Assessment of the effect of process conditions and material characteristics of alkali metal salt-promoted MgO-based sorbents on their CO₂ capture performance

Jian Chen,^{†, ‡} Lunbo Duan,^{*, †} Felix Donat,^{*, ‡} Christoph R. Müller^{*, ‡}

[†] Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

[‡] Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland

Email: duanlunbo@seu.edu.cn; donatf@ethz.ch; muelchri@ethz.ch

ABSTRACT: CO₂ capture using alkali metal salt (AMS)-promoted MgO-based sorbents at intermediate temperatures (300 - 500 °C) has gained increased interest recently. The prospects of such materials for CO₂ capture were assessed in this work. We investigated the most reactive MgO-based sorbents that have been reported in the literature, i.e., MgO promoted with a combination of various AMS (incl. NaNO₃, LiNO₃, K₂CO₃ and Na₂CO₃), and examined how particle size (from powder to pelletized 500 µm particles) and reaction conditions (calcination/carbonation

temperature, and partial pressure of CO₂) affect the cyclic CO₂ uptake using a thermogravimetric analyzer (TGA) at ambient pressure. The TGA results showed that the CO₂ uptake of the sorbents decreased significantly after pelletization, losing 74 % of its initial capacity. However, the CO₂ uptake capacity of the pelletized sorbents continued to increase over 100 cycles and reached a value (~ 0.46 $g_{CO2}/g_{sorbent}$) close to that of the powdery sample (~ 0.53 $g_{CO2}/g_{sorbent}$). Analysis via X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscope (SEM) and N₂ physisorption suggests that the increase in CO₂ uptake was related to a change of the nature of the alkali species within the molten phase that is reflected by their re-crystallization behavior when cooling them down to room temperature, and appeared to be affected by the CO₂ partial pressure present during carbonation. Finally, the CO₂ capture performance of the best-performing sorbents was evaluated in a packed bed reactor, in order to assess whether the most reactive sorbents are capable of removing a significant amount of CO₂ from a gas stream at ambient pressure. The CO₂ uptake of the sorbents in the packed bed experiments was very close to that in the TGA experiments; however, the CO₂ capture efficiency was less than 10 %, which currently appears too low for an industrial post-combustion CO₂ capture process to be viable. New material developments should not only focus on improving the rate of formation of MgCO₃ from MgO, but also assess whether CO₂ removal with such sorbents is actually feasible.

KEYWORDS: CO₂ capture, MgO-based sorbents, alkali metal salt, CO₂ partial pressure, CO₂ capture efficiency

INTRODUCTION

 CO_2 capture and storage (CCS) is an important part of the strategies to reduce anthropogenic CO_2 emissions and mitigate climate change. The most expensive part of the CCS steps CO_2 capture, transport and storage, is the capture part, and substantial efforts have been devoted to developing effective and economically feasible CO_2 capture technologies.^{1–3} Amongst them, the CO₂ capture using MgO-based sorbents via a reversible carbonation/calcination reaction (MgO + $CO_2 \leftrightarrow MgCO_3$) at intermediate temperatures (300 - 500 °C) has gained increased interest recently.^{4,5} MgO-based sorbents exhibit promising prospects due to their wide availability, low cost, non-toxicity, and high theoretical CO_2 uptake capacity (~ 1.1 g CO_2 per g MgO). CO_2 captured by MgO-based sorbents can be released at relatively low temperatures in a less endothermic reaction compared to other solid sorbents that are commonly used, such as CaO-based sorbents; the calcination temperatures range from ~ 400 - 500 °C for MgO-based sorbents compared to 850 – 950 °C for CaO-based sorbents.^{6–8} However, using bulk MgO as the sorbent for CO_2 capture is challenging owing to its poor sorption kinetics, resulting in a fairly low effective CO₂ uptake capacity (~ less than 0.01 $g_{CO2}/g_{sorbent}$ after 60 min at 400 °C in pure CO₂⁹) that limits its potential use in industrial applications.

Extensive studies have been conducted to improve the CO₂ uptake capacity and stability of MgO-based sorbents, including optimization of the reaction temperatures,^{10,11} the synthesis of highly porous MgO with specific surface areas > 200 m²/g,^{12–14} the incorporation of structural stabilizers,^{15–17} and the doping with alkali metal salt (AMS).^{4,5,18} The doping of MgO with AMS is considered the most effective approach; it is also relatively inexpensive and potentially suitable for large-scale production. A wide range of single AMS or a combination of various AMS (typically alkali nitrates and/or carbonates) has been used to modify MgO-based sorbents, with the main results of some selected studies summarized in Table 1. The AMS (or mixtures thereof) is

able to partially dissolve bulk MgO and to overcome the high lattice energy constraints, resulting in a much higher and more cyclically stable CO_2 capture performance compared to bulk MgO.^{19,20} Another important parameter to enable fast CO_2 sorption is the solubility and transport of the CO_2 within the AMS.^{21,22}

	Temperature (°C)/Atmosphere/Time			CO ₂ uptake		Ref.
Alkali metal salt(s)	(min)		Cycles	$(g_{CO2}/g_{sorbent})$		
	Calcination	Carbonation		Initial	Final	
NaNO ₃	300/He/180	300/10 vol.% CO ₂ /180	5 0.39 0.21		0.21	22
NaNO ₃	450/N ₂ /60	300/CO ₂ /180	8	0.12	0.31	23
NaNO ₃	$400/N_2/60$	330/CO ₂ /60	15	0.22	0.37	24
NaNO ₃	450/N ₂ /30	300/CO ₂ /30	20	0.14	0.10	25
NaNO ₂	$400/N_2/10$	300/CO ₂ /60	10	0.55	0.29	26
KNO3	450/N ₂ /30	325/CO ₂ /20	12	0.10	0.08	27
(Li, K)NO ₃	500/N ₂ /10	350/CO ₂ /60	14	0.45	0.34	28
NaNO ₃ -Na ₂ CO ₃	$450/N_2/10$	325/CO ₂ /60	14	0.30	0.32	29
NaNO ₃ -NaNO ₂	$400/N_2/20$	350/85 vol.% CO ₂ /60	15	0.83	0.38	30
NaNO ₃ -Na ₂ CO ₃	$400/N_2/40$	360/CO ₂ /80	30	0.71	0.25	31
(Li, Na, K)NO ₃	450/N ₂ /15	300/CO ₂ /60	10	0.48	0.35	32
(Li, Na, K)NO ₃	$400/N_2/30$	300/CO ₂ /30	20	0.36	0.14	33
(Li, Na, K)NO ₃	500/N ₂ /10	300/CO ₂ /30	20	0.32	0.16	34
(Li, Na, K)NO ₃	350/N ₂ /30	300/CO ₂ /60	40	0.27	0.30	35
(Li, Na)NO ₃ - Na ₂ CO ₃	400/N ₂ /5	325/CO ₂ /30	30	0.44	0.29	36
(Li, Na)NO3- Na2CO3	425/N ₂ /15	325/CO ₂ /60	30	0.50	0.45	37
(Li, K)NO3-(Na, K)2CO3	400/N ₂ /15	350/40 vol.% CO ₂ /60	20	0.67	0.52	38
(Li, K)NO ₃ -(Na, K) ₂ CO ₃	450/N ₂ /90	325/CO ₂ /180	30	0.84	0.69	39
(Li, K)NO ₃ -(Na, K) ₂ CO ₃	420/N ₂ /10	350/50 vol.% CO ₂ /30	30	0.56	0.56	40
(Li, K)NO3-(Na, K)2CO3	400/N ₂ /15	350/CO ₂ /45	50	0.57	0.57	41
(Li, K)NO ₃ -(Na, K) ₂ CO ₃ ^a	400/N ₂ /15	350/80 vol.% CO ₂ /30	100	0.35	0.53	this work
(Li, K)NO ₃ -(Na, K) ₂ CO ₃ ^b	400/N ₂ /15	350/80 vol.% CO ₂ /30	100	0.18	0.46	this work

Table 1. Summary of the CO₂ capture performance of the AMS-promoted MgO-based sorbents reported previously and in this work.

a: AMS-MgO-1-PO (powder).

b: AMS-MgO-1-PE sieved to $106 - 180 \mu m$.

However, the majority of the studies dealing with AMS-promoted MgO-based sorbents have investigated only their cyclic performance using different combinations of AMS and have determined the CO₂ uptake (and release) in thermogravimetric analyzers (TGA). Moreover, powdery MgO-based sorbents¹⁹⁻³⁹ and/or high CO₂ concentrations with long durations during the carbonation stage have commonly been used in these studies (Table 1), which may not reflect practically relevant reaction conditions. The potential of MgO-based sorbents for industrial applications (both pre- and post-combustion CO₂ capture) can only be assessed if realistic CO₂ concentrations and sorption times are employed. To the best of our knowledge, such work has not been conducted thus far for the potential application of these materials in post-combustion CO₂ capture.

Herein, we assess the prospects of MgO-based sorbents for post-combustion CO₂ capture at ambient pressure and provide a detailed analysis on the physical and chemical transformation of the sorbents during cycling. We investigate the most reactive MgO-based sorbents that have been reported in the literature,³⁸⁻⁴¹ i.e., MgO promoted with a combination of various AMS (incl. LiNO₃, KNO₃, Na₂CO₃, and K₂CO₃) as shown in Table 1, and show how the particle size (from powder to pelletized 500 µm particles) and the reaction conditions (i.e., carbonation/calcination temperature and partial pressure of CO₂ in carbonation and calcination reactions) affect the cyclic performance using a TGA at ambient pressure. The observed performance of the sorbents is correlated with morphological (pore volume and surface area) and structural changes (the composition of crystalline phases and the transformation of the AMS) over 100 cycles. In addition, we investigate in packed bed experiments with a long gas-solid contact time whether the most reactive sorbents (i.e., those with a CO₂ uptake capacity of ~ 0.46 g_{CO2}/g_{sorbent} after only 30 min)

are actually capable of removing a significant amount of CO_2 from a gas stream – the main purpose of any CO_2 capture technique.

EXPERIMENTAL SECTION

Materials and sorbent preparation

The synthesis approach of AMS-promoted MgO-based sorbents developed by Cui et al.⁴¹ was used and modified in this work. First, MgCO₃ (Acros Organics) was calcined in stagnant air at 450 °C in a muffle furnace for 1 h to yield MgO (using a heating rate of 3 °C/min). Subsequently, 2.93 g calcium D-gluconate monohydrate (Sigma-Aldrich) was mixed with 5 g calcined MgO in ethanol (100 mL) under stirring at room temperature for 1 h to give a Ca/Mg molar ratio of 5:95, followed by drying at 80 °C in an oven overnight. After drying, the resulting white powder was calcined at 600 °C in a muffle furnace for 2 h using a heating rate of 3 °C/min. The resulting material is denoted as Mg95Ca5.

The actual AMS-promoted MgO-based sorbents were prepared by the wet mixing of Mg95Ca5 and a mixture of alkali metal salts in ethanol (100 mL) under stirring at room temperature for 3 h. The mixture of alkali metal salts used here contained LiNO₃ (Sigma-Aldrich), KNO₃ (Sigma-Aldrich), Na₂CO₃ (Acros Organics) and K₂CO₃ (Fisher Scientific). Different from using a fixed ratio (~ 2:1) as reported in the literature,⁴¹ three molar ratios of (Li, K)NO₃ to (Na, K)₂CO₃ (i.e., 2:1, 1:1 and 1:2) were used. The molar ratios of LiNO₃ to KNO₃ and Na₂CO₃ to K₂CO₃, and the molar ratio of the mixture of AMS to Mg95Ca5 were always kept at 0.44:0.56, 0.5:0.5 and 0.16:1, respectively. The weight fractions of the AMS in the sorbents were 27 %, 28 % and 29 %, respectively, when the molar ratios of (Li, K)NO₃ to (Na, K)₂CO₃ were 2:1, 1:1 and 1:2.

After stirring, the mixed solution was dried at 80 °C in an oven overnight, followed by calcination in a muffle furnace in stagnant air at 500 °C for 2 h using a heating rate of 3 °C/min.

After calcination, the resultant powdery samples were pelletized at a pressure of 520 MPa by using a manual hydraulic press (Atlas 15T Manual Hydraulic Press, Specac). Finally, the cylindrical pellets were crushed in an agate mortar and sieved to obtain AMS-promoted MgO based-sorbents of different particle sizes ($106 - 180 \mu m$, $180 - 250 \mu m$, $250 - 355 \mu m$ and $355 - 500 \mu m$).

For simplicity, AMS-MgO-x-PE denotes the pelletized AMS-promoted MgO-based sorbents, where x means the molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ (i.e., 0.5, 1 or 2). In addition, AMS-MgO-x-PO describes the powdery AMS-promoted MgO-based sorbents that were not pelletized and had a particle size $< 50 \mu$ m. AMS-MgO-1-PO-Ref describes the AMS-MgO-1-PO without the addition of calcium in the material synthesis process. As shown in Figure S1 in the Supporting Information (SI), the addition of calcium in the sorbent increased the CO₂ sorption rate only during the initial cycles, leading to a higher CO₂ uptake capacity, but did not affect significantly the CO₂ capture performance from the seventh cycle onwards.

Sorbent characterization

The chemical composition of the sorbents was investigated using a PANalytical Empyrean X-ray powder diffractometer (XRD). The diffractometer was equipped with an X'Celerator Scientific ultra-fast line detector and Bragg-Brentano HD incident beam optics using Cu K α radiation (45 kV, 40 mA). Measurements were made in the 2θ range of $10 - 90^{\circ}$ at a step size of 0.025 ° and a step duration of 0.8 s. The codes of the reference patterns were obtained from the International Centre for Diffraction Data (ICDD). The MgO crystallite size (*D*) was estimated

using the Scherrer equation $(D = K\lambda/(\beta \cos\theta))$,⁴² where *K* is the shape factor (0.9 assuming a nearly spherical particle), λ is the wavelength of the X-ray radiation used (0.15406 nm), β is the full width at half maximum intensity, and θ is the Bragg angle (peak position) of the corresponding reflection.

The melting points of the AMS mixture were determined from the measured heatflow signals using a TGA with an SDTA sensor (Mettler Toledo TGA/DSC 1). Typically, ~ 30 mg of sample was loaded in a platinum crucible (70 μ L), and then heated from room temperature to 500 °C in N₂ using a heating rate of 10 °C/min. The total gas flow rate was 100 mL/min, including a constant N₂ purge gas flow of 25 mL/min to protect the microbalance. All flow rates reported in this work were measured and controlled at ambient temperature and pressure via mass flow controllers (Bronkhorst, EL-Flow).

N₂ physisorption experiments were performed using a NOVA 4000e analyzer (Quantachrome Instruments) at -196 °C. Before the experiment, the samples were degassed under vacuum at 300 °C for 4 h. The surface area and pore volume were determined by the Brunauer-Emmett-Teller (BET) and the Barrett-Joyner-Halenda (BJH) models, respectively.

Elemental analysis of the samples was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES, Agilent 5100 VDV). Furthermore, a high-resolution scanning electron microscope (SEM, FEI Magellan 400) was used to investigate the morphologies of the materials. Before imaging, the samples were sputter-coated (CCU-010 Metal Sputter Coater Safematic) with Pt/Pd to improve their conductivity.

Cyclic CO₂ capture performance

The cyclic CO₂ capture performance of the sorbents was assessed using a TGA (Mettler Toledo TGA/DSC 1) and a packed bed reactor, respectively, both operated at ambient pressure. In

the TGA, the gas-solid contact efficiency is very low, and so most of the CO_2 entering the reaction chamber bypasses the sorbent. In the packed reactor, all of the CO_2 entering the reactor is in contact with the sorbent particles and can potentially be absorbed (subject to the reactivity of the sorbent and the gas-solid contact time).

In the TGA experiments, ~ 20 mg of sample was loaded in a platinum crucible (70 μ L) and pre-calcined at 400 °C in N₂ for 30 min. Then, the carbonation reaction was performed at a temperature ranging from 300 – 375 °C in an atmosphere of 15 – 80 vol.% CO₂ (N₂ balance) for 30 min, while the calcination reaction was conducted at a temperature ranging from 400 – 450 °C in N₂ for 15 min, or at 500 °C in 80 vol.% CO₂ (N₂ balance) for 10 min. The carbonation and calcination reactions were repeated for a specified number (up to 100 times). Both the heating and cooling rates were 10 °C/min, respectively. The total gas flow rate was 175 mL/min in each stage, including a constant N₂ purge gas flow of 25 mL/min to protect the microbalance.

In the packed bed experiments, ~ 300 mg of the sample (AMS-MgO-1-PO or AMS-MgO-1-PE sieved to $106 - 180 \mu m$), mixed with 900 mg of SiC ($250 - 355 \mu m$), was loaded in a quartz tube (outer diameter: 10 mm, wall thickness: 1 mm), which was then placed inside a vertical tube furnace (Watlow, 350 W, inner diameter: 13 mm). Details of the experimental setup are described in our previous work.⁴³ Typically, the sample was pre-calcined at 400 °C in N₂ for 30 min. The carbonation reaction was conducted at 325 or 350 °C in an atmosphere of 80 vol.% CO₂ (N₂ balance) for 30 min, while the calcination reaction was conducted at 400 °C in N₂ for 30 min. The carbonation and calcination reactions were repeated eight times. Heating and cooling rates were 100 °C/min and 10 °C/min, respectively. The total gas flow rate was 50 mL/min in each stage. The CO₂ concentration in the off-gas from the packed bed reactor was measured every second by a flue

gas analyzer (ABB, EL3020). The setup was optimized to enable a fast transition between two gas environments.

The CO₂ uptake capacity (in $g_{CO2}/g_{sorbent}$) was used to characterize the CO₂ capture performance of the AMS-promoted MgO-based sorbents. Equations (1) and (2) were used to calculate the observed CO₂ uptake capacity in the TGA and the packed bed experiments, respectively. Equation (3) was used to calculate the CO₂ capture efficiency in the packed bed experiments.

$$CO_2 \text{ uptake capacity} = \frac{m_{N,car} - m_{N,cal}}{m_0}$$
(1)

$$CO_2 \text{ uptake capacity} = \frac{\int_0^t \left(c_{CO_2}^{in} - c_{CO_2}^{out}(t) \right) dt \cdot Q \cdot M_{CO_2}}{22.4 \cdot m}$$
(2)

$$CO_{2} \text{ capture efficiency} = \frac{\int_{0}^{t} \left(c_{CO_{2}}^{in} - c_{CO_{2}}^{out}(t) \right) dt \cdot Q}{Q_{CO_{2}} \cdot t}$$
(3)

In Equation (1), m_0 (in g) is the mass of the sample after the initial calcination at 400 °C, $m_{N,car}$ and $m_{N,cal}$ (in g) represent the mass of the sample after the N^{th} carbonation and calcination reactions, respectively. In Equation (2), m (in g) is the mass of the sample before the experiment, $c_{CO_2}^{in}$ (in %) represents the CO₂ inlet concentration, $c_{CO_2}^{out}(t)$ (in %) denotes the CO₂ outlet concentration at time t, t (in s) is the carbonation time, Q (in L/s) is the total gas flow rate, and M_{CO2} (in g/mol) is the molar mass of CO₂. The divisor 22.4 (in L/mol) is the standard molar volume, which was used to convert the volumetric flow rate into a molar flow rate. The CO₂ uptake capacity was calculated by Equation (2) for the carbonation stage, and there was no significant difference when the CO₂

uptake capacity was instead calculated based on the amount of CO_2 released during the calcination stage. In Equation (3), Q_{CO2} (in L/s) is the CO₂ gas flow rate entering the reactor.

RESULTS AND DISCUSSION

Effect of the calcination/carbonation temperature and the particle size

It is widely accepted that reaction conditions play an important role when investigating materials in gas-solid reactions.^{44,45} Based on their thermodynamic properties, MgO-based sorbents have been used for CO₂ capture at intermediate temperatures ranging from 300 to 500 °C (or even lower temperatures when the CO₂ was adsorbed on the surface, rather than being converted into a carbonate). Therefore, the CO₂ capture performance of AMS-promoted MgObased sorbents was assessed over this temperature range to identify the optimum reaction conditions. Figure 1 shows the cyclic CO₂ uptake of AMS-MgO-2-PE (i.e., the sorbent that had the same composition as the material reported by Cui et al.⁴¹) sieved to $106 - 180 \,\mu\text{m}$ at different carbonation/calcination temperatures. The measured CO₂ uptake capacity increased slightly when the carbonation temperature was increased from 325 to 350 °C (Figures 1a, b), but a further increase in carbonation temperature to 375 °C inhibited the CO_2 capture performance and led to a decrease in the observed CO₂ uptake capacity. This was most likely related to the thermodynamic properties of the MgO-MgCO₃ system, and with increasing carbonation temperature at a constant CO₂ concentration, the thermodynamic driving force for the carbonation reaction $MgO + CO_2 \rightarrow MgCO_3$ decreases. Moreover, the CO_2 uptake capacity of the pelletized sorbent decreased with increasing calcination temperature, as is shown in Figures 1c, d, which can be ascribed to the sintering of the sorbent (in particular the $MgCO_3$) at the higher calcination temperature. Thus, the optimal combination of carbonation/calcination temperature was

350/400 °C for the AMS-MgO-2-PE investigated in this work. An extended cycling experiment over 20 cycles was conducted for the AMS-MgO-2-PE sieved to $106 - 180 \mu m$ under the optimal reaction conditions, as shown in Figure S2. It is interesting to observe that the pelletized sorbent exhibited a continuously increasing CO₂ uptake capacity over 20 cycles, which is discussed in detail in the following section.

Figure 1. CO_2 capture performance of AMS-MgO-2-PE sieved to $106 - 180 \mu m$ at different carbonation and calcination temperatures in the TGA. CO_2 uptake capacity as a function of cycle number at different (a) carbonation and (c) calcination temperatures, and CO_2 uptake as a function

of reaction time at different (b) carbonation and (d) calcination temperatures in the first cycle. Reaction conditions: carbonation: 80 vol.% CO_2 (N₂ bal.), 30 min; calcination: N₂, 15 min.

For potential industrial applications of MgO-based sorbents in packed bed or fluidized bed reactors, it is of practical significance to use sorbents of a certain particle size, but not in powdery form (< 50 μ m). However, only few studies have investigated how the particle sizes affect the physical properties and cyclic performance of the sorbents. There are three main techniques to fabricate particles from fine powders at the gram scale, i.e., granulation⁴⁶, extrusion⁴⁷, or pelletization.⁴⁸ In this work, a pelletization method using a manual hydraulic press, was employed to prepare AMS-promoted MgO-based sorbents of different particle sizes (106 – 180 μ m, 180 – 250 μ m, 250 – 355 μ m and 355 – 500 μ m). After pelletization, a significant reduction in the surface area of the sorbents was observed (~ 40 %), while only a marginal change in pore volume was observed, as shown in Table 2. With the variation of the particle size fractions originated from the crushing of the same pellets.

Sample	Surface area (m^2/g)	Pore volume (cm^3/g)	
AMS-MgO-0.5-PO	13.3	0.083	
AMS-MgO-1-PO	9.5	0.052	
AMS-MgO-2-PO	12.1	0.048	
AMS-MgO-0.5-PE sieved to 106 – 180 μm	12.4	0.068	
AMS-MgO-1-PE sieved to 106 – 180 µm	7.3	0.051	
AMS-MgO-2-PE sieved to $106 - 180 \mu m$	8.0	0.041	
AMS-MgO-2-PE sieved to $180 - 250 \mu m$	8.0	0.050	
AMS-MgO-2-PE sieved to 250 – 355 μm	7.6	0.050	
AMS-MgO-2-PE sieved to $355 - 500 \ \mu m$	7.8	0.050	

Table 2. Textural properties of the as-synthesized AMS-promoted MgO-based sorbents.

The CO₂ capture performance of the sorbents sieved to different particle sizes is compared in Figure 2. Both the CO₂ uptake capacity and sorption rate of the sorbents decreased significantly

after pelletization (e.g., in the first cycle from 0.46 $g_{CO2}/g_{sorbent}$ for the powdery sample to 0.12 $g_{CO2}/g_{sorbent}$ for the sample sieved to $106 - 180 \mu m$), which is related to the significant reduction in the surface area and increased diffusional resistance within the particles (Table 2). However, with an increase in particle size, the CO₂ uptake capacity of the sorbents decreased, in absolute terms, only slightly (from 0.12 $g_{CO2}/g_{sorbent}$ for sample sieved to $106 - 180 \mu m$ to $0.07 g_{CO2}/g_{sorbent}$ for sample sieved to $355 - 500 \mu m$), which was due to their similar surface areas and pore volumes. Moreover, all the sorbents exhibited a stable CO₂ uptake capacity over ten cycles.

Figure 2. CO_2 capture performance of AMS-MgO-2-PO and AMS-MgO-2-PE sieved to different particle sizes in the TGA. (a) CO_2 uptake capacity as a function of cycle number, and (b) CO_2 uptake as a function of reaction time in the first cycle. Reaction conditions: carbonation: 350 °C, 80 vol.% CO_2 (N₂ bal.), 30 min; calcination: 400 °C, N₂, 15 min.

Effect of molar ratios of (Li, K)NO₃ to (Na, K)₂CO₃ in the material

It has been reported that the molar ratio of alkali nitrate to alkali carbonate in MgO-based sorbents plays a critical role in the CO₂ capture performance, because each AMS mixture possesses different physical properties.³⁸ Thus, we synthesized AMS-promoted MgO-based sorbents with

different molar ratios of (Li, K)NO₃ to (Na, K)₂CO₃ (i.e., 2, 1 and 0.5), and then investigated its effect on the CO₂ capture performance. From XRD measurements, changes in the molar ratio of $(Li, K)NO_3$ to $(Na, K)_2CO_3$ led to slight differences in the chemical compositions (Figure 3a). All as-synthesized sorbents showed XRD peaks due to MgO, CaCO₃, K₂CO₃, Na₂CO₃, and KNO₃, but with different relative intensities. No reflections corresponding to LiNO3 were observed, suggesting LiNO₃ existed in an amorphous phase. As shown in Figure 3b, the CO₂ capture performance of the sorbents differed significantly, including both the initial CO₂ uptake capacity and the cyclic performance. When the molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ decreased from 2 to 1, the initial CO₂ uptake increased from 0.12 to 0.17 $g_{CO2}/g_{sorbent}$. However, with a further decrease of the molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ to 0.5, the initial CO₂ uptake decreased again, exhibiting a similar CO₂ uptake as the sample with a molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ of 2. It is interesting to observe that the measured CO₂ uptake capacity of the sorbents increased continuously over 15 cycles when the molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ was 1, exceeding its initial capacity by 60 %. In contrast, for the samples with molar ratios of (Li, K)NO₃ to (Na, K)₂CO₃ of 2 or 0.5, the CO₂ uptake increased only marginally with cycling, and for a ratio of 0.5 even decreased again after four cycles. The continuous increase in the CO₂ uptake during cycling was also observed for pelletized sorbents sieved to a larger particle size fraction $(355 - 500 \,\mu\text{m})$ when the molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ was 1 (Figure 3c). Moreover, the optimal carbonation/calcination temperature of AMS-promoted MgO-based sorbents also changed with the variation of the molar ratio of $(Li, K)NO_3$ to $(Na, K)_2CO_3$ in the sorbent, as shown in Figure 1 and Figure S3. The optimal combination of carbonation/calcination temperature for both AMS-MgO-2-PE and AMS-MgO-1-PE was 350/400 °C, while the corresponding combination for AMS-MgO-0.5-PE was 325/400 °C. However, note that the optimal reaction

conditions was likely to change after the pelletization. For example, as is shown in Figure S4, the CO_2 uptake capacity of AMS-MgO-1-PO at carbonation temperature of 325 °C was higher than that at 350 °C. Furthermore, the molar ratio of (Li, K)NO₃ to (Na, K)₂CO₃ in the sorbent affected its textural properties. AMS-MgO-1-PE sieved to 106 – 180 µm exhibited the highest initial CO_2 uptake, although it had the lowest surface area and pore volume (Table 2). This indicates that the CO_2 uptake capacity of the AMS-promoted MgO-based sorbents was not directly proportional to their textural properties (i.e., surface area and pore volume), which agrees well with the observations made by Wang et al.³⁸ and Rekhtina et al.⁴⁹ The following analyses deal with the AMS-MgO-1-PE and AMS-MgO-1-PO sorbents, which had the optimum ratio of (Li, K)NO₃ to (Na, K)₂CO₃ of 1 for the conditions investigated in this work.

Figure 3. Chemical compositions and CO₂ capture performance of AMS-promoted MgO-based sorbents in the TGA. (a) XRD patterns of the as-synthesized AMS-promoted MgO-based sorbents with different molar ratios of (Li, K)NO₃/(Na, K)₂CO₃, (b) CO₂ uptake capacity of pelletized AMS-promoted MgO-based sorbents with different molar ratios of (Li, K)NO₃/(Na, K)₂CO₃ as a function of cycle number, (c) CO₂ uptake capacity of AMS-MgO-1-PE sieved to different particle sizes as a function of cycle number, and (d) CO₂ uptake of AMS-MgO-1-PE as a function of reaction time at different cycles. Reaction conditions: carbonation: 350 °C, 80 vol.% CO₂ (N₂ bal.), 30 min; calcination: 400 °C, N₂, 15 min. The blue area represents stage I, the pink area denotes stage II, and the green area means stage III.

Figure 3d shows the CO₂ uptake of the AMS-MgO-1-PE as a function of reaction time at different cycles. From the sigmoidal curve, the carbonation process can be divided into three principal stages. Stage I is an induction period (0 < t < 2.5 min), which has been reported previously for MgO-based CO₂ sorbents.^{22,34,35,39} The duration of the induction period differs significantly in the different works, and it is affected by many parameters such as the types and the weight fractions of the AMS.²² However, the reason for such an induction period remains unclear thus far. Harada et al.³⁵ hypothesized that within this stage, CO₂ is dissolved in the molten AMS coated on the MgO, and then reacts with Mg²⁺ and O²⁻ to form MgCO₃. Once the concentration of the CO₂ dissolved in the molten AMS reaches a critical value, CO₂ sorption occurs at a substantially faster rate (stage II, 2.5 < *t* < 8 min). Here, nucleation and nuclei-growth of MgCO₃ are dominating.²² Finally, with the progress of the carbonation reaction, the formation of the MgCO₃ product layer becomes significant,³⁴ leading to a decrease in the CO₂ sorption rate (stage III, *t* > 8 min).

<u>Comparisons of the long cyclic performance between the pelletized and powdery AMS-promoted</u> <u>MgO-based sorbents</u>

As shown in Figure 2, the CO₂ uptake capacity of the AMS-promoted MgO-based sorbents was much lower after the sorbents had been pelletized. However, it is surprising to find that the CO₂ uptake capacity of the pelletized sorbents (e.g., AMS-MgO-1-PE sieved to $106 - 180 \mu m$) increased continuously over the first 15 cycles (Figure 3a), and gradually approached the CO₂ uptake capacity of the powdery sorbents. Thus, an extended cycling experiment over 100 cycles was conducted for both pelletized and powdery sorbents, i.e., AMS-MgO-1-PO and AMS-MgO-1-PE sieved to $106 - 180 \mu m$, respectively. As shown in Figures 4a, b, the CO₂ uptake capacity of AMS-MgO-1-PO increased rapidly in the initial five cycles, and then stabilized in the following 95 cycles, reaching a final CO₂ uptake of 0.53 $g_{CO2}/g_{sorbent}$ in the 100^{th} cycle. In contrast, the CO₂

uptake capacity of AMS-MgO-1-PE increased continuously over 100 cycles. AMS-MgO-1-PE exhibited an initial CO₂ uptake of 0.18 $g_{CO2}/g_{sorbent}$, ~ 50 % of that of the AMS-MgO-1-PO in the first cycle. The final CO₂ uptake capacity of AMS-MgO-1-PE after 100 cycles was 0.46 g_{CO2}/g_{sorbent}, which was close to that of AMS-MgO-1-PO (~ 0.53 g_{CO2}/g_{sorbent}). This was a surprising result since a reduction in the CO₂ uptake capacity after pelletization has been commonly reported for such sorbents, and that has been attributed to a significant deterioration in the pore structure (i.e., surface area and pore volume, as shown in Table 2).³ Moreover, an irreversible mass increase (i.e., the observed baseline drift in Figure 4b) was present after the calcination stage (i.e., 400 °C, N₂) for AMS-MgO-1-PO and AMS-MgO-1-PE, which was related to the formation of the double salt $CaMg(CO_3)_2$ as confirmed by XRD (discussed below in Figure 6). The double salt $CaMg(CO_3)_2$ was very stable at the conditions employed here (carbonation: 350 °C, 80 vol.% CO₂; calcination: 400 °C, N₂), which is different from previous works^{17,39,48} and may be related to the different synthesis method and molar ratios of $(Li, K)NO_3$ to $(Na, K)_2CO_3$ in the sorbents. From Figures 4c, d it can be seen that both AMS-MgO-1-PO and AMS-MgO-1-PE possessed fast CO₂ sorption rates, achieving more than 80 % of their final CO₂ uptake capacity within the first ten minutes. This is confirmed by performing an extended carbonation of 300 min at the 11th cycle shown in Figure S5 and Table S1, from which it is apparent that the additional increase in the CO₂ uptake after the initial ten minutes was small.

Figure 4. CO_2 capture performance of powdery and pelletized AMS-promoted MgO-based sorbents over 100 cycles in the TGA. (a) CO_2 uptake capacity as a function of cycle number, (b) CO_2 uptake as a function of reaction time, and CO_2 uptake of, respectively, (c) AMS-MgO-1-PO and (d) AMS-MgO-1-PE sieved to $106 - 180 \mu m$ as a function of reaction time for different cycles. The arrows in (c) and (d) indicate increasing cycle number. Reaction conditions: carbonation: $350 \,^{\circ}C$, $80 \, \text{vol.\%} CO_2$ (N₂ bal.), 30 min; calcination: $400 \,^{\circ}C$, N₂, 15 min.

To explain the continuous increase of the CO₂ uptake capacity for AMS-MgO-1-PE, a series of characterizations including ICP-OES, N₂ physisorption, SEM, and XRD, were conducted for

the as-synthesized and cycled samples. As is shown in Table 3, the relative mass ratios of the alkali metal ions (i.e., Li⁺, K⁺ and Na⁺) to Mg²⁺ decreased during cyclic operation (Li⁺:Mg²⁺ decreased from 0.014 to 0.012; K⁺:Mg²⁺ decreased from 0.267 to 0.211; and Na⁺:Mg²⁺ decreased from 0.105 to 0.088), which was most likely related to the evaporation of a small fraction of the alkali metal salts from the sorbent caused by the low melting temperature of this particular mixture (~ 300 °C as shown in Figure S6). However, the relative mass ratio between Li⁺, K⁺, and Na⁺ was still relatively constant, implying that the stoichiometry of the mixture was not affected during the cycling experiment and there was not a preferential loss of particular alkali species. Observing an increase in the CO₂ uptake despite a decreasing amount of AMS in the sorbent was unexpected. The AMS itself possessed a low cyclic CO₂ uptake capacity (~ $7.6 \times 10^{-4} g_{CO2}/g_{material}$), as can be seen from the small mass increase during the carbonation reaction when 20 wt.% AMS was loaded onto a SiO₂ support (as shown in Figure S7).

	N ₂ physisorption results		Relative mass ratio ^a				
Sample	Surface area (m ² /g)	Pore volume (cm ³ /g)	Ca : Mg	Li : Mg	K : Mg	Na : Mg	Li : K : Na
As-synthesized	7.3	0.051	0.152	0.014	0.267	0.105	3.7:69.1:27.2
After 1 st calcination	2.9	0.009	0.151	0.012	0.226	0.089	3.8:69.0:27.2
After 1 cycle ^c	4.9	0.013	0.149	0.013	0.231	0.090	3.8:69.2:27.0
After 5 cycles ^c	2.8	0.011	0.150	0.012	0.230	0.090	3.7:69.1:27.2
After 10 cycles ^c	3.3	0.010	0.149	0.012	0.224	0.089	3.7:69.0:27.3
After 20 cycles ^c	3.6	0.010	0.150	0.012	0.224	0.090	3.8:68.6:27.7
After 30 cycles ^c	0.8	0.007	0.149	0.012	0.221	0.089	3.7:68.6:27.7
After 50 cycles ^c	0.7	0.008	0.149	0.012	0.215	0.088	3.8:68.4:27.9
After 100 cycles ^c	N/A ^b	N/A	0.149	0.012	0.211	0.088	3.7:68.0:28.3

Table 3. N₂ physisorption and ICP-OES results of the as-synthesized and cycled AMS-MgO-1-PE sieved to $106 - 180 \mu m$ after the TGA experiments.

a: Obtained by ICP-OES.

b: Not available.

c: Collected after the calcination stage

Turning to the N₂ physisorption results of the as-synthesized and cycled sorbents (Table 3),

it was found that the surface area and pore volume decreased significantly after the first calcination.

After one carbonation/calcination cycle, both surface area and pore volume increased slightly and were then relatively stable in the subsequent 19 cycles. With increasing cycle number, a further considerable reduction in the surface area and pore volume of the sorbents took place. Similar results were also obtained for the sorbents that underwent eight cycles in a packed bed reactor (discussed below, Table S2). Analyzing the pore size distributions of the cycled sorbents in detail, we observed the disappearance of pore volume in the mesoporous range and an increase in pore volume in the range of micropores during cyclic operation (Figure 5a). Figures 5b-f show the evolution of the surface morphology of the as-synthesized and cycled sorbents through SEM. The surface of the sorbents was relatively coarse during cycling, and only slight sintering of the MgO was observed when the sorbents had undergone up to 50 cycles (Figures 5b-e). Particle agglomeration was observed only for the sorbents that have undergone 100 cycles (Figure 5f). However, the crystallite size of the MgO estimated by the Scherrer equation was very stable during cyclic operation and increased only marginally from 34 to 41 nm (as shown in Figure S8). Therefore, considering the continuously increasing CO_2 uptake during cyclic operation shown in Figure 4, the morphological changes of the sorbents do not seem to have played an important role in this trend. Yet, the morphological changes may have enhanced the CO₂ capture performance in the initial cycles to some extent, due to the increased surface area and pore volume as shown in Table 3.

Figure 5. Evolution of the pore size distribution and morphologies of AMS-MgO-1-PE sieved to $106 - 180 \mu m$ over 100 cycles in the TGA. (a) Pore size distribution, and SEM images of (b) assynthesized sorbent and sorbents after (c) one cycle, (d) 20 cycles, (e) 50 cycles and (f) 100 cycles. Reaction conditions: carbonation: 350 °C, 80 vol.% CO₂ (N₂ bal.), 30 min; calcination: 400 °C,

N₂, 15 min. The vertical grey lines indicate the microporous (< 2 nm) and mesoporous (2 - 50 nm) ranges, respectively. The samples were collected after the calcination stage.

XRD characterization was conducted for powdery and pelletized, AMS-promoted, MgObased sorbents that underwent different numbers of cycles (measured after the calcination reaction). We note that the characterization was carried out at room temperature when all phases existed in a solid state, whereas the AMS nitrates are typically molten at the carbonation and calcination temperatures employed in this work. As shown in Figure 6 and Figure S9, the powdery and pelletized sorbents possessed the same principal chemical compositions after cyclic operation (collected after the calcination stage), including MgO, KNO₃, CaMg(CO₃)₂, Na₂CO₃, CaCO₃, and K_2CO_3 . However, it is surprising to observe that there was hardly any phase transformation in the powdery sorbents compared to the pelletized sorbents. Three different KNO₃ phases (i.e., 00-015-0607, 01-071-1558, and 01-078-7937) were present in the pelletized sorbents, whereas only one KNO₃ phase (i.e., 01-078-7937) was present in the powdery sorbents; we note that the nitrate phase may have undergone polymorphic changes during the cooling to room temperature.⁵¹ Details of the crystallographic parameters of these KNO₃ phases can be found in Table S3. Consequently, we speculate that the nature of the alkali species (mostly the nitrates) within the molten phase has changed during cycling; this led to a different re-crystallization behavior upon cooling that followed a systematic trend with cycling as observed by XRD at ambient temperature. It would appear that with the transformation of the AMS species their physical properties changed (e.g., the solubility of carbonate and oxide ions and CO₂), which lead to a continuous increase in the CO₂ uptake with cycling. Interestingly, the CO₂ uptake of the powdery and pelletized sorbents was very similar after 100 cycles (Figure 4a), despite the presence of different KNO₃ phases that imply the nature of the molten phase was different in these two sorbents.

Figure 6. Crystalline phases of powdery and pelletized AMS-promoted MgO-based sorbents for different cycle numbers. XRD patterns of (a) AMS-MgO-1-PO and (b) AMS-MgO-1-PE sieved to $106 - 180 \mu m$ after different cycles in the TGA (collected after the calcination stage). \triangle : KNO₃, 00-015-0607; ∇ : KNO₃, 01-071-1558; \blacktriangle : KNO₃, 01-078-7937; \bullet : CaMg(CO₃)₂, 00-036-0426; \diamond : CaCO₃, 01-072-1214; \ddagger : K₂CO₃, 07-073-5067; ∇ : Na₂CO₃, 01-086-0299.

Effect of the CO₂ concentration in the carbonation/calcination stages

It has been widely reported that the CO₂ concentration present in the carbonation and calcination stages, respectively, plays a crucial role in the CO₂ capture performance of the sorbents.⁵² As is shown in Figures 7a, b, the CO₂ concentration in the carbonation stage affected both the observed CO₂ sorption rate and the CO₂ uptake capacity significantly. When the CO₂ concentration was below 15 vol.%, the CO₂ uptake was negligible, reaching a maximum of 0.004 $g_{CO2}/g_{sorbent}$ after carbonation for 30 min. With an increase in the CO₂ concentration from 15 to 40 vol.%, the CO₂ uptake capacity increased but was still less than 0.04 $g_{CO2}/g_{sorbent}$. Only when the CO₂ uptake

observed. In particular, there was only a marginal further increase in the CO₂ uptake capacity when the CO₂ concentration was greater than 60 vol.%.

Figure 7. CO_2 capture performance of AMS-promoted MgO-based sorbents (AMS-MgO-1-PE or AMS-MgO-1-PO) in different CO_2 concentrations in the calcination or carbonation stage in the TGA (collected after the calcination stage). (a) CO_2 uptake capacity as a function of cycle number in different CO_2 concentrations in the carbonation stage, (b) CO_2 uptake as a function of reaction time in different CO_2 concentrations in the carbonation stage, (c) CO_2 uptake capacity as a function of cycle number of cycle number in decreased CO_2 concentrations in the last two carbonation cycles, and (d) CO_2

uptake capacity as a function of cycle number under different CO₂ concentrations in the calcination stage. Reaction conditions in (a-c): carbonation: 350 °C, 30 min; calcination: 400 °C, N₂, 30 min.

XRD characterization was conducted for the pelletized AMS-promoted MgO-based sorbents in different carbonation atmospheres (i.e., 15 vol.% and 80 vol.% CO₂) after ten cycles. As is shown in Figure S10, most significantly the KNO₃ phase (i.e., 01-071-1558) was absent when the cyclic experiment was conducted in a lower CO₂ concentration in the carbonation stage. Thus, it seems that a high CO_2 concentration in the carbonation step was required to enable the transformation of the AMS species in the molten phase (which resulted in different crystalline alkali phases within the material upon cooling down to room temperature), thus inducing an increase in the reactivity of the AMS-promoted MgO-based sorbents. This was further confirmed by an additional experiment shown in Figure 7c: AMS-MgO-1-PE exhibited an increasing CO₂ uptake capacity in the initial 20 cycles (i.e., from 0.14 to 0.27 g_{CO2}/g_{sorbent}) when 80 vol.% CO₂ was used in the carbonation reaction. The CO₂ concentration was then reduced from 80 vol.% to 40 vol.% in the subsequent two cycles. Although the CO_2 concentration was reduced by 50 %, a negligible reduction in the CO₂ uptake capacity (~ 4.4 %) was observed. The sorbent achieved a CO_2 uptake capacity of 0.26 $g_{CO_2}/g_{sorbent}$ when the CO_2 concentration was reduced from 80 vol.% to 40 vol.%, which was much higher compared to when the sorbent was cycled in a consistent CO₂ concentration of 40 vol.% during the carbonation stage (Figure 7a). It thus would appear that the high CO₂ concentration present during carbonation activated the sorbent somehow, such that CO₂ sorption was feasible also under lower CO₂ concentrations (but still not in 15 vol.% CO₂ as shown in Figure S11). We speculate that the transformation of the AMS species observed in Figure 6b altered their physical properties in the molten phase (e.g., the melting temperature as shown in Figure S6, or the solubility of CO_2 and possibly of MgO and the carbonates) such that fast CO_2 sorption is feasible also under conditions that in the absence of an AMS promoter (or in the presence of the as-synthesized AMS) would be thermodynamically unfavorable. It is noted that further investigations are required to understand better what physical properties of the AMS mixture are required to enable the fast sorption of CO₂ on MgO and how the AMS, MgO and CO₂ interact on a molecular level.

In order to obtain a highly concentrated CO_2 stream at the outlet of the calcination reactor, a high CO₂ concentration is typically used in the calcination reactor. Thus, the effect of the CO₂ concentration in the calcination reaction was also investigated. Note that for thermodynamic reasons, a higher calcination temperature is required when a high CO₂ concentration is used in the calcination stage (Figure S12). However, as is shown in Figure 7d, the CO_2 uptake capacity of the sorbents decreased substantially when the calcination reaction took place under a high CO₂ concentration (i.e., 80 vol.% CO₂, as may be required in an industrially-relevant process). To explain the significant decline in the CO₂ capture performance, XRD and SEM characterizations were conducted for the sorbents after exposure to N₂ or CO₂, which is given in Figures S13a-d. It can be found that the MgO crystallite size estimated by the Scherrer equation increased from ~ 34 to ~ 40 nm after exposure to CO_2 during the calcination reaction, whereas it was only ~ 34 nm after exposure to N₂. Moreover, significant agglomeration was observed only for the sorbent after exposure to CO₂. Both the increase in MgO crystallite size and the agglomeration resulted in an obvious decline in the subsequent CO₂ uptake capacity, as shown in Figures S13e, f, although the sorbent underwent only one carbonation/calcination cycle. Therefore, the rapid decline in the CO_2 uptake capacity when a high CO₂ concentration was used in the calcination stage was caused by the severe sintering of the MgCO₃ upon decomposition.

CO₂ capture performance in a packed bed reactor

The CO₂ capture performance of the best-performing powdery and pelletized sorbents, i.e., AMS-MgO-1-PO and AMS-MgO-1-PE sieved to 106 – 180 µm, was evaluated in a packed bed reactor with a long gas-solid contact time (i.e., 10000 mL/(g_{sorbent}·h)), to assess whether the most reactive sorbents are capable of removing a significant amount of CO₂ from a gas stream under such conditions. Figure S14 shows the CO₂ capture performance of AMS-promoted MgO-based sorbents measured at carbonation temperature of 300 °C over ten cycles in the TGA, which demonstrates an obvious decline in the CO₂ uptake capacity after initial several cycles rather than the continuous increase as observed in Figure 4; we speculate that the carbonation temperature was too low for a substantial fraction of the AMS to be molten, and this fraction decreased with cycling as alkali phases transformed. Therefore, only 325 or 350 °C was used as the carbonation temperature in the packed bed experiments. The measured CO₂ concentration of eight cycles plotted as a function of reaction time using AMS-MgO-1-PO and AMS-MgO-1-PE sieved to $106 - 180 \,\mu\text{m}$ is given in Figure S15, and the corresponding CO₂ uptake capacity as a function of cycle number is shown in Figure 8a. Similar to the TGA experiments, the CO₂ uptake capacity of AMS-MgO-1-PE sieved to $106 - 180 \,\mu\text{m}$ increased with cycling from 0.12 to 0.17 g_{CO2}/g_{sorbent} in the eighth cycle. AMS-MgO-1-PO had a relatively stable CO₂ capture performance after the initial cycles. The results from the packed bed experiments thus agreed well with that from the TGA experiments (i.e., Figure 4 and Figure S4) and showed that the sorbents can relatively quickly be converted from MgO to MgCO₃.

Figure 8. CO_2 capture performance of powdery and pelletized AMS-promoted MgO-based sorbents over eight cycles at different conditions in the packed bed reactor. (a) CO_2 uptake capacity as a function of cycle number, and (b) CO_2 capture efficiency as a function of cycle number. Reaction conditions: carbonation: 325 or 350 °C, 80 vol.% CO_2 (N₂ bal.), 30 min; calcination: 400 °C, N₂, 30 min.

Herein the AMS-promoted MgO-based sorbents demonstrated comparatively high CO₂ uptake capacities in both the TGA and the packed bed reactor (as compared in Table 1); however, the CO₂ capture efficiency of such sorbents under the specific conditions tested here was low (less than 10 %, as shown in Figure 8b), implying that most of the CO₂ entering the reactor was not captured by the sorbent. From an industrial application point of view, the CO₂ capture efficiencies at the specific contact times assessed here are probably too low for a CO₂ capture process to be economically feasible (which, however, needs to be assessed in a separate work), raising also doubts whether the MgO/MgCO₃-system is even conceptually suitable for CO₂ capture at ambient pressure (note that the carbonation was performed in 80 vol.% CO₂, i.e., much higher than what any industrial process would emit into the atmosphere). Hu et al.³⁸ have demonstrated that AMS-

promoted MgO can indeed remove most of the CO₂ from a gas stream, but this required partial pressures of CO₂ greater than several bars and is thus more suitable for pre-combustion CO₂ capture processes (e.g., the sorption-enhanced water gas shift reaction). Their results also imply that the formation of MgCO₃ is not only kinetically problematic, but also thermodynamically. Most previous studies on CO₂ capture using MgO focused on improving the observed rate of formation of MgCO₃, but neglected that the reaction conditions for achieving high sorption rates are unfavorable for achieving high CO₂ capture efficiencies. As shown in this work, such material developments have limited potential in post-combustion CO₂ capture due to the low CO₂ concentrations involved (10 – 20 vol.%) at ambient pressure, but they may be promising as sorbents in pre-combustion CO₂ capture because of the higher CO₂ concentrations (30 – 60 vol.%) at a total pressure typically greater than 10 bar.⁵³ Importantly, new effective sorbents need to be optimized such that the AMS exist in molten state to enable fast CO₂ sorption rates at low temperatures (ideally < 300 °C) for which thermodynamic limitations are reduced and theoretically high CO₂ capture efficiencies can be achieved also for low CO₂ concentrations.

CONCLUSION

The most reactive MgO-based sorbents that have been reported in the literature, i.e., MgO promoted with a combination of various AMS (incl. NaNO₃, LiNO₃, K₂CO₃ and Na₂CO₃) were investigated in this work, including an assessment of the effect of particle size (from powder to pelletized 500 μ m particles) and reaction conditions (calcination/carbonation temperature, and partial pressure of CO₂) on the cyclic CO₂ capture performance using a TGA at ambient pressure. The TGA results showed that the CO₂ uptake capacity of the sorbents decreased significantly after pelletization, losing 74 % of their initial capacity. The pelletized sorbents had similar CO₂ uptake capacity of

pelletized sorbents increased constantly over 100 cycles, which was 0.46 g_{CO2}/g_{sorbent} at the 100th cycle and hence very close to that of the powdery sample (~ $0.53 \text{ g}_{\text{CO2}}/\text{g}_{\text{sorbent}}$). It is speculated that the increase was related to a change of the nature of the alkali species in the molten phase during cycling. Such a transformation took place when only a high CO₂ partial pressure (greater than 0.6 bar) was used in the carbonation reaction, then enabling a relatively good CO₂ capture performance even when the CO₂ partial pressure was reduced to 0.4 bar. In addition, the CO₂ capture performance of the best-performing sorbents was evaluated in a packed bed reactor to assess whether the most reactive, state-of-the-art MgO-based sorbents are actually capable of removing a significant amount of CO_2 from a gas stream. The CO_2 uptake of the sorbents in the packed bed experiments was very close to that in the TGA experiments, but the CO₂ capture efficiency was less than 10 %, under the conditions studied here, and thus probably too low for an industrial process. Current state-of-the-art AMS-promoted MgO-based sorbents appear to have limited potential in post-combustion CO₂ capture, but they may be promising as sorbents in precombustion CO_2 capture because of the higher CO_2 partial pressures involved (typically > 5 bar). For the development of new AMS-promoted MgO-based sorbents that are potentially suitable for post-combustion CO₂ capture, the transformation of the alkali phases needs to be considered, which may depend on both temperature and CO₂ concentration. More work is required to understand how the CO₂ sorption properties of AMS-promoted MgO-based sorbents are related to the physical and chemical properties of the alkali mixture under different reaction conditions.

ASSOCIATED CONTENT

Supporting Information.

This information is available free of charge via the Internet at http://pubs.acs.org.

CO₂ capture performance of AMS-MgO-1-PO and AMS-MgO-1-PO-Ref in the TGA; Long cyclic performance of AMS-MgO-2-PE sieved to $106 - 180 \,\mu\text{m}$ at optimal carbonation/calcination temperatures in the TGA; CO₂ capture performance of AMS-MgO-1-PE and AMS-MgO-0.5-PE sieved to 106 – 180 µm at different carbonation and calcination temperatures in the TGA; CO₂ capture performance of AMS-MgO-1-PO at different carbonation temperatures in the TGA; CO₂ capture performance of AMS-MgO-1-PO under an extended carbonation duration in the 11th cycle in the TGA; DSC profiles of 60 wt.% AMS/SiO₂ and AMS-MgO-1-PE sieved to 106 -180 µm after different cycles in the TGA; CO₂ capture performance of AMS/SiO₂ over five cycles in the TGA; Surface area and pore volume of the as-synthesized and cycled AMS-MgO-1-PO and AMS-MgO-1-PE sieved to 106 – 180 µm after the packed bed experiments; Evolution of the MgO crystallite sizes in AMS-MgO-1-PE sieved to 106 – 180 µm during cyclic operation in the TGA; Crystalline phases of AMS-MgO-1-PO and AMS-MgO-1-PE sieved to 106 – 180 µm after 50 and 100 cycles in the TGA, respectively; Crystallographic parameters of the KNO₃ phases present in the powdery and pelletized AMS-promoted MgO-based sorbents during cycling in the TGA; Crystalline phases of pelletized AMS-promoted MgO-based sorbents under different carbonation atmospheres after ten cycles in the TGA; CO₂ uptake capacity of AMS-MgO-1-PE sieved to 106 - 180 µm as a function of cycle number in the TGA under decreased CO₂ concentrations in the last two carbonation cycles; Decomposition characteristics of the carbonated AMS-MgO-1-PO under different heating atmospheres measured in the TGA; Changes of MgO crystallite sizes, morphology and CO₂ capture performance after exposure to CO₂ or N₂ for AMS-MgO-1-PO; CO₂ uptake capacity of AMS-MgO-1-PO and AMS-MgO-1-PE sieved to 106 - 180 µm as a function of cycle number at carbonation temperature of 300 °C in the TGA; Measured CO₂ concentration of eight cycles plotted as a function of reaction time using pelletized and powdery AMS-promoted MgO-based sorbents at different conditions in the packed bed reactor; CO₂ capture performance of AMS-MgO-1-PO at different carbonation temperatures in the TGA.

AUTHOR INFORMATION

Corresponding Author

*Email: duanlunbo@seu.edu.cn; donatf@ethz.ch; muelchri@ethz.ch

Author Contributions

J.C. prepared the sorbents and did the experimental work except the ICP-OES and SEM work. J.C. and F.D. analyzed and discussed the experimental results. F.D. performed the ICP-OES analysis. J.C. wrote the manuscript, and F.D., L.D. and C.M. revised the manuscript. All authors have given approval to the final version of the manuscript.

Funding Sources

The authors wish to acknowledge the financial support from the National Natural Science Foundation of China (51922027), the Scientific Research Foundation of Graduate School of Southeast University, China (YBPY1902), the Program of China Scholarships Council (No. 201806090031), the Fundamental Research Funds for the Central Universities, the Swiss National Science Foundation (156015), and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No. 819573.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We acknowledge the financial support from the National Natural Science Foundation of China (51922027), the Scientific Research Foundation of Graduate School of Southeast University, China (YBPY1902), the Program of China Scholarships Council (No. 201806090031), the Fundamental Research Funds for the Central Universities, and the Swiss National Science Foundation (156015). C.M. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement No. 819573. We also thank Maximilian Krödel and Lorenz Abduly for discussion, Agnieszka Kierzkowska for performing SEM characterization, and the Scientific Center for Optical and Electron Microscopy (ScopeM) of ETH Zurich for providing access to SEM facilities.

REFERENCES

- Kierzkowska, A. M.; Pacciani, R.; Müller, C. R. CaO-Based CO₂ Sorbents: From Fundamentals to the Development of New, Highly Effective Materials. *ChemSusChem* 2013, 6 (7), 1130–1148.
- Yan, Y.; Wang, K.; Clough, P. T.; Anthony, E. J. Developments in Calcium/Chemical Looping and Metal Oxide Redox Cycles for High-Temperature Thermochemical Energy Storage: A Review. *Fuel Process. Technol.* 2020, *199* (November 2019), 106280.
- Chen, J.; Duan, L.; Sun, Z. Review on the Development of Sorbents for Calcium Looping.
 Energy & Fuels 2020, 34 (7), 7806–7836.
- Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O'Hare, D.; Zhong,
 Z. Recent Advances in Solid Sorbents for CO₂ Capture and New Development Trends. *Energy Environ. Sci.* 2014, 7 (11), 3478–3518.
- Gao, W.; Zhou, T.; Gao, Y.; Louis, B.; O'Hare, D.; Wang, Q. Molten Salts-Modified MgO-Based Adsorbents for Intermediate-Temperature CO₂ Capture: A Review. *J. Energy Chem.*

2017, *26* (5), 830–838.

- (6) Chen, J.; Duan, L.; Donat, F.; Müller, C. R.; Anthony, E. J.; Fan, M. Self-Activated, Nanostructured Composite for Improved CaL-CLC Technology. *Chem. Eng. J.* 2018, 351 (June), 1038–1046.
- (7) Chen, J.; Duan, L.; Shi, T.; Bian, R.; Lu, Y.; Donat, F.; Anthony, E. J. A Facile One-Pot Synthesis of CaO/CuO Hollow Microspheres Featuring Highly Porous Shells for Enhanced CO₂ Capture in a Combined Ca–Cu Looping Process via a Template-Free Synthesis Approach. J. Mater. Chem. A 2019, 7 (37), 21096–21105.
- (8) Chen, J.; Donat, F.; Duan, L.; Kierzkowska, A. M.; Kim, S. M.; Xu, Y.; Anthony, E. J.;
 Müller, C. R. Metal-Oxide Stabilized CaO/CuO Composites for the Integrated Ca/Cu Looping Process. *Chem. Eng. J.* 2021, 403 (May 2020), 126330.
- (9) Yang, X.; Zhao, L.; Liu, Y.; Sun, Z.; Xiao, Y. Carbonation Performance of NaNO₃ Modified MgO Sorbents. *Ind. Eng. Chem. Res.* 2017, *56* (1), 342–350.
- (10) Hwang, B. W.; Lim, J. H.; Chae, H. J.; Ryu, H.-J.; Lee, D.; Lee, J. B.; Kim, H.; Lee, S. C.; Kim, J. C. CO₂ Capture and Regeneration Properties of MgO-Based Sorbents Promoted with Alkali Metal Nitrates at High Pressure for the Sorption Enhanced Water Gas Shift Process. *Process Saf. Environ. Prot.* **2018**, *116*, 219–227.
- (11) Zarghami, S.; Hassanzadeh, A.; Arastoopour, H.; Abbasian, J. Effect of Steam on the Reactivity of MgO-Based Sorbents in Precombustion CO₂ Capture Processes. *Ind. Eng. Chem. Res.* 2015, *54* (36), 8860–8866.
- Guo, Y.; Tan, C.; Sun, J.; Li, W.; Zhao, C.; Zhang, J.; Lu, P. Nanostructured MgO Sorbents Derived from Organometallic Magnesium Precursors for Post-Combustion CO₂ Capture. *Energy & Fuels* 2018, *32* (6), 6910–6917.

- (13) Yang, L.; Liu, D.; Wang, P.; Seo, H.; Gui, J.; Park, Y.-K. Toward the Insights into Fast CO₂
 Absorption over Novel Nanostructured MgO-Based Sorbent. *Ind. Eng. Chem. Res.* 2018, 57 (31), 10591–10600.
- (14) Hanif, A.; Dasgupta, S.; Nanoti, A. Facile Synthesis of High-Surface-Area Mesoporous
 MgO with Excellent High-Temperature CO₂ Adsorption Potential. 2016.
- (15) Han, S. J.; Bang, Y.; Kwon, H. J.; Lee, H. C.; Hiremath, V.; Song, I. K.; Seo, J. G. Elevated Temperature CO₂ Capture on Nano-Structured MgO–Al₂O₃ Aerogel: Effect of Mg/Al Molar Ratio. *Chem. Eng. J.* 2014, 242, 357–363.
- (16) Hiremath, V.; Shavi, R.; Seo, J. G. Controlled Oxidation State of Ti in MgO-TiO₂
 Composite for CO₂ Capture. *Chem. Eng. J.* 2017, *308*, 177–183.
- (17) Liu, S.; Zhang, X.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Preparation and Application of Stabilized Mesoporous MgO-ZrO₂ Solid Base. *Catal. Commun.* **2008**, *9* (7), 1527–1532.
- (18) Cui, H.; Cheng, Z.; Zhou, Z. Unravelling the Role of Alkaline Earth Metal Carbonates in Intermediate Temperature CO₂ capture Using Alkali Metal Salt-Promoted MgO-Based Sorbents. J. Mater. Chem. A 2020, 8 (35), 18280–18291.
- (19) Lee, C. H.; Mun, S.; Lee, K. B. Characteristics of Na-Mg Double Salt for High-Temperature
 CO₂ Sorption. *Chem. Eng. J.* 2014, 258, 367–373.
- (20) Zhang, K.; Li, X. S.; Li, W. Z.; Rohatgi, A.; Duan, Y.; Singh, P.; Li, L.; King, D. L. Phase Transfer-Catalyzed Fast CO₂ Absorption by MgO-Based Absorbents with High Cycling Capacity. *Adv. Mater. Interfaces* **2014**, *1* (3), 1–6.
- (21) Dunstan, M. T.; Donat, F.; Bork, A. H.; Grey, C. P.; Müller, C. R. CO₂ Capture Using Solid Sorbents: Fundamental Aspects, Mechanistic Insights and Recent Advances. https://engrxiv.org/y654z/

- (22) Park, S. J.; Kim, Y.; Jones, C. W. NaNO₃-Promoted Mesoporous MgO for High-Capacity CO₂ Capture from Simulated Flue Gas with Isothermal Regeneration. *ChemSusChem* 2020, *13* (8), 2988–2995.
- (23) Triviño, M. L. T.; Hiremath, V.; Seo, J. G. Stabilization of NaNO₃-Promoted Magnesium Oxide for High-Temperature CO₂ Capture. *Environ. Sci. Technol.* 2018, *52* (20), 11952–11959.
- Jo, S. I.; An, Y. I.; Kim, K. Y.; Choi, S. Y.; Kwak, J. S.; Oh, K. R.; Kwon, Y. U. Mechanisms of Absorption and Desorption of CO₂ by Molten NaNO₃-Promoted MgO. *Phys. Chem. Chem. Phys.* 2017, *19* (8), 6224–6232.
- (25) Gao, W.; Zhou, T.; Gao, Y.; Wang, Q.; Lin, W. Study on MNO₃/NO₂ (M = Li, Na, and K)/MgO Composites for Intermediate-Temperature CO₂ Capture. *Energy & Fuels* 2019, *33* (3), 1704–1712.
- Wang, K.; Zhao, Y.; Clough, P. T.; Zhao, P.; Anthony, E. J. Structural and Kinetic Analysis of CO₂ Sorption on NaNO₂-Promoted MgO at Moderate Temperatures. *Chem. Eng. J.* 2019, *372* (April), 886–895.
- (27) Vu, A.-T.; Park, Y.; Jeon, P. R.; Lee, C.-H. Mesoporous MgO Sorbent Promoted with KNO₃ for CO₂ Capture at Intermediate Temperatures. *Chem. Eng. J.* **2014**, *258*, 254–264.
- (28) Lee, H.; Trivinio, M. L. T.; Hwang, S.; Kwon, S. H.; Lee, S. G.; Moon, J. H.; Yoo, J.; Seo, J. G. In Situ Observation of Carbon Dioxide Capture on Pseudo-Liquid Eutectic Mixture-Promoted Magnesium Oxide. *ACS Appl. Mater. Interfaces* 2018, *10* (3), 2414–2422.
- (29) Vu, A. T.; Ho, K.; Jin, S.; Lee, C. H. Double Sodium Salt-Promoted Mesoporous MgO Sorbent with High CO₂ Sorption Capacity at Intermediate Temperatures under Dry and Wet Conditions. *Chem. Eng. J.* **2016**, *291*, 161–173.

- (30) Zhao, X.; Ji, G.; Liu, W.; He, X.; Anthony, E. J.; Zhao, M. Mesoporous MgO Promoted with NaNO₃/NaNO₂ for Rapid and High-Capacity CO₂ Capture at Moderate Temperatures. *Chem. Eng. J.* **2018**, *332* (July 2017), 216–226.
- (31) Zhang, K.; Li, X. S.; Chen, H.; Singh, P.; King, D. L. Molten Salt Promoting Effect in Double Salt CO₂ Absorbents. J. Phys. Chem. C 2016, 120 (2), 1089–1096.
- (32) Dal Pozzo, A.; Armutlulu, A.; Rekhtina, M.; Abdala, P. M.; Müller, C. R. CO₂ Uptake and Cyclic Stability of MgO-Based CO₂ Sorbents Promoted with Alkali Metal Nitrates and Their Eutectic Mixtures. *ACS Appl. Energy Mater.* **2019**, *2* (2), 1295–1307.
- Qiao, Y.; Wang, J.; Zhang, Y.; Gao, W.; Harada, T.; Huang, L.; Hatton, T. A.; Wang, Q.
 Alkali Nitrates Molten Salt Modified Commercial MgO for Intermediate-Temperature CO₂
 Capture: Optimization of the Li/Na/K Ratio. *Ind. Eng. Chem. Res.* 2017, *56* (6), 1509–1517.
- (34) Wang, J.; Li, M.; Lu, P.; Ning, P.; Wang, Q. Kinetic Study of CO₂ Capture on Ternary Nitrates Modified MgO with Different Precursor and Morphology. *Chem. Eng. J.* 2020, *392* (December 2019), 123752.
- (35) Harada, T.; Simeon, F.; Hamad, E. Z.; Hatton, T. A. Alkali Metal Nitrate-Promoted High-Capacity MgO Adsorbents for Regenerable CO₂ Capture at Moderate Temperatures. *Chem. Mater.* 2015, 27 (6), 1943–1949.
- (36) Jin, S.; Ho, K.; Lee, C.-H. Facile Synthesis of Hierarchically Porous MgO Sorbent Doped with CaCO₃ for Fast CO₂ Capture in Rapid Intermediate Temperature Swing Sorption. *Chem. Eng. J.* **2018**, *334* (September 2017), 1605–1613.
- (37) Jin, S.; Ho, K.; Vu, A.-T.; Lee, C.-H. Salt-Composition-Controlled Precipitation of Triple-Salt-Promoted MgO with Enhanced CO₂ Sorption Rate and Working Capacity. *Energy & Fuels* **2017**, *31* (9), 9725–9735.

- Wang, L.; Zhou, Z.; Hu, Y.; Cheng, Z.; Fang, X. Nanosheet MgO-Based CO₂ Sorbent Promoted by Mixed-Alkali-Metal Nitrate and Carbonate: Performance and Mechanism. *Ind. Eng. Chem. Res.* 2017, 56 (20), 5802–5812.
- (39) Ding, J.; Yu, C.; Lu, J.; Wei, X.; Wang, W.; Pan, G. Enhanced CO₂ Adsorption of MgO with Alkali Metal Nitrates and Carbonates. *Appl. Energy* 2020, 263 (October 2019), 114681.
- (40) Hu, Y.; Cui, H.; Cheng, Z.; Zhou, Z. Sorption-Enhanced Water Gas Shift Reaction by in Situ CO₂ Capture on an Alkali Metal Salt-Promoted MgO-CaCO₃ Sorbent. *Chem. Eng. J.* **2019**, *377* (August 2018), 119823.
- (41) Cui, H.; Zhang, Q.; Hu, Y.; Peng, C.; Fang, X.; Cheng, Z.; Galvita, V. V.; Zhou, Z. Ultrafast and Stable CO₂ Capture Using Alkali Metal Salt-Promoted MgO–CaCO₃ Sorbents. ACS Appl. Mater. Interfaces 2018, 10 (24), 20611–20620.
- (42) Naeem, M. A.; Armutlulu, A.; Imtiaz, Q.; Donat, F.; Schäublin, R.; Kierzkowska, A.;
 Müller, C. R. Optimization of the Structural Characteristics of CaO and Its Effective Stabilization Yield High-Capacity CO₂ sorbents. *Nat. Commun.* 2018, 9 (1), 1–11.
- (43) Donat, F.; Müller, C. R. CO₂-Free Conversion of CH₄ to Syngas Using Chemical Looping.
 Appl. Catal. B Environ. 2020, 278 (July), 119328.
- (44) Chen, J.; Shi, T.; Duan, L.; Sun, Z.; Anthony, E. J. Microemulsion-Derived, Nanostructured CaO/CuO Composites with Controllable Particle Grain Size to Enhance Cyclic CO₂ Capture Performance for Combined Ca/Cu Looping Process. *Chem. Eng. J.* **2020**, *393*, 124716.
- (45) Donat, F.; Müller, C. R. A Critical Assessment of the Testing Conditions of CaO-Based
 CO₂ Sorbents. *Chem. Eng. J.* 2018, *336* (December 2017), 544–549.
- (46) Su, C.; Duan, L.; Donat, F.; Anthony, E. J. From Waste to High Value Utilization of Spent

Bleaching Clay in Synthesizing High-Performance Calcium-Based Sorbent for CO₂ Capture. *Appl. Energy* **2018**, *210* (August 2017), 117–126.

- (47) Luo, C.; Zheng, Y.; Xu, Y.; Ding, H.; Zheng, C.; Qin, C.; Feng, B. Cyclic CO₂ Capture Characteristics of a Pellet Derived from Sol-Gel CaO Powder with Ca₁₂Al₁₄O₃₃ Support. *Korean J. Chem. Eng.* 2015, *32* (5), 934–938.
- (48) Antzara, A. N.; Arregi, A.; Heracleous, E.; Lemonidou, A. A. In-Depth Evaluation of a ZrO₂ Promoted CaO-Based CO₂ Sorbent in Fluidized Bed Reactor Tests. *Chem. Eng. J.* **2018**, *333* (July 2017), 697–711.
- (49) Rekhtina, M.; Dal Pozzo, A.; Stoian, D.; Armutlulu, A.; Donat, F.; Blanco, M. V.; Wang, Z.-J.; Willinger, M.-G.; Fedorov, A.; Abdala, P. M.; et al. Effect of Molten Sodium Nitrate on the Decomposition Pathways of Hydrated Magnesium Hydroxycarbonate to Magnesium Oxide Probed by in Situ Total Scattering. *Nanoscale* 2020, *12* (31), 16462–16473.
- (50) Yang, X.; Zhao, L.; Xiao, Y. Effect of NaNO₃ on MgO-CaCO₃ Absorbent for CO₂ Capture at Warm Temperature. *Energy & Fuels* **2013**, *27* (12), 7645–7653.
- (51) Kracek, F. C. The Polymorphism of Potassium Nitrate. *J. Phys. Chem.* **1930**, *34* (2), 225–247.
- (52) Chen, J.; Duan, L.; Sun, Z. Accurate Control of Cage-Like CaO Hollow Microspheres for Enhanced CO₂ Capture in Calcium Looping via a Template-Assisted Synthesis Approach. *Environ. Sci. Technol.* **2019**, *53* (4), 2249–2259.
- (53) Jansen, D.; Gazzani, M.; Manzolini, G.; Dijk, E. Van; Carbo, M. Pre-Combustion CO₂
 Capture. *Int. J. Greenh. Gas Control* 2015, 40, 167–187.