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Abstract 

Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive 

for many applications in catalysis and nanomedicine, and will lead to a better understanding of 

plasmon-induced processes, such as hot charge carrier or heat driven chemical reactions. 

Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle 

over several nanometers to drive a chemical reaction in a molecule non-adsorbed on the 

surface. For this we use 8-bromo-adenosine introduced in different positions within a double 

stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into 

superlattices enabling the use of surface enhanced Raman scattering to track the decomposition 

reaction. To prove the DNA mediated transfer, the probe molecule was insulated from the 

charge carriers source, which hindered the reaction. The results indicate that DNA can provide 

an attractive platform to study the transfer of hot electrons, leading to the future development 

of more advanced plasmonic catalysts.  

 

Keywords: Plasmonics, DNA nanotechnology, Hot-electrons, Charge transfer, SERS, 

Superlattices 
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Introduction 

One of the most interesting and promising uses of plasmonic nanoparticles is the 

possibility to induce chemical reactions at their interface giving rise to the emerging field of 

plasmon chemistry. The reactions are driven by different processes occurring at the interface 

between the plasmonic nanoparticle and the molecules, such as the generation of hot-carriers 

and also the thermalization of these carriers into heat. Even though it is very difficult to 

distinguish the contribution of the two mechanisms, both are suggested to affect the reaction 

pathways to some extent.1,2 Anyway, for both cases there is the necessity of close contact of 

the reagent molecule with the nanoparticle surface, i.e., covalent bonding or adsorption, to 

activate it to further undergo the reaction.3,4 This interaction can be problematic leading 

principally to the inactivation of the nanoparticle surface due to surface poisoning or undesired 

product generation , such as amorphous carbon.5–8  

So far, many molecules were already shown to react on the surface of illuminated 

plasmonic nanoparticles, like CO2, H2, 4-nitrothiophenol and other organic molecules which 

were recently reviewed by Gellé et al.9 The case of the dimerization of 4-nitrothiophenol is the 

most studied since the reaction can be directly tracked using surface enhanced Raman 

spectroscopy (SERS), which can also be used to study the reaction mechanism. Nevertheless, 

the mechanisms that trigger and direct the reaction pathways either by hot-carriers or by heat 

are still under debate since the reaction involves many different steps, and at least 8 electrons 

to proceed.2,10,11 Our group recently has shown that brominated nucleobases can undergo a 

plasmon induced reduction when adsorbed onto gold or silver nanoparticles, and that the 

reaction can be tracked using SERS.12,13 The hot-electrons generated on the nanoparticles are 

transferred to the brominated nucleobase which is followed by  cleavage of the C-Br bond 

generating the non-brominated base, in a procedure that only requires one electron and one 

proton via a dissociative electron attachment (DEA) mechanism.14 Here we study this reaction 

with the brominated nucleobase incorporated in double stranded DNA. 

Transferring hot-electrons generated in the plasmonic nanoparticles to a different 

material is a very interesting topic, principally because it can lead to a better understanding of 

the plasmon-induced interfacial properties. Recently Zhang et al.15 showed that hot-electrons 

can be transferred from Au nanoparticles to semiconductors, and can go as far as 10 nm in 

semiconductors or 1 nm in metals and also perform the dimerization reaction of 4-

aminothiophenol very efficiently. In this case, the authors showed that the generated hot-
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electrons are very quickly converted to heat in the metal, while in the semiconductor they can 

have a longer life time enabling a long-range transmission. On the other hand, Kim et al.16 

showed that hot-electrons can be transferred by multi-step hopping through an insulating layer 

of aliphatic chains self-assembled on Au nanoparticle surfaces over more than six carbons. 

Another interesting photocatalyst assembly was reported by Ma et al.17 where the authors used 

DNA to self-assemble TiO2 nanoparticles with CdS nanorods, enabling electrons to be 

transferred from the TiO2 to the CdS and facilitating CO2 reduction. DNA in this case is used 

as an electron transfer mediator or a molecular scale conductive wire, even helping to promote 

better charge separation and increase the reaction yield. In this regard, we hypothesize that 

DNA can serve as an efficient mediator to conduct hot-electrons generated from plasmonic 

nanoparticles and that these hot-electrons will remain reactive to perform chemical reactions.  

DNA is nowadays one of the most versatile biomolecules to obtain 2-D and 3-D 

nanostructures. Due to the very unique base pair arrangement it is possible to create a wide 

variety of assemblies.18–21 One important technique is DNA-based crystal engineering, where 

DNA is the responsible to form and maintain the structure while the nanoparticle is the rigid 

and directional entity, generating the so-called nanoparticle superlattices. Crystal engineering 

with DNA has already enabled the fabrication of superlattices with a high degree of ordering 

with many different crystallographic orientations,22 both using isotropic and anisotropic 

nanoparticles,23,24 and even crystalline and epitaxial films were already obtained.25–28 Due to 

the large efforts in crystallizing nanoparticles, many of the design and self-assembly rules 

governing the creation of superlattices are already well-described in the literature.22,29 One of 

the most promising applications of DNA-based nanoparticle superlattices is the possibility of 

generating plasmonic materials with well-defined functionality.24,25,30,31 However in most of 

these cases DNA has limited functionality and many of its properties regarding what the DNA 

chains are capable of is still limited. Recently it was shown that the superlattices formed using 

DNA and 20 nm gold nanoparticles presented electrochemical conductivity and a very fast 

charge transfer rate which is mainly dependent on the DNA molecule.32,33  

Herein we self-assembled 60 nm silver nanoparticle (AgNP) superlattices to probe hot-

electron induced reactions in single brominated nucleotides inserted into the DNA chains far 

from the nanoparticle surface. The superlattice design allowed us to provide electromagnetic 

enhancement enough to track the reduction of the brominated nucleotide by SERS in a single 

point modification scale. Also due to the addressability offered byDNA it was possible to put 

the modified base at very specific positions, allowing us to check the possibility of transferring 
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hot-electrons through DNA, which could enable further hot-electron induced reactions to occur 

far from the nanoparticle surface. The obtained results showed that DNA is capable of 

transferring the hot-electrons generated in the AgNPs to the reaction probe molecule far from 

the nanoparticle surface. It also indicates that the use of DNA-based superlattices provides a 

good platform to carry out hot-electron driven reactions in a very controlled way. This is also 

the first time we show that brominated nucleobases inserted into DNA can be decomposed by 

plasmonically generated hot-electrons far (i.e. > 5.5 nm) from the nanoparticle surface. 

Results and Discussion 

Design of the nanoparticle-DNA superlattices 

The present study revolves around two central questions: (i) Is it possible to transfer 

hot-carriers from AgNP through DNA?  (ii) Is this hot-carrier able to react with a specific 

molecule? A 3D- superlattice is an ensemble of nanoparticles which is organized in a way that 

resembles an atomic crystal arrangement, i.e., there is a certain distance between the 

nanoparticle centers and there is a repetition unity in three dimensions. In this way, the 

nanoparticles are not simply aggregated but are arranged in a manner imparting much more 

stable and uniform electromagnetic field than in a random aggregate. To accomplish this, we 

used DNA to act as the functional linking unit scaffolding the nanoparticles in place. In doing 

so, we select the DNA sequences with some considerations in mind: 

 The DNA sequences should be short enough to allow for the formation of plasmonic 

hot-spots, enabling to track the reaction pathway using SERS; 

 The hot-carrier participation in the reaction should come from only one 

nanoparticle, so the reactant molecule should be insulated from the carriers coming 

from other nanoparticles; 

 The DNA should only contain one modified base per sequence, in order to know 

the correct positioning of the base in relation to the nanoparticle surface. 

Taking into consideration these points and also the existing rules to self-assemble the 

superlattices, we designed a superlattice system composed of 4 different DNA sequences, 

which are referred to as Thiol A and B and Linker A and B. A model of the current system is 

illustrated in Figure 1. The two thiol sequences present a dithiolserinol group at the 3’ end to 

allow the easy modification of silver nanoparticles (SH groups at the end of the sequences), 

followed by a short flexible sequence composed of 5 cytosine (dC), which also interact with 

the nanoparticle surface, bringing the first base after it closer to the nanoparticle. After this 
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there is a sequence containing 12 bases only composed of cytosine (dC) and guanine (dG), 

those 12 bases are complementary to 12 bases present at the linker sequences forming double 

helices. In the linker sequence there is a C12 aliphatic chain after the complementary sequence 

separating the first 12 bases from the next 8 bases, which stick to the complementary DNA 

present on the other sequence. The C12 aliphatic chain was chosen since it is long enough to 

hinder the charge transfer from the nanoparticles while at the same time imparting flexibility 

to the sequences towards proper assembly. In Figure 1, the 4 different DNA strands and the 

positions of modifications related to the nanoparticle surfaces are shown. The used sequences 

are given in Table 1. 

The design chosen provides a distance between nanoparticle surfaces of around 10 to 

13 nm, which can generate a strong enough plasmonic coupling to allow the detection of the 

single DNA base modifications by SERS, as can be observed on Figure 2 A and B. The 

modified base 8-bromo-adenosine (8BrdA) was chosen as the reactive probe molecule, which 

is shown as a modified purple base in the Figure 1. Previous results from our group showed 

that the 8-bromo-adenine nucleobase is decomposed by hot-electron transfer from 

nanoparticles and that the signal from both the reactant and product present a very strong SERS 

signal, allowing us to track the reaction by Raman spectroscopy.12,13 The chemical structures 

of 8BrdA and the products adenosine and a bromide anion are given in Figure 1. 

Another advantage of 8BrdA is that it can easily be inserted into the oligomer during 

the synthesis without hindering the double helix formation later. In this way, 8BrdA is inserted 

into specific positions of the DNA sequence Thiol A, and at the same time a complementary T 

was inserted into the Linker sequences. 8BrdA was inserted into the positions 1, 3, 7 and 12 of 

the Thiol A sequences, corresponding to approximately 1.5, 2.5, 3.9 and 5.5 nm separation 

between the nanoparticle surface and the reactant molecule. A sample without 8BrdA is used 

as control for the test of the stability of DNA. SEM images (Figure 1C) confirm that the 

nanoparticles are self-assembled in a tightly packed configuration, and that the superlattices 

are three dimensional assemblies which are larger than 1 µm in diameter, in such way that the 

Raman laser spot is completely probing the reaction in the superlattice and not the SiO2 

substrate. 
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Figure 1. Schematic showing the AgNP superlattice. A) AgNP modified with DNA sequence 

A and B, are mixed together and by base-pairing complementarity it can self-assembled in 

large superlattices. B) The DNA base pairing between the sequences A and B, bring the two 

nanoparticles together, with a distance between 10 to 13 nm. The 8BrdA modification is 

inserted into sequence A, here shown in purple at the 7th position. Upon light irradiation the 

nanoparticles generate a hot-electron and hot-hole pair. The hot-electron can then be injected 

into the DNA double helix, enabling the hot-electron reaction. All nanoparticles in the lattice 

can generate hot-carriers, but due to the C12 chain each nanoparticle is insulated from the other, 

allowing the precise separation distance control. C) SEM images of the formed AgNP 

superlattices, the white scale bar represents 1 µm, which is similar in size to the laser spot size 

used to probe the reaction. 
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Figure 2. Hydrodehalogenation reaction tracked using SERS. A) Due to the nanoparticle 

irradiation hot-electrons are ejected which can interact with the 8BrdA cleaving the C-Br bond 

at C-8 position, generating adenosine base and a bromide anion. B) SERS spectra recorded at 

t=1s, just after the irradiation is started for five different samples containing 8BrdA at different 

positions indicated by distance (nm) from nanoparticle surface as mentioned in the legend The 

samples containing 8BrdA present a peak or shoulder at the region around 770 cm-1. B) SERS 

spectrum collected after 25 s of irradiation. In the samples containing 8BrdA the presence of a 

peak around 730 cm-1 corresponding to the adenosine ring-breathing vibration is clearly 

observed with no clear signature of the same in the control sample (green). The laser intensity 

for these spectra is 200 µW. 

 

The choice of 8BrdA provides the possibility to detect single modifications by SERS 

based on its characteristic ring-breathing mode even when 8BrdA is surrounded by CG bases. 

Figure 1A shows the presence of the ring breathing mode of 8BrdA in the region around 770 
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cm-1 in the SERS spectra, while the region around 730 cm-1 is clear of vibrational bands. After 

25 s of irradiation (Figure 2B) the spectra shows the presence of a very well-defined vibration 

at 730 cm-1 corresponding to the ring-breathing mode of adenosine, while the peak at 770 cm-

1 is diminished allowing us to track the decomposition of the 8BrdA and the appearance of 

adenosine over time. Additionally, we observe less intense vibrations related to the DNA 

backbone principally in the region between 1000 and 1600 cm-1 as seen in Figure 2A and B.34 

It is important to stress that the peaks corresponding to DNA backbone remain unaffected 

during the reaction and the reaction takes place specifically at the 8BrdA. That is to say, the 

rest of the DNA is not under the impact of the hot-electrons for the laser power used. 

Decomposition of 8BrdA in DNA 

Since we could observe that after a certain time the 8BrdA is decomposed and that the 

adenosine is being formed, we then tracked the reaction for a longer period collecting SERS 

spectra throughout the reaction in order to study or comment on the reaction rate of 

hydrodehalogenation reaction under different experimental parameter. Figure 3A shows time-

dependent spectra between 0 and 70 s of irradiation, and it is possible to observe the 

instantaneous appearance of the adenosine peak at 734 cm-1 with decrease in peak intensity of 

8BrdA at 765 cm-1with time. . We tracked the reaction over a period of 800 s, and the intensity 

map is shown in Figure 3B. The map in Figure 3B shows an intense vibration of 8BrdA in the 

beginning of the reaction that rapidly decreases with continuous increase of the adenosine peak 

over time. During the reaction we also observe the presence of flare emissions which are not 

associated with the reaction, but that were recently attributed to atomic dislocations of the metal 

atoms in the nanoparticles.35  

It is possible to obtain the kinetics from the time traces for both the decomposition of 

8BrdA and the generation of adenosine from all the collected spectra. The time trace data 

extracted from Figure 3B is shown in Figure 3C. The plot in Figure 3C shows that the 8BrdA 

vibration intensity decreases very rapidly, and that the first 100 s of irradiation are sufficient to 

decrease the counts by around 300, after which the drop in peak intensity becomes slow until 

the irradiation is stopped. On the other hand, a concomitant rise in peak at 765 cm-1 

corresponding to adenosine vibration can be observed with time. Recently Liu et al.36 proposed 

a very interesting mechanism for the plasmon-mediated hydrodehalogenation reaction of 8-

bromo-adenine and the many reaction steps. 
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Figure 3. 8BrdA decomposition over time. A) Time series SERS spectra of the sample with 

8BrdA at ~2.5 nm in the ring-breathing region (the two marked bands are related to the 8BrdA 

at 765 cm-1 and to Adenosine at 734 cm-1) over the period of 70 s, 1 s of integration time. B) 

Time series map for the sample with 8BrdA at ~2.5 nm showing the progress of the reaction 

during 800 s. C) Reaction time traces extracted from the time series shown in graph B, 

reflecting the kinetics of 8BrdA decay at 765 cm-1 and the formation of adenosine due to 

increase peak intensity at 734 cm-1. 

 

 One of the most interesting properties of DNA is the possibility to transfer charges 

along the double helix. Such property was first observed by Jacqueline Barton in the 90s by a 
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series of photophysical studies of DNA intercalating molecules and base pair damage, and later 

it was also extensively studied by electrochemical methods.37–41 But even with many different 

contributions still nowadays it is a topic under intense debate principally regarding the 

flexibility of DNA42 and also the possibility of the charge transfer to happen in the sugar 

backbone and not in the base pairs.43 At the same time, it was also reported that DNA could be 

used to transfer hot-electrons generated by Ag or AuNP, and that the excess charges could 

quench a fluorophore or lead to DNA degradation, but in those cases the nanoparticles were 

irradiated with high intensity pulsed lasers.44,45 Here in our case, we used a continuous wave 

laser to track the hot-electron driven reaction showing that DNA is able to act as a conductive 

wire for hot-electron transfer and that the hot-electrons are able to selectively break bonds in 

modified DNA bases. 

 To further confirm and prove the charge transfer process, we modified the DNA 

sequence by incorporating the 8BrdA (purple base) in the stitch region in between two C12 

chains (Scheme 1). As explained before, an aliphatic C12 chain should be long enough to fully 

hinder the conduction of electrons from the nanoparticles to the probing zone. The time series 

spectra and map of the samples corresponding to insulated 8BrdA is shown in Figure 4A and 

4B. Interestingly, it is possible to observe an intense 8BrdA peak at 765 cm-1, which is still 

fully visible after 100 s of irradiation, while the peak for the adenosine appears only after 50 s 

of irradiation, but with very low peak intensity. This is in contrast to when compared with the 

data shown in Figure 3A where the adenosine peak appears right after the irradiation showing 

a strong intensity peak. 

 

 

Scheme 1. Schematic of the control experiment. In this case 8BrdA (shown in purple) is 

included between the two C12 chains which hinder the hot-electron passage from the 

nanoparticles, preventing the decomposition of the probe molecule. 
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From the map shown in Figure 4B, the kinetic time traces can be extracted for both 

8BrdA decomposition and adenosine formation, which are then compared to the case where 

the 8BrdA is connected to the DNA sequence exposing it to the hot-electron source. In this 

case we compare with the sample A12 where the 8BrdA is the farthest away from the 

nanoparticle surface. This comparison is given in Figure 4C and 4D. The data comparison 

shows that the C12 chains do hinder the hot-electron passage and that the 8BrdA reaction does 

not proceed. The slight decrease in 8BrdA intensity over long time and also the increase of the 

adenosine vibration is probably not due to a DEA reaction, but possibly the plasmonically 

generated heat that can also induce reactions which can lead to molecular decomposition. The 

distinction between the hot-electron and the heat driven reactions is usually very difficult since 

both processes are happening at the same time, and both can also lead to the same reaction 

pathway. Herein we show that the use of a DNA wire can help to disentangle both 

contributions. 

So far, we showed that DNA can be used to self-assemble nanoparticles into 

superlattices which are useful for SERS analysis, and that the hot-electron is being transferred 

through DNA far away from the nanoparticle surface and that it can be used to drive reactions 

within DNA. In the next section, the kinetics of the hot-electron driven reaction will be 

discussed, focusing on the decomposition process of 8BrdA, and the relationship between the 

experimentally determined kinetic constant to its position in the DNA sequence and the 

contribution of the laser power to the reaction. 
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Figure 4. Control experiment of the insulated 8BrdA. A) Timed spectra in the ring-breathing 

vibration mode of the sample with 8BrdA located between the C12 chain. The two marked 

bands are related to the 8BrdA at 765 cm-1 and to Adenosine at 730 cm-1 over the period of 100 

s, 1 s of integration time. B) Time series SERS map of the sample with the 8BrdA after the C12 

chain, showing the progress of the 8BrdA decomposition reaction upon laser irradiation. C and 

D) show the comparison of the experimental reaction time traces for the region of 8BrdA (C) 

and Adenosine (D) vibrations. The control experiment where 8BrdA is insulated is compared 

to the time traces for the sample with 8BrdA at ~5.5 nm (the farthest possible position of 8BrdA 

regarding the nanoparticle surface). The conditions for the spectra acquisition are 1 s 

integration time and 500 µW of laser power in the focal plane.   
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Probe Molecule Position and Laser power dependence 

To assess the reaction under different experimental reaction condition and parameters, 

we differ the probe molecular position with respect to surface and monitor their reaction 

kinetics under different laser power. As discussed before, due to the many possible steps which 

could involve the formation of adenosine we will focus our discussion on the decomposition 

of 8BrdA. We have modelled the reaction of 8-bromoadenine with hot-electrons before by a 

dissociative electron attachment (DEA) mechanism.14 In this mechanism, an electron is 

captured at a specific energy to form a transient negative ion (TNI), which can dissociate very 

fast in the time scale of 10 fs, resulting in the adenine nucleobase, the structure of the molecules 

we are probing here were shown in Figure 2A. The fitting procedure used to obtain the kinetics 

constants is given in the supporting information. Herein we used a second order fractal kinetics 

equation to fit the obtained kinetics time traces. 

The consideration about the fractal system arises from the nanoparticle organization in 

the nanoscale and the intrinsic inhomogeneity of the SPR excitation in the system. On a non-

fractal regime, the reaction rate constant k would be the same all around the nanoparticle 

surface. However, the close proximity between the nanoparticles creates the so-called hot-

spots, which are regions that can promote a faster reaction rate, but since this is not 

homogeneously spread over the nanoparticle surface but constrained in some regions, it can 

create regions with different k that vary over time. After the initial consumption of the probe 

molecules located at the most intense hot-spots (k1), the rest of the molecules on the 

nanoparticle surface will react but slower compared to the hot-spot reaction (k2, k3, k4,…, kn), 

creating a gradient of rate constants in the system, and the relative contribution of each k is 

dependent on the time such as shown by Schürmann and Bald.12 The reaction kinetics in our 

case follows a second order fractal kinetics rate law: 

[8𝐵𝑟𝑑𝐴] =
[8𝐵𝑟𝑑𝐴]0 ∗ (1 − ℎ)

(1 − ℎ) + [8𝐵𝑟𝑑𝐴]0 ∗ 𝑘2𝐹 ∗ 𝑡1−ℎ
 , (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where [8BrdA] is the intensity of the 8BrdA peak in the Raman spectra, [8BrdA]0 is the initial 

intensity of the 8BrdA peak in the Raman spectra, k2F is the second order fractal rate constant, 

t is the time and h is the fractal dimension term. This equation can fit the data directly extracted 

from the Raman spectra, and from the fit the second order fractal rate constant is obtained, the 

derivation of this equation is given in the SI.  
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The first point of our discussion here is the position of the probe in the DNA chain. The 

data showing the extracted time traces for the samples with different 8BrdA positions are given 

in Figure 5A. For the control where no 8BrdA is present in the DNA chain, we obtain a straight 

line without any decrease in intensity (at the ~770 cm-1 region of the spectra), indicating that 

DNA is stable under the experimental conditions employed. Upon the inclusion of the 8BrdA 

in the DNA double helix it is now possible to observe and track the decomposition of the probe 

molecule. The data in Figure 5A shows that the decomposition of 8BrdA takes place for all the 

cases when 8BrdA is included in the DNA. 

From the kinetic analysis we obtain the value of the second order fractal kinetics rate 

constant k2F. In Figure 5B it is shown how the k2F varies depending on the probe position on 

the DNA chain and hence with the distance to the nanoparticle surface. This is shown for 

different laser powers, which will be discussed later. The distance dependence of k2F follows a 

U-shaped profile, i.e., the rate constant is high when the probe is the closest to the surface 

(about 1.5 nm), then decreases in the middle position (2.5 and 3.9 nm) and is again very high 

when furthest away from the surface (around 5.5 nm). Like discussed before the conduction 

through DNA is still a topic under debate, but we can do some considerations regarding the 

topic here. 

One very important aspect of our system is the DNA sequence used. The sequences 

used here are very rich in CG base pairs which have a very interesting conduction aspect. One 

of the most accepted mechanisms of DNA conduction assumes that the conduction occurs by 

a mixed process involving both tunneling and multistep hopping.46–48 Giese et al.48,49 observed 

that hopping through the CG base pairs is very much favored due to the lower redox potential 

of the G nucleobase. The possibility of the AT pair to conduct holes by hopping was later tested 

by the same group. More recently Xiang et al.50 showed that having an ordered array of CG 

base pairs can enhance DNA conductivity a bit due to the HOMOs of the stacked Gs being 

delocalized over several G bases, like in our case where some G bases are stacked helping the 

electron transfer. The most interesting property of the hopping-like mechanism is that it is 

distance independent, i.e., the charge carrier can be transferred through long DNA sequences 

without losing all its energy.41 And in our results we can observe that even with the probe ~5.5 

nm far from the nanoparticle surface the reaction is still happening at a similar rate as when it 

is the closest at ~1.5nm. Another aspect of DNA charge transfer was studied recently by 

Kékedy-Nagy and Ferapontova,51 who showed a very interesting asymmetry of the DNA 

mediated charge transfer towards the reduction of methylene blue, and found that charge 
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transfer in the forward direction is faster than in the backward direction, an indication that DNA 

can also be used to avoid charge recombination, increasing the reaction rate for the generation 

of the products since the electrons can live longer within the DNA double helix.  

 
Figure 5. Effect of the base placement and laser power on the 8BrdA decomposition reaction. 

A) Comparison of the experimental reaction traces for different samples containing 8BrdA. 

The data are offset for better visualization, the data were extracted from the experiment 

obtained using 200 µW of laser power. The red traced curves show the fit of the data using the 

second order fractal kinetics (equation 1). B) Comparison between the k2F obtained from the 

fits in A) and the position of 8BrdA in the DNA for different laser powers. C) Comparison of 

the experimental kinetic traces using different laser powers. The red traced curves show the fit 

of the data using the second order fractal kinetics (Equation 1). The data shown here is related 

to the sample containing 8BrdA at ~5.5 nm from the AgNP surface. D) Experimental 

relationship between the k2Fwith the laser power for the 4 samples containing the 8BrdA at 

different positions. The red traced lines show the linear fit of the points for each one of the 

samples, and the linear equation describing each dataset is given in the figure legend. 

 

The U-shape profile of the observed k2F can be explained as follows: Recently Li and 

Han demonstrated by simulations that the stacking of the DNA bases can alter the long range 

charge transfer through DNA.52 The authors suggest that due to the stacking of the orbitals, it 

is possible to form a potential well with depth of 0.1~0.3 eV in vacuo, which stabilizes the base 
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pairs in the middle of the sequence while at the same time can lead to a lower stabilization of 

the base pairs in the edge of the sequence, which in turn could enhance the reactivity of such 

bases towards an external agent, such as the nanoparticle generated hot-electrons.53 The present 

data suggests that 8BrdA located at the edges is subject to a lower stabilization due to the 

incomplete stacking by the π-orbital clouds of the DNA double helix, making it more prone to 

the reaction with hot-electrons. At the same time the probe molecules located in the middle of 

the sequence are much more stabilized by the other bases around it, making it harder to be 

decomposed by the hot-electrons thereby decreasing the reaction rate. The data presented in 

Figure 5B also shows the dependence of the reaction rate on the laser power used for the 

irradiation, which will be discussed next. 

The laser power affects a plasmon-induced reaction in two different ways: on the one 

hand a higher laser power results in generation of more hot-electrons increasing the reaction 

rate by increasing the number of reactants hot-electrons, on the other hand it can be converted 

to heat due to the thermalization of the hot-carriers and the reaction is faster due to the thermal 

contribution.1,4,54 Disentangling both contributions is very hard principally because both 

processes happen at the same time (at least in the time scales discussed here in this work). The 

time traces for the sample containing 8BrdA far from the AgNP surface (i.e., ~5.5 nm) at 

different laser powers is given in Figure 5C. The decomposition rate of 8BrdA is directly 

proportional to the increase in laser power, i.e., at higher laser powers the reaction proceeds 

faster compared to low laser powers. At the same time, we observe that at high laser powers 

(1000 µW) the reaction reaches a plateau in less than 100 s, and that the continued irradiation 

leads to different processes observed by the very intense noise signal after 300 s. All the curves 

at different laser power were fitted using the second order fractal integrated rate law, and the 

obtained k2F values at different laser power is given in Figure 5D. The data on Figure 5B and 

D are the same but the different representations give us hints on different processes.  

The data in Figure 5D suggests that the reaction rate increases linearly with the laser 

power, especially for the samples with 8BrdA at ~2.5, ~3.9 and ~5.5 nm. The average value 

for the slope of the linear fit for these samples is 0.94, an indication that increasing the laser 

power directly increases the reaction rate by the same order of increase, while for the sample 

with 8BrdA very close to the AgNp surface (~1.5 nm) the slope of the linear fit is 2.28. This is 

an indication that the reaction with slope closer to 1 represents a hot-electron triggered reaction, 

while a higher slope value indicates that plasmonically generated heat is also contributing. 

Baffou and Quidant 55,56 showed that the heat dissipation for spherical nanoparticles under CW 
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irradiation follows a 1 𝑟⁄  distribution, i.e., the temperature decreases with increasing distance 

from the NP surface and the influence of thermal effects gets less as we can observe in Figure 

5B and 5D. In conclusion, the high-rate constant observed for the sample with 8BrdA closer to 

the NP surface is not only due to a limited nucleotide stabilization at the beginning of the 

sequence, but also due to some contribution of heat.  

We can observe the lowest rate for the sample with 8BrdA at ~2.5 nm at a laser power 

of 100 µW, but increasing the laser power to 200 µW increases its rate more than that of the 

probe at 3.9 nm, making this sample now the slowest and keeping this pattern throughout the 

experiment. This shift is possibly due to the heat generated by the particle spreading further 

from the particle surface; however, it does not increase as fast as when the probe molecule is 

at ~1.5 nm due to the possible stabilization effect that the DNA base pairing introduces to the 

system. At ~3.9 nm the reaction is not very much influenced by the heat generated by the 

particles, the reaction is slower than the other positions, an indication that DNA provides a 

stabilized structure, and that the hot-electrons are probably distributed through the chain which 

decreases the reactivity of the 8BrdA. Finally, when 8BrdA is very far from the nanoparticle 

surface it is only influenced by the hot-electron transfer, and since it is at the end of the chain 

it does not have the full stabilization of DNA, making its reaction rate higher compared to the 

cases when the probe is in the middle of the chain, but lower than the closest one since it is not 

subject to the extra energy input coming from the heated surface. 

Conclusions 

To conclude, herein we showcase the use of self-assembled nanoparticle superlattices 

for plasmon-induced reactions, and for the first time we demonstrate that DNA can be used to 

transfer hot-electrons far from the nanoparticle surface. DNA allows to build nanoparticle 

lattices with a very short interparticle spacing, and it also provides a suitable scaffold for 

controlled placement of modifications. We have used 8BrdA known for its simple 

decomposition reaction pathway compared to other molecules, requiring only one electron and 

one proton for the reaction. The hydrodehalogenation reaction of 8BrdA at different positions 

followed a second order fractal kinetics rate law with k2F dependent on the position of the probe 

molecule in the DNA sequence and also on the laser power employed for irradiation. More 

than that, we show that by the correct placement of the probe molecule it is possible to control 

the hot-electron driven pathway over the thermal pathway, principally due to hot-electron 

transfer through DNA. 
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The results shown here opens up many possibilities for plasmon-induced chemical 

reactions. So far, the reactions were confined to the surface of the plasmonic nanoparticle, 

while we show that this could occur further away from the nanoparticle surface using DNA as 

charge-conducting wire. Further understanding of the DNA-nanoparticle interaction at the 

interface and charge injection into DNA needs to be gained in future experiments. The 

possibility of transferring electrons from the DNA to molecules which are interacting with but 

are not covalently bound to DNA also needs to be explored in further studies. Optimizing the 

charge extraction process to carry out reactions that require more than one hot-carrier also 

needs further attention. In the future, we hope that the study presented here serves as a basis to 

better understand plasmon-induced reactions which do not require direct contact with the 

nanoparticle surface. 

Authors contribution 

SKJr and IB conceived the study, SKJr prepared all the samples, characterized and measured 

the decomposition reaction, SKJr, AD and IB analyzed and discussed the data. All authors 

contributed to the manuscript writing. 

Acknowledgements 

SKJr acknowledges the São Paulo Research Foundation (FAPESP fellowships 

2016/14507-8 and 2018/17831-6), Brazil, for financial support. This research was also 

supported by the European Research Council (ERC; consolidator grant no. 772752), the 

University of Potsdam, and by the German Federal Ministry of Education and Research (grant 

no. 03Z22A512). 

Experimental Section 

Materials 

All chemicals were of highest purity available and were used without further 

purification. Sodium citrate, TAE buffer 10X, sodium dodecylsulfate (SDS), HCl, NaOH, 

NaCl were obtained from Sigma-Aldrich. Silver nanoparticles with diameter of 60 nm 

stabilized by sodium citrate were obtained from Nanocomposix. The DNA sequences were all 

obtained from Metabion GmbH, and all the sequences were purified by HPLC and confirmed 

with mass spectrometry. Water was purified by a Milli-Q system.  

Table 1. DNA sequences used in this work. 
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Name Sequence (5’  3’) 

Thiol A GCC CCG CCG CCG CCCCC-(SH) 

Thiol B GCG CCG CGG CGG-CCCCC-(SH) 

Thiol A1 GCC CCG CCG CC(8BrdA) CCCCC-(SH) 

Thiol A3 GCC CCG CCG (8BrdA)CG CCCCC-(SH) 

Thiol A7 GCC CC(8BrdA) CCG CCG CCCCC-(SH) 

Thiol A12 (8BrdA)CC CCG CCG CCG CCCCC-(SH) 

Linker A CGG CGG CGG GGC-(C12)-CCG GCC CC 

Linker B CCG CCG CGG CGC-(C12)-GG GGC CGG 

Linker A1 TGG CGG CGG GGC-(C12)-CCG GCC CC 

Linker A3 CGT CGG CGG GGC-(C12)-CCG GCC CC 

Linker A7 CGG CGG TGG GGC-(C12)-CCG GCC CC 

Linker A12 CGG CGG CGG GGT-(C12)-CCG GCC CC 

Linker AM CGG CGG CGG GGC-(C12)-CCG G(8BrdA)C CC 

Linker BM CCG CCG CGG CGC-(C12)-GG GTC CGG 

 

Nanoparticle Modification and Superlattice Self-Assembly 

To modify the AgNP with the thiolated DNA sequences, we adapted the low pH method 

protocol. In this procedure, the dispersion of nanoparticles and DNA are submitted to a lower 

pH by the addition of citric acid at pH 3.57 For 1 mL of 60 nm AgNP, 2% SDS was added to a 

concentration of 0.02% and shaken for 20 min at 37 ºC. Then 8000X excess thiolated DNA 

was added i.e, around 4 µL of a 100 µM DNA-SH solution, and was left shaking for 20 min to 

fully interact with the AgNP. After 20 min, pH of the solution was changed to 3 by the addition 

of 500 mmol L-1 of citric acid, i.e, around 20 to 40 µL is sufficient for the change. After more 

10 min shaking at 37 ºC, the pH of the solution is restored to around 7 by the addition of the 

same volume of 10X TAE buffer. Using these conditions the concentration of Na+ in solution 

is around 100 to 200 mmol L-1. This step adds the thiolated DNA to the nanoparticle surface in 

a very high yield. 

Next to the modified nanoparticle solution, 16000X excess of the linker sequence is 

added in solution, and the mixture is heated to 75 ºC for 15 min while shaking. This temperature 

promotes the full melting of the DNA oligomers. After this the AgNP solution is cooled off by 

5 ºC every 10 min untill a temperature of 30 ºC is reached which is then left for shaking at this 

temperature overnight. Next the nanoparticles are washed by centrifugation 5 times to remove 

any aggregate and non-bound DNA present in solution. After every wash the supernatant is 

removed and the volume is made up with 50 mmol L-1 NaCl with 0.02% SDS. After every 
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wash the solution is sonicated in a bath sonicator for 1 min to break any nanoparticle 

aggregates. At the end the nanoparticle concentration is quantified by UV-Vis spectrometry. 

From the freshly modified nanoparticles the superlattices are assembled by mixing the 

nanoparticles modified with the sequence A and the ones modified with the sequence B in 

equimolar amounts. To the solution more NaCl is added to reach the concentration between 

100 to 150 mmol L-1 of Na+. The mixtures are then inserted into a thermo cycler, that is heated 

up to 50 ºC for 15 min, and is later cooled down to 20 ºC over the course of 24 hours. If the 

superlattice self-assembly proceeds correctly the formation of precipitates is observed, on the 

other hand the solution will keep its yellow color if the superlattice is not formed. Or, 

Successful formation of superlattice self-assembly is ensured by precipitation of the dispersion, 

on the other hand unsuccessful self-assembly leaves behind a yellow color nanoparticle 

dispersion. 

Raman Spectra acquisition and data analysis 

SERS spectra have been recorded using a confocal Raman microscope (WITec 300α) 

equipped with an upright optical microscope. For Raman excitation, laser light at λ = 633 nm 

was used that was coupled into a single-mode optical fiber and focused through a 50× objective 

(Olympus MPlanFL N, NA = 0.75) to a spot size of about 1000 nm. The laser power was varied 

between 100, 200, 500 and 1000 µW at the focal plane, and the integration time was 1 s. The 

kinetics were followed between 5 to 15 minutes for each sample, i.e. each curve is based on 

300 to 900 different spectra. Each sample was measured at least 3 times, and the results shown 

here are the average of all the different Raman measurements, i.e., all the spectra collected 

were averaged over time, and the time traces are extracted directly from the average data.  
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