω2

)2

pq
= ∑

S

(
σ

bc,Re/Im
ω1,ω2

)2

S
. (40)

so that singular values relate to the weights of different NO
pairs to the respective real or imaginary electronic density and

the exciton’s wave function. In the discussion that follows, the
singular values correspond to the real and imaginary compo-
nents of the normalized ||γbc||.

In contrast to the zero-order 1PDMs for which the sin-
gular values are non-negative, the response 1PDMs, γ

bc,Re
ω1,ω2

and γ
bc,Im
ω1,ω2 , are traceless and no longer positive semi-definite.

Whereas the singular values of zero-order 1PDMs correspond
to the occupancy numbers of the NOs, the singular values of
second-order response 1PDMs can be interpreted as second-
order changes in the occupancy numbers if the zero-order and
second-order NOs are (approximately) the same. The orbital
transitions between the hole and particle NOs for the response
1PDMs have the symmetry of the bc irreducible representa-
tion. When the Cartesian indices b and c fall under different
irreducible representations, the hole and particle NOs for a
given singular value is different by symmetry. The pairs of
NOs corresponding to the largest singular values contribute
the largest to the second-order changes in the electronic dis-
tribution in the presence of external perturbations and provide
the orbital characteristics of the underlying multiphoton pro-
cess. These response NOs facilitate the visualization of the
underlying multiphoton process of β .

The real component of β abc accumulates the doubly off-
resonance and doubly near-resonance contributions from in-
dividual SOS terms (Fig. 2); therefore, the real component
of the corresponding response 1PDM contains the cumulative
orbital information of these doubly off-resonance and doubly
near-resonance contributions. Similarly, since the imaginary
component of β abc accumulates the contributions from SOS
terms for which one of the two photons is nearly resonant
and the other is off resonant, the imaginary component of
the corresponding response 1PDM contains the cumulative or-
bital information of these singly near-resonance contributions.
The response NOs, obtained separately from these real and
imaginary response 1PDMs, comprise two distinct regimes of
contributing orbital channels that facilitate the change in the
electronic density distribution in the course of the underlying
multiphoton process.

The relative significance of the doubly off-resonance plus
the doubly near-resonance contributions and the singly near-
resonance contributions to a given β abc component can be
quantified from the norms ||γbc,Re|| and ||γbc,Im|| of the cor-
responding real and imaginary response 1PDMs, respectively.
For example, if υbc,Im = ||γbc,Im||2

||γbc||2 ≈ 1 or υbc,Re = ||γbc,Re||2
||γbc||2 ≈ 0,

the corresponding bc component of the exciton’s wave func-
tion can be approximated by just the singly near-resonance
contribution. The cumulative significance of all singly or
doubly near-resonance channels to β can be quantified from
the relative norms of all nine response 1PDMs. For exam-
ple, if ϒIm = ∑bc ϒbc,Im ≈ 1 or ϒRe = ∑bc ϒbc,Re ≈ 0, where
ϒbc,Im = ||γbc,Im||2

∑bc ||γbc||2 and ϒbc,Re = ||γbc,Re||2
∑bc ||γbc||2 , then the response

of the electronic density underlying the multiphoton process
of β is dominated by the singly near-resonance orbital chan-
nels for the given choice of photon energies.
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TABLE I. Analysis of different blocks of the second-order response 1PDM, γε,ωb,ωc in terms of leading configurations. Here, Ψ = Ψk ≈ Φ0,
Ψm ≈Φd

i , and Ψn ≈Φe
j, “δ” is the Kronecker delta, Es are the orbital energies, and s is the sign enforced by the operator 1

2C±ω . Note that ω ′

and ω ′′ can be the energies of absorbed photons or the sum-frequency photon.
.

ωDM ωDM as SOS γ
XY,s
ε Coefficient

block

〈Ψ|p†q|XXY
−ε ′,−ω ′;ε ′′,ω ′′〉 〈Φ0|p†q|Φd

i 〉〈Φd
i | ¯̂µX |Φe

j〉〈Φe
j|µ̂Y |Φ0〉

(Ed −Ei + sω ′+ iε ′)
(
Ee−E j− sω ′′− iε ′′

) OV
δde

〈i| ¯̂µX | j〉〈 j|µ̂Y |d〉
(Ed −Ei + sω ′+ iε ′)

(
Ed −E j− sω ′′− iε ′′

)
OV

δi j
〈d| ¯̂µX |e〉〈e|µ̂Y |i〉

(Ed −Ei + sω ′+ iε ′)(Ee−Ei− sω ′′− iε ′′)

〈X̃X
ε ′,ω ′ |p†q|XY

ε ′′,ω ′′〉 〈Φ0|µ̂X |Φd
i 〉〈Φd

i |p†q|Φe
j〉〈Φe

j|µ̂Y |Φ0〉
(Ed −Ei + sω ′+ iε ′)

(
Ee−E j− sω ′′− iε ′′

) OO
δde

〈d|µ̂X |i〉〈 j|µ̂Y |d〉
(Ed −Ei + sω ′+ iε ′)

(
Ed −E j− sω ′′− iε ′′

)
VV

δi j
〈i|µ̂X |d〉〈e|µ̂Y |i〉

(Ed −Ei + sω ′+ iε ′)(Ee−Ei− sω ′′− iε ′′)

〈X̃X
ε ′,ω ′ |XY

ε ′′,ω ′′〉〈Ψ|p†q|ψ〉 〈Φ0|µ̂X |Φd
i 〉〈Φd

i |Φe
j〉〈Φe

j|µ̂Y |Φ0〉〈Φ0|p†q|Φ0〉
(Ed −Ei + sω ′+ iε ′)

(
Ee−E j− sω ′′− iε ′′

) OO
δi jδde

〈d|µ̂X |i〉〈i|µ̂Y |d〉
(Ed −Ei + sω ′+ iε ′)(Ed −Ei− sω ′′− iε ′′)

〈X̃Y X
ε ′′,ω ′′;−ε ′,−ω ′ |p†q|Ψ〉 〈Φ0|µ̂Y |Φd

i 〉〈Φd
i | ¯̂µX |Φe

j〉〈Φe
j|p†q|Φ0〉

(Ed −Ei + sω ′′+ iε ′′)
(
Ee−E j− sω ′− iε ′

) VO
δde

〈d|µ̂Y |i〉〈i| ¯̂µX | j〉
(Ed −Ei + sω ′′+ iε ′′)

(
Ed −E j− sω ′− iε ′

)
VO

δi j
〈i|µ̂Y |d〉〈d| ¯̂µX |e〉

(Ed −Ei + sω ′′+ iε ′′)(Ee−Ei− sω ′− iε ′)

D. Analysis of response 1PDMs in terms of leading
configurations

Next, in order to interpret the NOs obtained from the Eqs.
(22) and (24), we present the configurational analysis of these
response 1PDMs using a simple uncorrelated picture (i.e.,
within the configuration interaction singles ansatz). Table I
summarizes the contribution of different ωDMs, present in the
signed second-order response 1PDMs γ

bc,+
ω1,ω2 and γ

bc,−
ω1,ω2 , to the

different blocks of γbc
ω1,ω2

. Here, we neglect correlation effects
and consider only the dominant electronic configurations in
the many-body electronic states such that Ψk ≈Φ0, Ψm ≈Φd

i ,
and Ψn ≈ Φe

j, where i, j are the occupied (O) and d,e are the
unoccupied (V ) orbitals. Notably, different ωDMs contribute
to different blocks of the response 1PDM; some contribute ex-
clusively to the OO and VV blocks and some contribute either
to the OV block or the VO block. In the context of NOs ob-
tained from γ

bc,+
ω1,ω2 or γ

bc,−
ω1,ω2 , if the ωDMs that contribute to

the OV or VO blocks are dominant (in terms of norm), SVD
gives pairs of NOs in which one NO represents an occupied
and another an unoccupied orbital. In contrast, if the ωDMs
that contribute to the OO and VV blocks are dominant, the
NO pairs comprise either both occupied or both unoccupied
orbitals—the hole and particle NOs can also be the same or-
bital if allowed by symmetry.

From Table I, for s = +, the two possible coefficients
(weights) for the first term can be large by resonance enhance-

ment when ω ′′ ≈ Ee−E j is one of the absorbed photon’s en-
ergy and/or ω ′ ≈ Ed −Ei is the energy of the sum-frequency
photon. The two possible coefficients of the third term can
be large by resonance enhancement when ω ′ ≈ Ee − E j is
one of the absorbed photon’s energy and/or ω ′′ ≈ Ed −Ei is
the energy of the sum-frequency photon. The coefficients for
the second term can be large by resonance enhancement only
when ω ′′ ≈ Ee −E j is one of the absorbed photon’s energy
and/or ω ′ ≈ Ed −Ei is the energy of the sum-frequency pho-
ton. One can similarly identify the cases for which these co-
efficients will be large for s =−.

Finally, we also consider the angle (θ ) between the γ
bc,+
ω1,ω2

and γ
bc,−
ω1,ω2 1PDMs computed using the equation:

θ = cos−1
( ||γbc||2−||γbc,+||2−||γbc,−||2

2 ||γbc,+|| ||γbc,−||

)
. (41)

When these signed response 1PDMs only have nonzero OV
or VO blocks and are complementary to each other, then the
dot product between these signed 1PDMs is zero. In this case,
θ = 90◦. Thus, the deviation from 90◦ indicates the extent to
which the ωDMs contribute to other blocks of these signed
response 1PDMs. For the static case, this angle is 0◦ as γ

bc,+
ω1,ω2

and γ
bc,−
ω1,ω2 are equivalent.

For Hermitian methods, the γ
bc,+
ω1,ω2 and γ

bc,−
ω1,ω2 are transpose

matrices of each other; so, the operator 1
2C±ω is superfluous.

These signed response 1PDMs, therefore, provide the same
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NOs (only the hole and particle NOs are swapped) and other
wave-function analysis metrics. Although for non-Hermitian
methods such as coupled-cluster methods, γ

bc,+
ω1,ω2 and γ

bc,−
ω1,ω2

are not transpose matrices of each other, they also yield sim-
ilar NOs and other wave-function analysis metrics. We il-
lustrate this in Section IV A 1. Since there are two virtual
states involved in the underlying process of β , we require both
sets of response 1PDMs given by Eqs. (22) and (24)—this
increases the number of response equations to be solved to
construct γ

bc,+
ω1,ω2 and γ

bc,−
ω1,ω2 for Hermitian methods. For non-

Hermitian methods, to minimize this number, we construct
β abc according to

β
abc (ωa;ωb,ωc;ε)=∑

pq
µ̂

a
pq

[
γ

bc,+
ε,ωb,ωc

]
pq
+∑

pq
µ̂

b
pq

[
γ̃

ac,−
ε,ωb,ωc

]
pq
,

(42)
we would obtain complementary orbital information from the
corresponding signed response 1PDMs γ

bc,+
ω1,ω2 and γ̃

ac,−
ω1,ω2 . In

short, we can now combine the orbital analysis from the two
sets of signed response orbitals obtained one each from Eqs.
(22) and (24) by computing the same number of response
wave functions as before. However, we cannot now construct
a single response 1PDM (γbc

ω1,ω2
and/or γ̃ac

ω1,ω2
) without solving

more response equations. We illustrate below how this strat-
egy allows the construction of the full orbital picture of the
SFG process and characterize the one- and two-photon virtual
states in terms of orbitals and quantities such as d+

exc, d+
h→e,

Q+ and d̃−exc, d̃−h→e, Q̃− corresponding to γbc
ω1,ω2

and γ̃ac
ω1,ω2

,
respectively.

III. COMPUTATIONAL DETAILS

We implemented the calculations of response 1PDMs
corresponding to the β tensor in a developer’s version
of the Q-Chem package43,44. This implementation em-
ploys the existing infrastructure of the libwfa library for
wave-function analysis30,34,36. In the exemplary calcu-
lations, we use the coupled-cluster singles and doubles
(CCSD) level of theory42,50–52 and compute the β tensor
and its damped response 1PDMs within the expectation-value
framework47–49,53–58 using this new feature.

We used the CCSD/aug-cc-pVDZ optimized geometry
of cis-difluoroethene. The geometries of para-nitroaniline
and the hemibonded OH.+H2O complex were obtained
from Refs. 57 and 6, respectively. The Cartesian coor-
dinates for these systems are provided in the Supplemen-
tary Material. Q-Chem’s symmetry notations are used
throughout this paper; its detailed description is provided
at http://iopenshell.usc.edu/resources/howto/symmetry/ and
in Ref. 26. The C2v symmetry group is used for cis-
difluoroethene and para-nitroaniline in all our calculations.
The hemibonded OH.+H2O complex has C1 symmetry.

In the response calculations, we used the restricted Hartree–
Fock (RHF) reference for cis-difluoroethene and para-
nitroaniline. For the hemibonded OH.+H2O complex, we
used the unrestricted HF (UHF) reference. The Dunning
aug-cc-pVDZ basis set was used in all our calculations of

β . The phenomenological damping parameter ε was set as
0.01 a.u., 0.05 a.u., and 0.01 a.u. for cis-difluoroethene,
para-nitroaniline, and the hemibonded OH.+H2O complex,
respectively. All NOs were visualized using the Gabedit soft-
ware. Isosurfaces of 0.01, 0.01, and 0.05 were used for the
three systems, respectively. We used the TheoDORE59 pack-
age for computing the component charge-transfer probabili-
ties Qbc,±,Re/Im following the NO analyses of component re-
sponse 1PDMs with Q-Chem.

IV. RESULTS AND DISCUSSION

In this section, we refer to the response 1PDMs in Eqs. (22)
and (24) as γbc

ω1,ω2
and γ̃bc

ω1,ω2
with the dependence on ε im-

plicit. Symbols with˜refer to the quantities related to γ̃bc
ω1,ω2

.

A. cis-Difluoroethene

Table II reports excitation energies, oscillator strengths, and
the corresponding natural transition orbitals (NTOs) for the
lowest one-photon transitions. The lowest excited state has
B2 symmetry and excitation energy of 6.69 eV. The oscilla-
tor strength is the largest for the XA1 → 1B1 transition with
excitation energy of 8.54 eV. This transition is the π–π∗ tran-
sition, as characterized by the b2 hole (resembling HOMO)
and a2 particle NTOs. Below, we compute the β tensor
corresponding to undamped non-resonant SFG, damped one-
photon SFG, damped two-photon SFG, and doubly resonant
SFG, as well as the undamped static case. We characterize the
response 1PDMs associated with the dominant components of
the β tensor in terms of NOs for these different cases. The im-
portant orbital channels across these different cases are shown
in Fig. 3. Below, we explain how we obtain this orbital infor-
mation using our wave-function analysis toolkit.

1. Undamped β0 (−2ω;ω,ω;0)

In this section, we characterize the orbitals involved in the
SFG process involving degenerate photons, i.e., ω1 = ω2 =
ω = 4.00 eV. For such a case, β abc and β acb are the same.
Tables S1 in the Supplementary Material gives the nonzero
β abc values for these photon energies, which shows that the
dominant components are β xxz and β xzx (equal by symmetry)
followed by β zyy.

We now characterize the response 1PDMs obtained accord-
ing to Eq. (22) corresponding to the dominant β components.
For this case with degenerate ω1 and ω2, γbc

ω,ω and γcb
ω,ω are

equivalent. In terms of the norms, γ
xy
ω,ω and γ

yx
ω,ω are dominant

due to the enhancement from the near-resonance of the sum
frequency and the excitation energy of the 1A2 state. How-
ever, these response 1PDMs do not contribute to the β0 tensor
by symmetry.

Since β xxz and β xzx are dominant, we now consider the cor-
responding γxz

ω,ω (and, equivalently, γzx
ω,ω ) response 1PDM.,
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FIG. 3. The important orbital channels for C2F2H2 in the SFG process for different sets of photon energies obtained from the NO analyses

of corresponding response 1PDMs. (a) The b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 orbital channel. (b) The b2

ωz−→ b̃2
ωx−→ a2

−ω ′x−−→ b2 orbital channel. (c)

b2
ωx−→ a2

ω ′x−→ b̃2
−ωz−−→ b2 orbital channel. (d) b2

ωy−→ ã1
ω ′y−→ b̃2

−ωz−−→ b2 orbital channel. (e) b2
ωy−→ a1

ωz−→ ã1
−ω ′y−−→ b2 orbital channel. Here, b2

and a2 NOs resemble the hole and particle NTOs of the XA1→ 1B1 transition, b̃2 resembles the particle NTO of the XA1→ 2A1 transition,
a1 resembles the particle NTO of the XA1 → 1B2 transition, and ã1 resembles a combination of particle NTOs of XA1 → 1B2 and XA1 →
2B2 transitions.

TABLE II. Excitation energies (Ω, eV), oscillator strengths ( f ), per-
manent dipole momentsa (〈µ〉, a.u.), and wave-function analysis for
low-lying excited states in cis-difluoroethene. The wave-function
analysis for each transition includes the norm of transition 1PDM
(||γ||), participation ratio (PR), and dominant NTO pairs (isovalue is
0.01). The singular values (σK) correspond to normalized transition
1PDMs. EOM-EE-CCSD/aug-cc-pVDZ.

Ex. Ω 〈µ〉 f ||γ|| PR σ2
K Hole Particle

state (eV) (a.u.) NTO NTO

1B2 6.69 -0.91 0.024 0.93 1.0 0.99
b2 a1

2B2 7.36 2.09 0.010 0.93 1.0 1.00
b2 a1

1A2 8.03 0.00 0.000 0.93 1.0 1.00
b2 b1

1B1 8.15 -0.39 0.344 0.93 1.1 0.95
b2 a2

2A1 8.54 -0.29 0.019 0.93 1.0 0.99
b2

b2
aThe dipole moment of the CCSD state is -0.97 a.u.

which is characterized by two pairs of hole and particle NOs
of similar singular values (see Table S2 in Supplementary Ma-
terial). One of these NO pair gives a b2 → a2 orbital transi-

tion similar to the NTOs computed for the XA1 → 1B1 π–
π∗ transition. The component signed response 1PDM γ

xz,+
ω,ω is

characterized by this NO pair as shown in Table S3 of Sup-
plementary Material. This also suggests that the ωDMs that
contribute to the OV block of γ

xz,+
ω,ω dominate, resulting in a

O→V orbital transition. The second NO pair of γxz
ω,ω is simi-

lar but with the hole and particle NOs swapped relative to the
first NO pair. This arises from γ

bc,−
ω,ω , which is dominated by

ωDMs contributing to the VO block.
Next, we analyze the γ

yy
ω,ω response 1PDM that correspond

to β zyy. The NO analysis of γyy in (see Table S2 in Supple-
mentary Material) gives two NO pairs. The first NO pair
has hole and particle NOs both given by a b2 orbital that is
a combination of the hole and particle NTOs of the XA1 →
2A1 transition, although resembling the hole NTO more than
the particle NTO. The second NO pair has hole and particle
NOs both given by a similar b2 orbital with a more complex
nodal structure; this orbital resembles the particle NTO of the
XA1→ 2A1 transition more than the hole NTO). The orbital
transitions associated with γ

yy
ω,ω remain unclear since the same

NO is present for the hole and the particle orbitals in each NO
pair. This is not unexpected as γ

yy
ω,ω is symmetric for Hermi-

tian theories; but for non-Hermitian CCSD response, the hole
and particle NOs can be different even if they have the same
symmetry. So, we augment the NO analysis of γ

yy
ω,ω with the

separate NO analyses of γ
yy,+
ω,ω and γ

yy,−
ω,ω in Table S3 of Sup-

plementary Material. For these signed response 1PDMs, the
NO analysis gives one NO pair comprising dissimilar hole and
particle b2 NOs. The NO pair for γ

yy,+
ω,ω gives a b2→ b2 orbital

transition that is similar to the NTOs computed for the XA1→
2A1 transition. This is a result of the dominant OV block in
γ

yy,+
ω,ω , which results in a O→ V orbital transition. The NO

pair for γ
yy,−
ω,ω gives the reversed orbital transition, a result of

the dominant VO block. This added layer of analysis thus
facilitates the characterization of transitions between two b2
orbitals dominating the third-order process.

For all component γbc
ω,ω response 1PDMs, the angle θ from
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Eq. (41) is very close to 90◦, indicating that each pair of
γ

bc,+
ω,ω and γ

bc,−
ω,ω have dominant OV and VO blocks, respec-

tively. This is also indicated from the NO analyses, wherein
all NO pairs are made up of one orbital that is similar to an
occupied orbital and the other is similar to an unoccupied or-
bital.

The above analyses of response 1PDMs given by Eq. (22)
alone, however, does not allow us to construct an orbital pic-
ture of the SFG process as shown in Fig. 3. Next, we con-
sider the response 1PDMs given by Eq. (24) corresponding to
the dominant β components. In this case, we analyze γ̃

xz,±
ω,ω ,

γ̃
xx,±
ω,ω , and γ̃

zy,±
ω,ω response 1PDMs corresponding to β xxz, β xzx,

and β zyy, respectively (see Table S4 in Supplementary Mate-
rial). γ̃

xx,±
ω,ω has the largest norms among all the components

followed by γ̃
xy,±
ω,ω (does not contribute to β by symmetry) and

γ̃
xz,±
ω,ω .

The NO analysis of γ̃
xz,−
ω,ω gives an NO pair characterized by

a b2→ a2 orbital transition that is similar to the NTOs of the
XA1→ 1B1 transition. This suggests that the OV block of this
response 1PDM is dominant, primarily because of the large
transition moment between XA1 and 1B1 states contributing
to the signed sixth ωDM in Eq. (24). The NO analysis of γ̃

xz,+
ω,ω

gives the same NO pair as the NO pair characterizing γ̃
xz,−
ω,ω

but with hole and particle NOs swapped. This suggests that
γ̃

xz,+
ω,ω has the VO block dominant, primarily due to the large

transition moment between XA1 and 1B1 states contributing
to the signed fourth ωDM in Eq. (24).

Next, we analyze the NOs of γ̃
xx,−
ω,ω and γ̃

xx,+
ω,ω . γ̃

xx,−
ω,ω is char-

acterized by two NO pairs. The NO pair with the dominant
singular value gives a b2→ b2 orbital transition that is similar
to the NTOs of the XA1 → 2A1 transition. This suggests a
dominant OV block for this response 1PDM. The second NO
pair has the same a2 orbital for the hole and particle NOs. This
NO pair therefore originates from the VV block to which the
primary contribution comes from the third signed ωDM in Eq.
(24). The two NO pairs characterizing γ̃

xx,+
ω,ω are the same as

those of γ̃
xx,−
ω,ω but with hole and particle NOs swapped. Fur-

ther, θ = 61◦ between these signed response 1PDMs shows
a significant deviation from 90◦, which is consistent with the
significance of the second NO pair arising from the VV block.

γ̃
zy,−
ω,ω with a dominant OV block is characterized by the

b2→ a1 NO transition. Here, b2 NO resembles the hole NTO
of the XA1→ 1B2 transition and a1 NO resembles a combina-
tion of the particle NTOs of the XA1→ 1B2 and XA1→ 2B2
transitions. γ̃

zy,+
ω,ω has a dominant VO block and is character-

ized by the same NO pair but with swapped hole and particle
NOs relative to the NO pair characterizing γ̃

zy,−
ω,ω .

Similar to the NO analysis of response 1PDMs formalized
according to Eq. (22), the NO analyses of response 1PDMs
formalized according to Eq. (24) alone do not give the com-
plete picture of SFG process. However, we now combine the
analyses of γ

bc,+
ε,ωb,ωc and γ̃

ac,−
ε,ωb,ωc on the basis of Eq. (42) to

characterize the two- and one-photon virtual states. For ex-
ample, based on the orbital information from the NO anal-
yses of γ

xz,+
ω,ω and γ̃

xz,−
ω,ω corresponding to β xxz, the two- and

one-photon virtual states are characterized as b2
ωx+ωz−−−−→ a2 and

b2
ωx−→ a2, respectively. This helps identify identify one impor-

tant SFG orbital channel: b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 (Fig. 3(a)).

For the β xzx component, the NO analyses of γ
zx,+
ω,ω and γ̃

xx,−
ω,ω

identifies two SFG orbital channels: b2
ωz−→ b̃2

ωx−→ a2
−ω ′x−−→ b2

(Fig. 3(b)) and b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 (Fig. 3(a)). Here,

we use b̃2 to distinguish the second b2 orbital from the first
b2 orbital in the channel. For the β zyy component, the NO
analyses of γ

yy,+
ω,ω and γ̃

zy,−
ω,ω identifies one SFG orbital channel

b2
ωy−→ a1

ωy−→ b̃2
−ωz−−→ b2 as shown in Fig. 3(d).

2. Damped one-photon resonant β0 (−ω1−ω2;ω1,ω2;ε)

In this section, we analyze the orbitals involved in a SFG
process wherein one of the absorbed photon energies is reso-
nant with the excitation energy of an one-photon bright transi-
tion. Here, we pick ωb that equals the excitation energy (8.15
eV) of 1B1 state, which dominates the UV–visible spectrum
in the low-energy range. Based on our analysis in Fig. 2, the
contribution of the 1B1 state as an intermediate in the sum
over states would thus be to the imaginary components of β ,
provided that the other energy-difference term in the denomi-
nator of the SOS expressions is greater than ε . However, for
this calculation, ωc equals 0.12 eV, which is smaller than ε of
0.27 eV (0.01 a.u.). This suggests that the SOS term with both
intermediate states being 1B1 instead contributes significantly
to the real part of β xxz. The real part of the xxz component of β

is dominant, which is consistent with the two-state model in-
volving the large dipole moment of the 1B1 and its transition
moment with the ground state and energy difference terms,
E1B1 −EXA1 −ωb and E1B1 −EXA1 −ωc, which are smaller
than ε . The imaginary β xxz is also large and gets contribu-
tion from SOS terms with E1B1−EXA1−ωb = 0 and the other
energy-difference term greater than ε . The NO analyses of
γ

xz,+,Re/Im
ωb,ωc and γ̃

xz,−,Re/Im
ωb,ωc response 1PDMs corresponding the

β xxz is given in Tables S5 and S6 of the Supplementary Mate-
rial. Both the real and imaginary components have dominant
OV blocks, each characterized by a O→V NO transition. Us-
ing these NO transitions, the important orbital channel for this

component is given by b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 (Fig. 3(a)),

where b2 and a2 NOs resemble the NTOs corresponding to
the XA1→ 1B1 transition.

β zxx is the next dominant component with its imaginary part
larger in magnitude than its real part. This is consistent with
the three-state model involving the XA1, 2A1, and 1B1 states
in which the dominant sum over states involves E2A1−EXA1−
ωa > ε and E1B1 −EXA1 −ωb = 0 along with the large dipole
moment of the 1B1 state and its large transition moment with
the XA1 state. The corresponding NO analyses of γ

xx,+,Re/Im
ωb,ωc

and γ̃
zx,−,Re/Im
ωb,ωc response 1PDMs, with dominant OV blocks,

give a b2
ωx−→ a2

ωx−→ b̃2
−ω ′x−−→ b2 (Fig. 3(c)), where the b2 and

b̃2 NOs resemble the NTOs corresponding to the XA1→ 2A1
transition and the a2 NO resembles the particle NTO of the
XA1 → 1B1 transition. This also indicates that this orbital
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channel involving the one-photon resonant b2
ωx−→ a2 transition

is damped with a primary contribution to the imaginary part
of β zxx.

The third important component of the β tensor is its xzx
component. With the same three-state model involving the
XA1, 2A1, and 1B1 states, we can explain that the real part
is larger than the imaginary part as E2A1 − EXA1 − ωb ∈
{ ε(1+χ)

χ−1 , ε(1−χ)
χ+1 }, where E2A1−EXA1 +ωa = χε as explained

in Fig. 2(e). The NO analyses of γ
zx,+,Re/Im
ωb,ωc and γ̃

xx,−,Re/Im
ωb,ωc

response 1PDMs corresponding to β xzx suggests that the im-
portant orbital channel for both the real and imaginary com-

ponents is the b2
ωz−→ b̃2

ωx−→ a2
−ω ′x−−→ b2 channel (Fig. 3(b)).

3. Damped two-photon resonant β0 (−2ω;ω,ω;ε)

In this section, we characterize a two-photon resonant SFG
transition with degenerate absorbed photons. Here, the sum
frequency is resonant with the XA1 → 2A1 transition; so we
expect the 2A1 state to make significant contributions as an
intermediate state in the sum over states to the imaginary β

components on the basis of Fig. 2. Consistent with this,
the dominant contribution to the β tensor comes from the
imaginary zyy component, which is significantly influenced by
E2A1 −EXA1 +ωa = 0 and large transition moments between
B2 states and XA1/2A1 states, based on few-state models. The
NO analyses (see Tables S7 and S8 of the Supplementary
Material) of the OV -block-dominated γ

yy,+,Im
ωb,ωc and γ̃

zy,−,Im
ωb,ωc re-

sponse 1PDMs corresponding to β zyy,Im suggests that the pri-
mary orbital channel involved is the b2

ωy−→ a1
ωy−→ b̃2

−ωz−−→ b2
channel (Fig. 3(d)), where b2 and a1 NOs resemble the NTOs
involved in the XA1 → 1B2 transition and b̃2 NO resembles
the particle NTO of the XA1 → 2A1 transition. This two-
photon resonant channel is effectively damped and projected
into the imaginary part of β zyy in the damped response calcu-
lation.

Another important two-photon resonant channel that is
damped comes from the analysis of β zxx,Im and its correspond-
ing response 1PDMs. This component is again influenced by
E2A1 − EXA1 + ωa = 0 and large transition moments of the
1B1 state with XA1 and 2A1 states, based on few-state mod-
els. This is reflected in the NO analyses of the correspond-
ing γ

xx,+,Im
ωb,ωc and γ̃

zx,−,Im
ωb,ωc response 1PDMs. Here, γ

xx,+,Im
ωb,ωc is

characterized by a single b2 → b̃2 NO transition (resembling
the NTO pair in the XA1 → 2A1). In contrast, γ̃

zx,−,Im
ωb,ωc is

characterized by two NO transitions, b2 → a2 (resembling
the NTO pair in the XA1 → 1B1) and a2 → b̃2 (resembling
the NTO pair in the 1B1 → 2A1), reflecting the impact of
the large transition moments of 1B1 state with XA1 and 2A1
states. This NO analyses therefore identify a single dominant
b2

ωx−→ a2
ωx−→ b̃2

−ωz−−→ b2 orbital channel (Fig. 3(c)) for β zxx,Im.
In contrast, the important orbital channels that are not two-

photon resonant are the b2
ωz−→ b̃2

ωx−→ a2
−ω ′x−−→ b2 (Fig. 3(b))

and b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 (Fig. 3(a)) channels from the

response 1PDMs corresponding to the equivalent xzx and xxz

components of β with larger real parts than imaginary.

4. Damped one-photon + two-photon resonant
β0 (−ωb−ωc;ωb,ωc;ε)

In this section, we characterize SFG transitions in which
one of the absorbed photons equals the excitation energy of
an excited state and the sum frequency equals the excitation
of another excited state. We expect a few orbital channels
to be enhanced via double resonance (one-photon plus two-
photon resonance enhancement) and also orbital channels that
are enhanced either by one-photon or two-photon resonance.
The doubly resonance enhanced channels accumulate in the
real components of the response 1PDMs along with the off-
resonance channels as explained in Fig. 2. Below, we con-
sider two sets of absorbed photons for this double-resonance
enhanced β tensor.

First, we consider a double resonance enhancement SFG
transition in which ωb is resonant with the XA1→ 1B1 tran-
sition and the sum frequency is resonant with the XA1→ 2A1
transition. The dominant doubly resonance enhanced chan-

nel is characterized as b2
ωx−→ a2

ω ′x−→ b̃2
−ωz−−→ b2 (Fig. 3(c))

and is obtained from the NO analyses of γ
xx,+,Re
ωb,ωc and γ̃

zx,−,Re
ωb,ωc

response 1PDMs corresponding to β zxx,Re (see Tables S9 and
S10 of the Supplementary Material). Yet another orbital chan-

nel, b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 (Fig. 3(a)), which is enhanced

by one-photon resonance, is obtained from the NO analy-
ses of γ

xz,+,Im
ωb,ωc and γ̃

xz,−,Im
ωb,ωc response 1PDMs corresponding to

β zxx,Im. In contrast, the b2
ωz−→ b̃2

ωx−→ a2
−ω ′x−−→ b2 orbital chan-

nel (Fig. 3(b)) obtained from NO analyses of response 1PDMs
corresponding to β xzx,Re is not enhanced by one-photon or
two-photon resonance. Instead, this orbital channel is signifi-
cant due to the large transition moments of the 1B1 state with
the XA1 and 2A1 states. Here, the b2 and a2 NOs resemble
the NTOs of the XA1→ 1B1 transition and b̃2 NO resembles
the particle NTO of the XA1→ 2A1 transition.

Next, we consider the SFG transition in which ωb is reso-
nant with the XA1 → 1B2 transition and the sum frequency
is resonant with the XA1 → 1A2 transition. However, since
the XA1 → 1A2 one-photon transition is dark, we do not
expect to obtain orbital channels that are enhanced by dou-
ble resonance. Consistent with this, the calculated β ten-
sor confirms this; β abc,Im components are dominant and not
β abc,Re, which suggests that the dominant orbital channels are
instead enhanced by one-photon (near-)resonance. The two

orbital channels, b2
ωy−→ a1

ωz−→ ã1
−ω ′y−−→ b2 (Fig. 3(e)) and

b2
ωy−→ a1

ωy−→ b̃2
−ωz−−→ b2 (Fig. 3(d)), obtained from NO anal-

yses of response 1PDMs corresponding to β yyz,Im and β zyy,Im,
respectively, feature the one-photon resonant b2

ωy−→ a1 orbital
transition that characterizes the XA1→ 1B2 transition (see Ta-
bles S11 and S12 of the Supplementary Material). Here, the
b2 and a1 NOs resemble the NTOs of the XA1 → 1B1 tran-
sition, b̃2 NO resembles the particle NTO of the XA1→ 2A1
transition, and ã1 NO resembles a combination of the parti-
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cle NTOs of XA1 → 1B1 and XA1 → 2B1 transitions. Two

other orbital channels, b2
ωx−→ a2

ωz−→ a2
−ω ′x−−→ b2 (Fig. 3(a))

and b2
ωz−→ b̃2

ωx−→ a2
−ω ′x−−→ b2 (Fig. 3(b)), are obtained from

the response 1PDMs corresponding to β xxz,Im and β xzx,Im, re-
spectively, due to the near-resonance of the sum frequency to
the excitation energy of 1B1 state, i.e., E1B1−EXA1 +ωa < ε .
Here, the b2 and a2 NOs resemble the NTOs of the XA1 →
1B1 transition and the b̃2 NO resembles the particle NTO of
the XA1→ 2A1 transition.

5. Undamped β0 (0;0,0;0)

In this section, we characterize the response 1PDMs for the
static case for which response 1PDMs from Eqs. (22) and (24)
are the same.. In addition, γ

+
0,0 and γ

−
0,0 are the same. In ad-

dition, β abb = β bab = β bba; so only β zxx, β zyy, and β zzz are
unique. Table S13 in the Supplementary Material gives the
NOs for the different response 1PDMs. Based on ϒbc values,
the two most significant components are yy and xx. For the
γ

yy,Re
0,0 response 1PDM, there are two dominant pairs of NOs,

each with the same NO for the hole and particle orbitals. This
suggests that the dominant ωDMs contribute to the OO and
VV blocks of γ

yy,Re
0,0 . Both NO pairs are made up of b2 orbitals;

the b2 NO in the first NO pair has a more complex nodal struc-
ture compared to the b2 orbital (similar to the HOMO) in the
second NO pair. The response 1PDM that is complementary
to γ

yy,Re
0,0 for characterizing the β zyy component is γ

zy,Re
0,0 for

which the NO analysis features a b2 → a1 orbital transition
and its reverse transition. Combining these NO analyses, β zyy

features a b2 −→ a2 −→ b̃2 −→ b2.
For characterizing the β zxx component, we perform NO

analyses of γ
xx,Re
0,0 and γ

zx,Re
0,0 . The dominant NO pair for

γ
xx,Re
0,0 comprises a b2 orbital for both the hole and particle

orbitals. The second significant NO pair comprises a a2 or-
bital for both the hole and particle orbitals. This suggests that
the dominant ωDMs contribute to the VV and OO blocks of
γ

xx,Re
0,0 . The NO analysis of γ

zx,Re
0,0 features two NO pairs; the

first gives a b2 → a2 transition and the second is the reverse
of the first. Combining these NO analyses, β zxx features a
b2 −→ a2 −→ b2 −→ b2 and b2 −→ a2 −→ a2 −→ b2 channels.

The β zzz component can be characterized by the NO analy-
sis of γ

zz,Re
0,0 , which features two NO pairs of opposing direc-

tion; each made up of the same pair of a1 orbitals. So, β zzz is
characterized by a1 −→ ã1 −→ ã1 −→ a1 and a1 −→ a1 −→ ã1 −→ a1
channels.

B. para-Nitroaniline

Table III gives the excitation energies and permanent dipole
moments of the low-lying excited A1 and B1 states of para-
nitroaniline. It also provides the oscillator strengths and NTOs
for the transition to these states from the ground state. The
oscillator strengths for the XA1 → 4A1, XA1 → 2A1, and
XA1 → 3B1 transitions are the largest. The XA1 → 2A1 is

characterized as a transition between a hole b2 (resembling
HOMO) and a particle b2 NTOs with a large zh→e. The per-
manent dipole moment of the 2A1 state is larger than the
dipole moment of the ground state. These quantities and
NTOs suggest a large intra-molecular charge transfer from
the amine end to the nitro end of the molecule. In contrast,
the XA1 → 4A1 transition is characterized using two NTO
pairs, a2→ a2 and b2→ b2 with a small zh→e. The 4A1 state
has a permanent dipole moment that is slightly smaller than
that of the ground state. This suggest that the intra-molecular
charge-transfer character of the XA1→ 4A1 transition is neg-
ligible. The XA1 → 3B1 transition is characterized by a
a2→ b2 NTO transition with a small zh→e, indicating negligi-
ble intra-molecular charge-transfer character. Below, we dis-
cuss the wave-function analysis of damped response 1PDMs
for three SFG processes, which are two-photon resonant with
the XA1 → 2A1, XA1 → 4A1, and XA1 → 3B1 transitions
with degenerate photons. We also perform this analysis for the
undamped static case. In all these cases, the β zzz component
of the first hyperpolarizability tensor dominates (Table S14
of the Supplementary Material). So, the focus below is pri-
marily on the γ

zz,+,Re/Im
ω1,ω2 and γ̃

zz,−,Re/Im
ω1,ω2 response 1PDMs. The

NO analysis of these response 1PDMs is given in Tables S15
and S16 of the Supplementary Material. The important or-
bital channels across these different cases are shown in Fig. 4.
Quantities such as d±exc, d±h→e, and Q± associated with all the
component response 1PDMs and the overall SFG processes
are given in Tables S17 and S18 of the Supplementary Mate-
rial. Here, Q± is computed between the amine half (fragment
A) and nitro half (fragment B) of the molecule.

1. Undamped β0 (−2ω;ω,ω;0)

For the undamped static case, γ
zz,+,Re/Im
0,0 and γ̃

zz,−,Re/Im
0,0 are

equivalent. The NO analysis of these response 1PDMs is
dominated by two NO pairs. The hole and particle orbitals
in each of these NO pairs look similar and have b2 symmetry,
indicating that the OO and VV blocks of the response 1PDMs
are dominant. The b2 orbitals involved in both the NO pairs
are given by linear combinations of the hole and particle or-
bitals of the XA1 → 2A1 transition. This suggests that the
character of the important virtual state is dominated by the
XA1→ 2A1 transition. The ωDMs that contribute to the OO
and VV blocks of the response 1PDMs are dominant due to
the large change in dipole moment between the 2A1 and XA1
states, which is also larger than the transition dipole moment
of this transition. Despite the dominant contribution of this
intra-molecular charge-transfer transition to the static β zzz, the
corresponding d±h→e is negligible (0.06 Å), a consequence of
the similar hole and particle orbitals in the dominant NO pairs.

2. Damped two-photon resonant β0 (−2ω;ω,ω;ε)

Here, we first consider the SFG process wherein two degen-
erate photons are absorbed and the sum-frequency photon is
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TABLE III. Excitation energies (Ω, eV), oscillator strengths ( f ), permanent dipole momentsa (〈µ〉, a.u.), and wave-function analysis for low-
lying A1 and B1 excited states in para-nitroaniline. The wave-function analysis for each transition includes the norm of transition 1PDM
(||γ||), the size of the exciton (dexc), the vectorial distance between the centroids of the hole and electron distributions (dh→e), participation
ratio (PR), and dominant NTO pairs (isovalue is 0.01). The singular values (σK) correspond to normalized transition 1PDMs. EOM-EE-
CCSD/aug-cc-pVDZ.

Ex. Ω 〈µ〉 f ||γ|| dexc zh→e PR σ2
K Hole Particle

state (eV) (a.u.) (Å) (Å) NTO NTO

2A1 4.62 -5.72 0.427 0.88 3.64 1.83 1.1 0.94
b2 b2

3A1 6.32 -3.73 0.001 0.90 3.46 0.63 1.3 0.86
b2 b2

4A1 7.04 -2.52 0.450 0.91 3.06 -0.12 1.6 0.76
a2 a2

0.19
b2 b2

5A1 7.21 -3.76 0.202 0.91 3.70 0.69 1.3 0.89
b2 b2

6A1 7.74 -4.82 0.007 0.88 3.89 1.25 1.4 0.82
b2 b2

0.15
b2 b2

1B1 4.59 -3.22 0.011 0.89 2.92 0.37 1.6 0.74
b2

a2

0.25
a2 b2

2B1 5.90 -4.15 0.032 0.88 3.17 0.85 1.6 0.75
a2 b2

0.20
b2

a2

3B1 6.43 -2.65 0.312 0.88 2.75 -0.20 1.4 0.83
a2 b2

4B1 7.68 -3.65 0.037 0.90 3.67 0.55 2.1 0.60
a2 b2

0.33
b2

a2

aThe dipole moment of the CCSD state is -2.67 a.u.

resonant with the excitation energy of the 2A1 state. Consider-
ing the large oscillator strength for the XA1→ 2A1 transition
and the large change in permanent dipole moment between
these two states, we expect this transition to dominate β zzz.
The choice of the sum-frequency photon then ensures that the
imaginary component of β zzz is larger than the real compo-
nent, since no other A1 state lies in the vicinity of the 2A1 state

with an excitation energy of Ω2A1 such that Ω2A1 −ω1/2 ∈
{−ε,ε} for epsilon = 0.05 a.u. (1.36 eV). Consistent with
this, the damped resonance-enhanced contribution primarily
enters β zzz,Im, which is approximately three times β zzz,Re. The
NO analysis of the corresponding γ

zz,+,Im
ω,ω and γ̃

zz,−,Im
ω,ω gives

similar NO pair that is characterized as a b2 → b̃2 transition
with the hole and particle NOs similar to the NTOs for the
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FIG. 4. The important orbital channels for para-nitroaniline in the SFG process for different sets of photon energies obtained from the NO

analyses of corresponding response 1PDMs. (a) The b2
ωz−→ b2

ωz−→ b̃2
−ω ′z−−→ b2 orbital channel. (b) The b2

ωz−→ b̃2
ωz−→ b̃2

−ω ′z−−→ b2 orbital channel.

(c) The b2
ωz−→ b̃2

ωz−→ ˜̃b2
−ω ′z−−→ b2 orbital channel. Here, b2 and b̃2 NOs resemble the hole and particle NTOs of the XA1 → 2A1 transition.

˜̃b2 NO is similar to the b̃2 NO, indicating tht the contribution from other XA1→ nA1 transitions is non-negligible in addition to the dominant
contribution from the XA1→ 2A1 transition. Here, ωz is the energy of absorbed photons and ω ′z is the energy of the sum-frequency photon.

XA1→ 2A1 transition. From these NO analyses, we identify

two dominant orbital channels: b2
ωz−→ b̃2

ωz−→ b̃2
−2ωz−−−→ b2 (Fig.

4(a)) and b2
ωz−→ b2

ωz−→ b̃2
−2ωz−−−→ b2 (Fig. 4(b)).

Next, we consider the SFG process wherein two degenerate
photons are absorbed and the sum-frequency photon is res-
onant with the excitation energy of the 3B1 state. Although
the transition dipole moment for the XA1→ 3B1 transition is
large, the negligible change in the permanent dipole moment
between these states results in β xxz and β xzx not being dom-
inant despite the resonant sum-frequency photon. Instead,
the non-resonant contributions, primarily from the XA1 →
2A1 transition, to the β zzz,Re dominate the first hyperpolar-
izability tensor as can be seen from the NO pair character-
izing γ̃

zz,−,Re
ω,ω that is similar to the b2 → b̃2 NTO pair for

the XA1 → 2A1 transition. γ
zz,+,Re
ω,ω is characterized by a

b2 → ˜̃b2 NO transition with the particle NO slightly differ-
ent from the b̃2, indicating that other XA1→ nA1 transitions
also contribute to this response 1PDM. This suggests a dom-

inant b2
ωz−→ b̃2

ωz−→ ˜̃b2
−2ωz−−−→ b2 orbital channel for this SFG

process (Fig. 4(c)). We also note that one of the NO pair char-
acterizing the γ

zz,+,Im
ω,ω response 1PDM is somewhat similar to

the NTO pair for the XA1 → 3A1 transition due to the near-
resonance of the sum-frequency photon with the excitation
energy of the 3A1 state. However, unlike the large ϒzz,+,Im

ω,ω ,
ϒ̃zz,−,Im

ω,ω (ϒ corresponding to γ̃
zz,−,Im
ω,ω ) is negligible and so the

channel involving this NO pair is not dominant.

A similar b2
ωz−→ b̃2

ωz−→ ˜̃b2
−2ωz−−−→ b2 orbital channel also

characterizes the dominant β zzz,Re associated with the SFG
process with degenerate photons and sum-frequency photon
resonant with the transition to the 4A1 state. In this case, the
energy of the absorbed photons is in the vicinity of the excita-
tion energy of the 2A1 state, which results in the damped con-
tribution to enter primarily into the real component. As a re-
sult, the NO pair characterizing γ̃

zz,−,Re
ω,ω is similar to the NTO

pair of the XA1→ 2A1 transition. We also note that the cor-
responding imaginary response 1PDMs give non-negligible
contributions and are characterized by different b2 NOs, indi-
cating that a number of A1 states contribute to these response
1PDMs.

We also compute d+
h→e/d̃−h→e and Q+/Q̃−, which highlight

the intra-molecular charge-transfer character of these three
SFG processes. These quantities are largest for the SFG pro-
cess for which the sum-frequency photon is resonant with the
2A1 state. This larger separation of the centroids of the hole
and electron distributions and the larger charge transferred
from the amine half to the nitro half of the molecule is consis-
tent with the larger magnitude of the β zzz compared to those
for the other two SFG processes. This is also consistent with
the simple Huckel model for a charge-transfer π–π∗ transition
in which the transition dipole moment increases with increas-
ing separation of the hole and electron orbitals. For the SFG
processes that are two-photon resonant with the XA1→ 4A1
and XA1→ 3B1 transitions, the electronic charge transfer for
the transitions to the two-photon virtual state is towards the ni-
tro group as indicated by the (similar) positive d+

h→e. In con-
trast, the charge transfer for the transition to the one-photon
virtual state is away from the nitro group as indicated by the
negative d̃−h→e. Whereas Q+ and Q̃− for these SFG processes
are similar, the more negative d̃−h→e for the former SFG pro-
cess suggests a smaller net charge transfer towards the nitro
group and is consistent with a slightly smaller β zzz than that
of the latter SFG process. For the SFG process that is two-
photon resonant with the XA1 → 2A1 transition, both d+

h→e
and d̃−h→e are positive.

C. Hemibonded OH.+H2O complex

In this section, we illustrate how the orbital picture for the
SFG process in a system comprising an open-shell hydroxyl
radical and a water molecule is constructed using response
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TABLE IV. Excitation energies (Ω, eV), oscillator strengths ( f ), permanent dipole momentsa (〈µ〉, a.u.), and wave-function analysis for low-
lying excited states in the hemibonded OH.+H2O complex. The wave-function analysis for each transition includes the norm of transition
1PDM (||γ||), the size of the exciton (dexc), the vectorial distance between the centroids of the hole and electron distributions (dh→e), and
dominant NTO pairs (isovalue is 0.01). The singular values (σK) correspond to normalized transition 1PDMs. UHF/EOM-EE-CCSD/aug-cc-
pVDZ,

Ex. Ω 〈µ〉 f ||γ|| dexc xh→e yh→e zh→e dh→e σ2
K Hole Particle

state (eV) (a.u.) (Å) (Å) (Å) (Å) (Å) NTO NTO

2A 0.19 0.33 0.000 0.97 1.19 -0.01 0.00 0.00 0.01 1.00

3A 4.66 0.44 0.009 0.97 1.20 0.01 0.12 -0.09 0.15 0.99

4A 6.45 4.21 0.053 0.92 2.87 2.21 -0.09 0.15 2.21 0.99

aThe dipole moment of the CCSD state is 0.34 a.u.

1PDMs. Here, we consider a hemibonded complex between
the radical and water, which is considered to give strong inter-
molecular charge-transfer peaks in the UV–visible spectrum
of the aqueous solution of hydroxyl radical. The low-lying
electronic transitions and their NTO analysis for this system
are provided in Table IV, which shows a charge-transfer XA
→ 4A transition at 6.45 eV with a larger oscillator strength
compared to a localized XA → 3A transition at 4.66 eV on
the radical. This intermolecular charge transfer involves a
px(H2O) hole NTO and a px(OH.) particle NTO represent-
ing the lone pair on water and the half-filled 1π(px) orbital
on the radical. The localized XA→ 3A transition on the rad-
ical is characterized by a σ hole NTO and the half-filled px
particle NTO. Below, we discuss the important components
of the first hyperpolarizbility tensor (Table S19 of the Supple-
mentary Material) and the wave-function analysis of damped
response 1PDMs for two one-photon-resonant SFG processes
in which one of the absorbed photons is resonant with either
the XA→ 3A transition or the XA→ 4A transition. We com-
pute and discuss the orbitals involved in these SFG processes
as well as the associated quantities such as d±exc, d±h→e, andQ±
(Tables S20–S25 of the Supplementary Material). Here, Q±
is computed between the radical (fragment A) and the water
molecule (fragment B).

For both the one-photon-resonant SFG processes, the real
and imaginary β xxx components are dominant compared to
the other components. For the SFG process that is one-photon
resonant with the XA→ 3A transition, these components are
almost an order of magnitude smaller than those for the SFG
process that is one-photon resonant with the XA→ 4A tran-
sition. This is expected as the latter involves resonance en-
hancement of the XA→ 4A transition that has a much larger
transition dipole moment compared to that of the XA → 3A
transition. Here, we compute the NOs associated with the
γ

xx,+,Re/Im
ω1,ω2 and γ̃

xx,−,Re/Im
ω1,ω2 response 1PDMs.

For the SFG process that is one-photon resonant with the
XA → 3A transition, γ̃

xx,−,Re
ω1,ω2 and γ̃

xx,−,Im
ω1,ω2 response 1PDMs

give different NO pairs. γ̃
xx,−,Im
ω1,ω2 collects the damped con-

tribution from the resonance enhancement of the XA → 3A
transition such that the dominant NO pair involves a hole NO

that is a combination of σ (OH.) and px(H2O) orbitals and
a particle NO that resembles the px(OH.) orbital. The off-
resonance contributions are collected in γ̃

xx,−,Re
ω1,ω2 for which the

px(H2O)→ px(OH.) NO pair suggests that the dominant con-
tribution comes from the intermolecular charge-transfer XA
→ 4A transition. On the other hand, γ

xx,+,Re
ω1,ω2 and γ

xx,+,Im
ω1,ω2

response 1PDMs are characterized similarly by the domi-
nant px(H2O) → px(OH.) NO pair. From this NO analy-
ses, the important SFG orbital channels involved are px(H2O)
ω ′x−→ σ (OH.)+px(H2O) ωx−→ px(OH.)

−ω ′′x−−→ px(H2O), px(H2O)
ω ′x−→ px(H2O) ωx−→ px(OH.)

−ω ′′x−−→ px(H2O), and px(H2O)
ω ′x−→

px(OH.) ωx−→ px(OH.)
−ω ′′x−−→ px(H2O) as shown in Fig. 5(a),

5(b), and 5(c), respectively, where ω ′′x is the energy of the
sum-frequency photon.

For the SFG process that is one-photon resonant with the
XA→ 4A transition, the contribution from the resonantly en-
hanced XA→ 4A transition is collected primarily in γ̃

xx,−,Im
ω1,ω2

as confirmed by its characteristic px(H2O) → px(OH.) NO
pair, although γ̃

xx,−,Re
ω1,ω2 is also characterized by the same NO

pair. This NO pair also dominates the NO analyses of γ
xx,+,Re
ω1,ω2

and γ
xx,+,Im
ω1,ω2 response 1PDMs, suggesting that the SFG pro-

cess is characterized by channels (b) and (c) shown in Fig.
5.

The computed d±exc, d±h→e, and Q± for these two SFG pro-
cesses further confirms that the SFG process that is one-
photon resonant with the XA→ 4A transition is more strongly
influenced by the intermolecular charge transfer from the lone
pair on water to the half-filled orbital on the radical than the
SFG process that is one-photon resonant with the XA→ 3A
transition. The former SFG process shows larger values for
d̃−h→e and Q̃− suggesting that the one-photon virtual state in-
volves a larger charge transfer from water to the radical than
in the latter SFG process. In particular, the dominant x̃−h→e
component of d̃−h→e is much smaller for the latter SFG process
than that of the former, due to the strong influence of the lo-
calized XA → 3A transition. The d̃−exc is also larger for the
former SFG process suggesting it is more delocalized than the
latter SFG process. In contrast, the d+

h→e and Q+ values are
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FIG. 5. The important orbital channels for para-nitroaniline in the SFG process for different sets of photon energies obtained from the NO

analyses of corresponding response 1PDMs. (a) The px(H2O)
ω ′x−→ σ (OH.)+px(H2O) ωx−→ px(OH.)

−ω ′′x−−−→ px(H2O) orbital channel. (b) The

px(H2O)
ω ′x−→ px(H2O) ωx−→ px(OH.)

−ω ′′x−−−→ px(H2O) orbital channel. (c) The px(H2O)
ω ′x−→ px(OH.) ωx−→ px(OH.)

−ω ′′x−−−→ px(H2O) orbital channel.
ωx and ω ′x are the absorbed photon energies and ω ′′x is the energy of the sum-frequency photon.

larger for the latter SFG process indicating that its two-photon
virtual state has larger charge-transfer character compared to
that of the former SFG process.

V. CONCLUSIONS

We presented a novel black-box approach for deriving the
molecular orbital picture of the underlying SFG process of
β by characterizing the virtual one- and two-photon states in
terms of response 1PDMs and NOs. This is the first study
extending the concept of NOs to a third-order or quadratic re-
sponse property. The approach relies on computing first- and
second-order response wave functions within the framework
of damped response theory. Two sets of response 1PDMs,
representing the transitions to the one- and two-photon vir-
tual states from the initial zero-order state, are computed and
characterized in terms of their NOs. These NOs help charac-
terize the one- and two-photon virtual states of β , which fa-
cilitate the visualization of the underlying SFG process. The
response 1PDMs are also useful for computing quantitative
wave-function metrics associated with β such the underlying
extent of delocalization, electron–hole separation, and degree
of charge transfer between different parts of the system. This
analytic approach is superior to traditional few-state models
employed for a qualitative orbital picture of β in which the
choice of intermediate states is somewhat arbitrary leading
to potential loss in accuracy. We demonstrated the utility of
this tool by calculating the underlying orbital picture of β as-
sociated with the static case and a variety of non-resonant,
one-photon resonant, two-photon resonant, and doubly reso-
nant SFG processes for cis-difluoroethene, para-nitroaniline,
and hemibonded OH.+H2O complex. We demonstrated how
the real components of the damped response 1PDMs compile
the off-resonance and doubly resonant orbital channels and
the imaginary components of the damped response 1PDMs
compile the singly resonant orbital channels. We also demon-
strated how the off-resonance channels can be dominant, il-

lustrating the merits of this rigorous analysis over few-state
models that are based on near-resonance consideration. Elec-
tronic structure calculations for modeling SFG spectra aug-
mented with our wave-function analysis tool will not only
help characterize the spectral features but also elucidate the
impact of molecular structure and intermolecular interactions
on the SFG spectra.

SUPPLEMENTARY MATERIAL

This document contains Cartesian coordinates, tabulated
values of the components of the β tensors, and tabulated
wave-function analyses of response 1PDMs in terms of NOs,
d±exc, d±h→e, and Q± for cis-difluoroethene, para-nitroaniline,
and hemibonded OH.+H2O complex.
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