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Abstract 

This work presents a Gaussian process regression (GPR) model on top of a 

novel graph representation of chemical molecules that predicts thermodynamic 

properties of pure substances in single, double, and triple phases. A 

transferable molecular graph representation is proposed as the input for a 

marginalized graph kernel, which is the major component of the covariance 

function in our GPR models. Radial basis function kernels of temperature and 

pressure are also incorporated into the covariance function when necessary. 

We predicted three types of representative properties of pure substances in 

single, double, and triple phases, i.e., critical temperature, vapor-liquid 

equilibrium (VLE) density, and pressure-temperature density. The accuracy of 

the models is nearly identical to the precision of the experimental 

measurements. Moreover, the reliability of our predictions can be quantified on 

a per-sample basis using the posterior uncertainty of the GPR model. We 

compare our model against Morgan fingerprints and a graph neural network to 

further demonstrate the advantage of the proposed method. 

  



1. Introduction 

Thermodynamic properties of chemical substances are often prerequisites 

for chemical engineering designs.1 They are traditionally measured by 

experimental means, which in many cases are costly, environmentally 

unfriendly, and sometimes hazardous. Consequently, computational methods 

have been developed to provide alternatives. For decades, the development of 

reliable quantitative property-structure relationship (QSPR) models, also known 

as quantitative activity-structure relationship (QSAR) models, has been an 

active research area.2 In this class of approaches, molecular structures are 

commonly represented by a set of descriptors, while the correlations between 

the descriptors and the properties of interest are established by solving 

corresponding regression or classification problems. In recent years, QSPR 

has been modernized by machine learning (ML) in dealing with big data, with 

broad applications in organic chemistry,3 drug discovery4,5, and material 

design1,6. In both biological and material sciences, ML methods have been 

developed to predict thermodynamic or physical properties.7-14 For example, 

several pieces of work were focused on the prediction of melting point.7-10 Coley 

et al. predicted octanol solubility, aqueous solubility, and toxicity in addition to 

the melting point.7 Gong et al. predicted multiple thermodynamic properties of 

alkanes using ML models trained on molecular dynamics simulation data.11 

Afzal et al. predicted liquid densities for a virtual library of organic molecules.12  

Zhu and Müller combined ML with the SAFT equation of state theory to predict 

multiple thermodynamic properties.13 Various related works of ionic liquids have 

been well summarized in a recent review.14 

Thermodynamic properties are sensitive to molecular structures. For 



instance, a small difference in the connectivity or composition of two molecules 

may lead to significant differences in their thermodynamic properties. Most 

published ML predictions of thermodynamic properties are focused on a 

specific type of molecules for which specialized descriptors or fingerprints are 

adequate. However, for datasets of highly diversified molecules, it has been 

argued that using fixed-length vectors of descriptors is insufficient.15 

Our goal is to predict the thermodynamic properties of highly diversified 

molecules using only their chemical formulas. The problem is unfeasible at first 

sight, as the thermodynamic properties are phenomena of the condensed-

phase and are the result of the collective behavior of a huge number of 

molecules. From a statistical mechanics point of view, a molecular system’s 

thermodynamic property is a result of ensemble average, which is the mean of 

the property that is a function of the microscopic state of the system. In the 

canonical ensemble, the value of a property A is given by: 

〈𝐴〉 =
∫𝐴(𝐑)𝑒

−
𝑈(𝐑)
𝑘𝐵𝑇 𝑑𝐑

∫𝑒
−

𝑈(𝐑)
𝑘𝐵𝑇 𝑑𝐑
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which indicates that the distribution of the configuration 𝑒
−

𝑈(𝐑)

𝑘𝐵𝑇  and the property 

𝐴  is completely determined by the total potential energy function 𝑈(𝐑) . 

Therefore, a sufficient input for predicting thermodynamic properties using ML 

must also implicitly encode the total potential energy function. Furthermore, 

taking the force field approach16-29 in molecular simulations as a reference, we 

see that the Hamiltonian of a system can be approximated reasonably well by 

functions defined on the atom types and molecular topologies. Therefore, we 

believe that the thermodynamic properties can be predicted solely from the 

information in the chemical formula as long as the encoding accurately 



represents the atom types and molecular topologies. Come to this point, it is 

apparent that a graph representation of molecules, where the edges of the 

graph represent bonds and the vertices of the graph represent atoms, can 

achieve this purpose.  

The kernel trick, which implicitly projects data to a reproducing kernel Hilbert 

space (RKHS) for inner product operations, is a widely used approach to bridge 

a graph-based representation of the molecules to a large array of machine 

learning methods30-33. For molecular graphs, kernels based on various graph 

concepts and operations such as random walk,34 shortest-path,35,36 optimal 

assignment,37 subgraph matching,38 graph invariant,39 hashing40, and 

Wasserstein Weisfeiler-Lehman41 have been proposed in the past. 

The marginalized graph kernel (MGK), which evaluates the inner product 

between two graphs in a space of random walk paths of labeled nodes and 

edges, is a particularly interesting algorithm for comparing molecular graphs. 

The random walk interpretation of the kernel draws similarities to the diffusion 

of an electron along the chemical bonds of a molecule. More importantly, the 

use of sophisticated feature sets as labels to decorate graph nodes and edges 

can greatly enhance the kernel’s ability to characterize the diverse structures 

of the molecules. 

However, the application of the marginalized graph kernel in practice had 

traditionally been severely limited by computational cost and programming 

difficulty. The use of a Kronecker product formulation inside of the algorithm 

has given rise to an O(n6) complexity, where n is the number of nodes in the 

graphs, for solvers that are implemented in a naive fashion. Previous works 

were also constrained to use graphs with simple node and edge features due 



to the difficulty in implementing sophisticated feature-level microkernels.34,42 

These problems have been further exacerbated in this era of heterogeneous 

computing as the general-purpose GPUs are still far from friendly in terms of 

programmability for domain scientists. 

Recently, Tang et al. developed the GraphDot software package for the 

marginalized graph kernel to overcome the aforementioned challenges. The 

software builds on top of an advanced just-in-time code generation framework 

to create optimized GPU code for node and edge features and feature-level 

microkernels that domain scientists as users can easily create using a high-

level Python API. A matrix-free sparse linear algebra backend then carries out 

the actual computation using only O(n2) time. This development enables the 

design and optimization of complex molecular graph representations and the 

associated marginalized graph kernel for production-scale datasets and models. 

On a related front, since the pioneering work of Scarselli et al.,43 graph 

neural networks (GNNs) have received considerable attention.44 Graph 

convolutional network,45-47 graph attention network48,49, gated graph neural 

network50,51, and message passing neural network52,53 are examples of 

advanced GNN. In a recent review, Wieder et al. summarized 80 types of GNNs, 

which have been used to predict more than 20 molecular properties using 48 

different data sets.15 Despite many variants of GNN, the central idea is the 

same: the molecular representations are learned from the graph-structured 

data during the training process.  

In this work, we present an ML framework, abbreviated as GPR-nMGK-

tMGR, that can learn and predict the thermodynamics properties of  pure 

substances. In Section 2, we explain the framework in detail, including 



transferrable molecular graph representation (tMGR), normalized MGK (nMGK), 

and hybrid kernel. In Section 3, we employ the framework to predict three 

typical data on a single-component phase diagram: the critical temperature (Tc) 

of three-phase point, vapor-liquid-equilibrium densities of liquid (VLE-ρl) and 

vapor (VLE-ρv) phases, and pressure-temperature-density (PT-ρ) of liquid of 

one-phase region. We also applied GNN and Morgan fingerprints on the Tc data 

set to illustrate the advantage of the framework. 

 

2. Methods 

 Figure 1 illustrates the workflow developed in this work. The molecules 

are divided into a training set (black) and a test set (grey), the pairwise similarity 

matrices between and within each data set are computed by nMGK or hybrid 

kernel. The self-similarity matrix K(X, X) and the target values of the training set 

are used to construct a GPR model. The cross-similarity matrix K(X*, X) of the 

training set and test set is used for properties prediction and uncertainty 

estimation.  

In the workflow, the key component is the construction of an nMGK as 

shown in the top panel of the figure. The input molecules, as identified by InChI 

or SMILES strings, are converted into undirected graphs. The vertices and 

edges of the graph are labeled with features that describe the local 

environments of the atoms and bonds. The similarity between graphs is 

computed by the nMGK. Finally, the nMGK is coupled optionally with radial 

basis function (RBF) kernels on temperature and pressure by tensor product 

formulation to make the hybrid kernels. 

 



2.1. Graph Kernel 

2.1.1. Transferable Molecular Graphs Representation (tMGR) 

Table 1 contains a list of the features of the atoms and bonds in our 

transferrable molecular graph representation, which essentially encapsulates 

the information for defining atom types and molecular topology. The atomic 

number is the most essential property of an atom. Two features are used to 

describe the cyclic environment: Ring count indicates the number of different 

rings in which the atom exists, ring list is a vector concatenating the ring sizes. 

The steric feature is chirality. Additional information about the local environment 

of the atom is given. The Morgan substructure with a radius of 3 (see Figure 

S2) is used for this purpose. Moreover, we found that the inclusion of 

propagated features, i.e. the details of the atoms on immediate and, are 

beneficial. A vector that concatenates atomic numbers up to the fourth layer 

denoted as atomic number (list, 1-4), the number of the hydrogen atoms of the 

first layer hydrogen (count, 1), and the number of heavy atoms up to the second 

layer heavy atom (count, 1-2), are used. Bond order is the most basic 

information for a chemical bond. Besides, the steric features E-Z (double bond) 

and E-Z (ring bond) are used. The optimal combination of the features as a 

feature set is obtained by trial and error, while insignificant features, such as 

aromaticity, formal charge, and hybridization, are abandoned in the process. All 

of the features required can be extracted from the InChI54 or SMILES55,56 string 

using the cheminformatics toolkits RDKit.57 As an example, α-

hexachlorocyclohexane is given in Figure S4. The table also lists the 

hyperparameters 𝛿 and 𝐶, which will be explained below.  

 



2.1.2. Normalized Marginalized Graph Kernel (nMGK). 

The MGK defines a positive definite similarity function between a pair of 

graphs G and G’. It computes the overall similarity as the expectation of path 

similarities samples from a simultaneous random walk process: 

𝐾(𝐺, 𝐺′) = ∑ ∑ ∑

[
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where the summation iterates over random walk paths h on G and h’ on G’ of 

length 𝑙 ; microkernels 𝜅𝑣(⋅, ⋅)  and 𝜅𝑒(⋅, ⋅) define the vertex-wise similarities 

and edge-wise similarities respectively; and 𝑝𝑠, 𝑝𝑞 , 𝑝𝑡  are the starting 

probability, stopping probability, and transition probability, of the random walk 

process, respectively. A uniform starting probability 𝑝𝑠 = 1.0 and a uniform stop 

probability 𝑝𝑞 = 0.01 are used in this work. The transition probability 𝑝𝑡 is 1/𝑛 

where n is the number of vertices adjacent to the current vertex. Eq 2 is 

reformulated into a generalized Kronecker product linear system and solved 

efficiently using general-purpose GPUs without explicit random-walk 

sampling.58 More details can be found in the work of Tang and de Jong59 and 

Kashima et al.34  

The microkernels are multiplicative compositions of elementary similarity 

kernels between individual features. 

𝜅v(𝑣, 𝑣′) = ∏ 𝜇𝑗 (𝜙𝑗(𝑣),𝜙𝑗(𝑣
′))𝑗 , ⑶  

𝜅e(𝑒, 𝑒′) = ∏ 𝜇𝑗 (𝜙𝑗(𝑒), 𝜙𝑗(𝑒
′))𝑗 , ⑷  

where 𝜇𝑗 is the elementary kernel for the j-th feature 𝜙𝑗. 

 Two types of elementary kernels, the Kronecker delta kernel 𝛿(⋅,⋅) for 

features with a fixed length, and the sequence convolution kernel 𝐶(⋅,⋅) for 



features with variable length, are used. The Kronecker delta kernel is defined 

as: 

𝛿(𝜙1 ,𝜙2) = {
1                , 𝜙1 = 𝜙2

     ℎ ∈ (0, 1),  otherwise
⑸ 

The sequence convolution kernel is computed as: 

𝐶(𝑙1, 𝑙2) =
𝑓(𝑙1,𝑙2)

√𝑓(𝑙1,𝑙1)𝑓(𝑙2, 𝑙2)
, ⑹ 

where

𝑓(𝑙1, 𝑙2) = ∑ ∑ 𝛿(𝜙1, 𝜙2)𝜙2∈𝑙2𝜙1∈𝑙1 . ⑺ 

Here, 𝑙1, 𝑙2 are lengths of the two features. The Kronecker delta kernel has a 

learnable hyperparameter h, whose optimal values are given in Table 1. As 

shown in the table, a generic value of 0.9 is used for almost all features except 

that for the atomic number on the current vertex.  

 The MGK inherently contains the molecular size information as 𝐾(𝐺, 𝐺′) 

is proportional to the product of the number of vertices in 𝐺  and 𝐺’ 45. This 

makes it suitable for predicting properties that scale with molecular size such 

as atomization energy. However, thermodynamic properties generally do not 

scale up with molecular size. Therefore, we propose a weighted normalization: 

𝐾(𝐺,𝐺′) = 𝐹
𝐾(𝐺, 𝐺′)

√𝐾(𝐺,𝐺)𝐾(𝐺′ , 𝐺′)
exp [−

(𝐾(𝐺,𝐺) − 𝐾(𝐺′ , 𝐺′))
2

𝜆2 ] , ⑻ 

where F is a hyperparameter that does not affect the predicted value but 

determines the magnitude of the predictive uncertainty. The hyperparameter 𝜆 

is set to be 104. 

 

2.1.3. Hybrid Graph/Euclidean Kernels  

Thermophysical properties may depend on state variables. The number of 



variables is governed by the Gibbs phase law, 𝑁𝐹 = 𝑁𝐶 − 𝑁𝑃 + 2. Here 𝑁𝐹 is 

the number of thermodynamic variables, 𝑁𝐶 is the number of components and 

𝑁𝑃  is the number of phases. For single-component system 𝑁𝐶 = 1 , 𝑁𝑃 =

0, 1, or 2 depending on the number of phases. For the properties considered in 

this work, 𝑁𝐹 = 0 for Tc, 𝑁𝐹 = 1 that is the temperature for VLE-ρ, and 𝑁𝐹 = 2 

that are temperature and pressure for PT-ρ. 

We used a hybrid kernel that combines molecular structure information with 

temperature and pressure using a tensor product formulation: 

𝐾((𝐺,𝑇, 𝑃), (𝐺′ , 𝑇′ , 𝑃′)) = 𝐾𝐺(𝐺, 𝐺′)𝐾𝑇(𝑇,𝑇′)𝐾𝑃(𝑃, 𝑃′). ⑼ 

Since the thermodynamic conditions can be conveniently encoded as fix-length 

feature vectors, any positive definiteness kernels on the Euclidean space can 

be potentially employed here. Specifically, we used the RBF kernels  

𝐾T(𝑇,𝑇′) = exp (−
(𝑇 − 𝑇′)2

𝜆𝑇
2

), ⑽ 

𝐾P(𝑃, 𝑃′) = exp (−
(𝑃 − 𝑃′)2

𝜆𝑃
2

) , ⑾ 

The hyperparameters of the RBF kernels are listed in Table 2. 

The reduced temperature 𝑇red = 𝑇/𝑇𝑐  was used in the hybrid kernel for 

predicting VLE densities, because all the molecules behave similarly as the 

temperature close to 𝑇𝑐. For PT-ρ data, the absolute temperature in Kelvin and 

pressure in bar are used. The hyperparameters 𝜆𝑇 and 𝜆𝑃 have the same units. 

 

2.2. Gaussian Process Regression. 

GPR31 is a non-parametric machine learning method with built-in 

uncertainty estimation capabilities. It is a Bayesian inference method that 

exploits the similarity between data points to make predictions. The probabilistic 



nature of a GPR model allows it to make not only a point estimate about the 

value of the prediction target but also the associated uncertainty in the form of 

a posterior variance. It is instructive if we can relate the accuracy of predictions 

for unknown molecules to the posterior variance. 

Given a training set 𝑇 and associated property 𝑦𝑇, and the nMGK-tMGR 

described above, the GPR prediction 𝑦∗ and posterior covariance matrix 𝛴∗ of a 

test set * are given: 

𝐲∗ = 𝐊𝑇∗
T 𝐊𝑇𝑇

−1𝐲𝑇 , ⑿ 

𝚺∗ = 𝐊∗∗ − 𝐊𝑇∗
T 𝐊𝑇𝑇

−1𝐊𝑇∗. ⒀ 

We calculated the mean absolute error (MAE) and R-squared values (R2) of the 

test set to evaluate performance. 

 

2.3. Data Sets 

The reference data employed in this work are summarized in Table 3.Tc 

and VLE densities and some liquid PT-ρ data are taken from NIST Standard 

Reference Database (SRD) 103b60 via Knovel.61 The data covers highly 

diversified molecules consisting of elements H, B, C, N, O, F, Si, P, S, Cl, Br, 

and I. The data were filtered by removing molecules composed of a single 

heavy atom such as water, ammonia, and methane, data with relative 

uncertainty greater than 50%, and the low gas density data at temperature 

below 𝑇𝑐/2. The numbers of molecules are 15,422 for Tc, 14,417 for VLE-ρv, 

and 14,737 for VLE-ρl density. We found 400 molecules with various number 

of PT-ρ data points from SRD and augmented the dataset by adding simulation 

results of 7,580 molecules consisting of H, C, N, O elements.11 The total 

numbers of data points are 15,422 for Tc, 1,207,668 for VLE-ρl, 1,181,358 for 



VLE-ρv, and 578,617 for PT-ρ.  

The data were randomly split in the ratio of 4:1 by molecule to the training 

sets and the test sets. To ensure the unbiased division of training and test sets, 

the process was repeated 10 times, and the results were averaged. Because 

the density data of the same molecule at different temperatures are highly 

correlated, the training sets for VLE-ρl, VLE-ρv and PT-ρ were further reduced 

by randomly selecting 40,000 data points for saving memory.  

 

3. Results and Discussions 

3.1. Predictions 

Comparisons of predictions using GPR-nMGK-tMGR against the reference 

data are given in Figure 2. The properties compared are Tc (A), VLE-ρl (B), 

VLE-ρv (C), and PT-ρ(D). Despite the discrepancies of a small number of data 

points, overall, the prediction of the GPR-nMGK-tMGR model is satisfactory as 

justified by the R2 values and the MAE values. 

 The reference data are associated with uncertainties data in the form of 

standard deviations.60 Therefore, comparing the errors of the prediction with 

the uncertainties of reference data provides an assessment of the model 

performance. The comparisons between the errors obtained by GPR-nMGK-

tMGR and the uncertainties in the reference data are shown in Figure 3. The 

prediction errors are comparable with the uncertainties provided by SRD for the 

three experimental data sets, which indicates that the model reaches a similar 

precision as the reference data. 

 

3.2. Uncertainty 



 The main advantage of GPR is that it predicts not only a value but a 

probability distribution. Therefore, the confidence of predictions can be 

estimated by the posterior uncertainty. 

 One way to use the posterior uncertainty is to draw the MAE of the 

predictions as a function of the posterior uncertainties. As shown in Figure 4, 

the comparisons are presented for the four properties predicted using GPR-

nMGK-tMGR. The black dashed line in each of the figures is the “ideal” MAE 

assuming that the errors obey Gaussian distribution. It can be seen from the 

figure that the MAE of GPR-nMGK-tMGR prediction is closed to the ideal MAE 

when the posterior uncertainty is about 2/3 of its maximum value, indicating that 

low posterior uncertainty is highly correlated to accurate prediction. 

 To show the distribution of predicted errors against posterior uncertainty, 

the data is divided into ten posterior uncertainty intervals and plotted as the 

violin strings in Figure 5. The maximum positive, maximum negative, median 

errors, and the distribution of error of the data that fall in one posterior 

uncertainty interval are collectively shown as a violin string along the y-axis. 

The percentage of data that fall in the interval, the MAE, and the R2 of these 

data are listed below the string. The strings show that the prediction errors 

mostly obey the normal distribution, with an expectation of zero and covariance 

positively correlated to posterior uncertainty, except those strings associated 

with large posterior uncertainties. The most striking feature of this presentation 

is that it illustrates that there are very few predictions that exhibit large errors in 

the high confident range. Those are ‘outliers’ which will be discussed in the 

following content. 

 The quality of the predictive uncertainty can also be examined by 



checking whether the confidence intervals cover the same percentage of the 

experimental values of the samples in the test set. In Figure 6, we plot the 

confidence interval versus the percentage of the experimental values of the 

samples in the test set covered by the confidence interval. As the 

hyperparameter F in eq.6 increases, the coverage curve moves towards the 

upper left, which means more samples are covered by the confidence interval. 

The optimal F is the one that results in the coverage curve closest to the 

diagonal. 

  

3.3. Outliers 

 Although the predictions are generally satisfactory, a small number of 

outliers exist. We see the major cause of the outliers is the so-called “tottering” 

effect.35,37,42,62,63 Using 𝑇𝑐 as an example, we illustrate the problem  by listing 

two sets of outlier molecules in Figure 7. In each set, the molecules have similar 

graphs but significantly different 𝑇𝑐 values. In outlier set 1 one may speculate 

that the large variations in 𝑇𝑐 is related to the presence of the diazenyl functional 

group (-N=N-), but outlier 2 does not show a common functional group 

responsible for the variations. A common feature of both sets is that all 

molecules have long alkyl chains.  

 From the thermodynamic point of view, alkyl groups exhibit weaker 

intermolecular interactions than the polarizable groups. Despite the relatively 

small part in the molecule, the polarizable functional groups have a strong 

impact on thermodynamic properties. However, the comparison of similarity 

using random walk on graphs does not discriminate the differences, therefore, 

the long alkyl chains dominate the similarity comparison, which leads to the 



prediction outliers.  

 

3.4. Comparison with Graph Neural Network  

It is of interest to compare kernel approaches with GNN approaches as 

both are based on the graph representation of molecules. We applied GNN 

developed by Tsubaki et al.64 (Supporting Information S1) on 𝑇𝑐  data for 

comparison. The results are presented in Figure 8. The R2 of 0.93 and MAE of 

21.2 K are both slightly larger than that of our GPR-nMGK-tMGR prediction as 

shown in Figure 2A. It is however reasonable to assume that the performance 

of GNN could be improved with further optimizations. What can be concluded 

here is that similar quality of prediction can be obtained by using GPR-nMGK-

tMGR and GNN.    

 

3.5. Comparison with fix-length-vector fingerprint 

Using Morgan fingerprint (Supporting Information S2), we constructed a 

GPR model to predict 𝑇𝑐 using the same data set as discussed above. The 

comparison with reference data, as well as posterior analysis is dispatched in 

Figure 9. The R2 of 0.77 and MAE of 46.5 shown in Figure 9A are much higher 

than that of GPR-nMGK-tMGR as shown in Figures 2A. Figure 9B, 9C and 9D 

illustrate the prediction accuracy are not clearly correlated with the posterior 

uncertainty. 

 

4. Conclusions 

A universal and transferable kernel machine for predicting 

thermodynamic properties of molecules was developed by combining a 



transferable molecular graph representation with the marginalized graph kernel 

and Gaussian process regression. Using critical temperature, VLE density, and 

pressure-temperature-density as example targets, we have demonstrated the 

effectiveness of the proposed GPR-nMGK-tMGR model, which only relies on 

features that are created from atomic numbers, connectivity, and steric features. 

The presented molecular graph and associated hyperparameters are 

applicable for all the target properties and data sets considered in this study, 

suggesting that it is universal and potentially transferable for the prediction of 

even more types of properties. The computation is GPU-accelerated. 

Meanwhile, it allows incorrect predictions to be filtered out by posterior 

uncertainty to create an accurate ML database that will be several orders of 

magnitude larger than the existing experimental database.  

Comparison against fix-length-vector fingerprint clearly shows the 

advantage of the graph kernel representation. In comparison with GNN, the 

prediction quality is comparable. However, the capability of posterior uncertain 

analysis of GPR is an advantage. In any graph-based model, the “tottering” 

effect is a bottleneck for further improvement of the prediction quality.  

The application presented here on data of single-component phase diagram 

demonstrated the applicability of the proposed method. We believe the method 

is general and the graph representation is transferrable, our ongoing and future 

work will cover more thermodynamic properties important to the chemical 

industry. 

 

Associated Content 

 The marginalized graph kernel is computed using GraphDot package at 



https://github.com/yhtang/GraphDot. All codes used in this work can be found 

at https://github.com/Xiangyan93/Chem-Graph-Kernel-Machine. 
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Table 1. Atom and Bond Features and their Hyperparameters (h) in Micro-

Kernel Functions 

 

features elementary kernel h 

atom 

atomic number 𝛿 0.75 

ring size (list) 𝐶  0.9 

ring (count) 𝛿 0.9 

chirality 𝛿 0.9 

Morgan substructure (r=3) 𝛿 0.9 

atomic number (list, 1) 𝐶  0.9 

atomic number (list, 2) 𝐶  0.9 

atomic number (list, 3) 𝐶  0.9 

atomic number (list, 4) 𝐶  0.9 

hydrogen (count, 1) 𝛿 0.9 

heavy atom (count, 1) 𝛿 0.9 

heavy atom (count, 2) 𝛿 0.9 

bond 

bond order 𝛿 0.9 

E-Z (double bond) 𝛿 0.9 

E-Z (ring bond) 𝛿 0.9 

 

  



Table 2. Hyperparameters for Thermodynamic Variables 

 

property 𝐹𝑎 𝑇red 𝑇(K) 𝑃(bar) 

𝑇𝑐 120 / / / 

VLE − 𝜌𝑙(𝑇) 180 0.1 / / 

VLE − 𝜌𝑣(𝑇) 30 0.02 / / 

PT − 𝜌(𝑇, 𝑃) 30 / 100 500 

 𝑎𝐹 in eq 6. 

 



Table 3. Summary of the Data Set Used in This Work  

 

source property 𝑁mol 𝑁𝑇 𝑁𝑃 𝑁data 

Expt. 

𝑇𝑐 15422 - - 15422 

VLE − 𝜌𝑙(𝑇) 14744 ~80 1 1207667 

VLE − 𝜌𝑣(𝑇) 14414 ~80 1 1181357 

PT − 𝜌(𝑇,𝑃) 400 var var 155116 

Simu. PT − 𝜌(𝑇,𝑃) 7580 8 7 423501 

  



 

Figure 1. An overview of the machine learning pipeline proposed in this work. 

Upper: Molecules are first converted into labeled graphs, where a series of 

features are invented to describe the local environment of the atoms and bonds. 

Then the similarity between two graphs is computed by normalized 

marginalized graph kernel as the expectation of the similarity between all 

possible simultaneous random walk paths generated on each graph. Lower: 

Molecular graph, temperature, and pressure are respectively represented as G, 

T, P. Given the training set (G, (G, T) or (G, T, P)) and property-unknown test 

set (G*, (G*, T*) or (G*, T*, P*)) to be predicted, the pairwise similarity matrices 



between and within each data set are computed. The training set self -similarity 

matrix and target values are used to construct a GPR model. The training-

prediction cross-similarity matrix and prediction self-similarity matrix are used 

for properties prediction and uncertainty estimation. 

  



 

Figure 2. Relationship between the prediction and the truth value using GPR-

nMGK-tMGR. (A) Critical temperature. (B) VLE liquid density. (C) VLE gas 

density. (D) Liquid density.  

  



 

Figure 3. The probability histograms of the error of the predictions and the 

uncertainty provided by the database. (left) Critical temperature, (middle) VLE 

liquid density, and (right) VLE gas density. 

  



 

Figure 4. Relationship between the MAE and the posterior uncertainty of GPR-

nMGK-tMGR (solid). 𝑦 = √
𝜋

2
 is the MAE of ideal Gaussian distribution. The unit 

of 𝑇𝑐 is K and the unit of density is kg ∙ m−3. 

  



 

Figure 5. Relationship between predicted error and posterior uncertainty of 

GPR-nMGK-tMGR. Each string of the violin plot shows the distribution of 

predicted error within the corresponding posterior uncertainty interval. The unit 

of 𝑇𝑐 is K and the unit of density is kg ∙ m−3. 

  



 

Figure 6. The proportional percentage of the target property is contained by the 

predictive confidence interval of GPR-nMGK-tMGR. The results of different 

hyperparameters F in eq 6 are compared. 

 .  

  



 

Figure 7. Examples of two groups of outliers in the critical temperature data set, 

where the molecules are similar to each other but their critical temperatures 

differ greatly. 

  



 

Figure 8. Relationship between the prediction and the truth value using GNN.  

  



 

Figure 9. The results of GPR-RBF-MF128b. (A) Relationship between the 

prediction and the truth value. (B) Relationship between the MAE and the 

posterior uncertainty. (C) Relationship between predicted error and posterior 

uncertainty. (D) The proportional percentage of the critical temperature is 

contained by the predictive confidence interval.  
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