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ABSTRACT:  The structures of metal-organic frameworks (MOFs) can be tuned to reproducibly create adsorption 
properties that enable the use of these materials in fixed-adsorption beds for non-thermal separations. However, with 
millions of possible MOF structures, the challenge is to find the MOF with the best adsorption properties to separate 
a given mixture. Thus, computational, rather than experimental, screening is necessary to identify promising MOF 
structures that merit further examination, a process traditionally done using molecular simulation. However, even 
molecular simulation can become intractable when screening an expansive MOF database for their separation 
properties at more than a few composition, temperature, and pressure combinations. Here, we illustrate progress 
towards an alternative computational framework that can efficiently identify the highest-performing MOFs for 
separating various gas mixtures at a variety of conditions and at a fraction of the computational cost of molecular 
simulation. This framework uses a “multipurpose” multilayer perceptron (MLP) model that can predict single 
component adsorption of various small adsorbates which, upon coupling with ideal adsorbed solution theory (IAST), 
can predict binary adsorption for mixtures such as Xe/Kr, CH4/CH6, N2/CH4 and Ar/Kr at multiple compositions and 
pressures. For this MLP+IAST framework to work with sufficient accuracy we found it critical for the MLP to make 
accurate predictions at low pressures (0.01-0.1 bar). After training a model with this capability, we found that MOFs 
in the 95th and 90th percentiles of separation performance determined from MLP+IAST calculations were 65% and 
87%, respectively, the same as MOFs in the simulation-predicted 95th percentile across several mixtures at diverse 
conditions (on average). After validating our MLP+IAST framework, we used a clustering algorithm to identify 
“privileged” MOFs that are high performing for multiple separations at multiple conditions. As an example, we 
focused on MOFs that were high performing for the industrially relevant separations 80/20 Xe/Kr at 1 bar and 20/80 
N2/CH4 at 5 bar. Finally, we used the MOF free energies (calculated on our entire database) to identify privileged 
MOFs that were also likely synthetically accessible, at least from a thermodynamically perspective. 
 
I. INTRODUCTION 

Approximately half of the energy consumed by the 
U.S. chemical industry is used to separate mixtures.1 
This is partly due to the dominant role of distillation, 
a thermal separation process, which accounts for 
nearly half of the energy used in chemical 
separations.1 Therefore, substitution of distillation 
with non-thermal methods to separate molecules could 
greatly save energy and reduce CO2 emissions.1 Using 
fixed adsorption beds is one way to separate molecules 
non-thermally. However, one of the challenges for 
widespread implementation of these methods is the 
need for new porous materials that can carry the 
separation of interest economically. Nanoporous 
crystals are well suited for adsorption-based 
separations because their highly ordered structures 
allow for the rational tuning of their pore sizes, shapes, 
and chemistries to reproducibly optimize separation 
properties.  

Among nanoporous crystals, metal-organic 
frameworks (MOFs) are particularly promising (not 
only for separations) due to their large “design space,” 

whose size arises from the millions of possible MOF 
variations that there can be.2 However, this also makes 
identifying the best possible MOFs for a given 
application an overwhelming task experimentally. 
Consequently, over the past decade, high throughput 
computational screening (HTCS) has emerged as a 
powerful strategy to identify promising MOFs. HTCS 
has been especially prominent for adsorption-based 
gas storage. Some of the best MOFs for hydrogen and 
methane storage were identified, synthesized, and 
tested following HTCS—using grand canonical 
Monte Carlo (GCMC) simulations.3–7 Additionally, 
the extensive data from these screenings revealed 
structure-property relationships (with unprecedented 
clarity) and apparent “ceilings” for MOF hydrogen 
and methane adsorption (deliverable) capacities.2,5,8 In 
principle, a similar screening strategy can be applied 
to screen MOFs for adsorption-based separations, but 
there are additional challenges associated with 
screening for separation performance. For example, 
while gas storage depends on single-component 
adsorption at established 𝑇, 𝑃 values, chemical 
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separation depends on the adsorption of mixtures, 
whose composition, and 𝑇, 𝑃 values may vary widely 
depending on the mixture source. Therefore, the best 
MOF for a given separation could be different 
depending on the exact operating conditions, likely 
making coupled MOF-process optimization 
necessary. 

To date, MOF screenings for separation have 
tended to focus on one or two operating conditions at 
a time. For instance, Sikora et al. used GCMC to 
screen a database of 137,000 MOFs for separation of 
Kr/Xe mixtures at compositions relevant to separation 
from air (80% Xe, 20% Kr) for three pressures (1, 5, 
and 10 bar) at 273 K.9 On the other hand, a separate 
Monte Carlo (specifically using the Widom insertion 
method) screening of 125,000 MOFs was conducted 
by Banerjee et al. for separation of Kr/Xe mixtures at 
conditions relevant to used nuclear fuel reprocessing, 
i.e., 400 ppm Xe and 40 ppm Kr at 1 bar and 298 K.10 
Note that these Monte Carlo-based adsorption 
calculations are relatively affordable—due to the 
monoatomic, nonpolar gases involved— but even then 
the computational cost would rapidly become 
prohibitive if one were to repeatedly screen hundreds 
of thousands of MOFs for different combinations of 
composition, T, and P in a single study.  

The problem of computational cost is even more 
serious for other separations of interest, where the 
relevant Monte Carlo simulations are inherently more 
expensive. One example is separations involving long 
hydrocarbons. For instance, the increased cost of 
simulating the adsorption these types of molecules led 
to Chung et al. performing (configurational bias) 
GCMC simulations only for 318 MOFs (at one 𝑇, 𝑃 
and composition) as part of hierarchical screening of 
~5000 MOFs for separation of hexane and heptane 
isomers.11 Similar issues are encountered when 
considering separations involving water, where 
several works12–15 have devised clever hierarchical 
screening strategies to minimize the number of MOFs 
for which adsorption of water-containing mixtures is 
directly simulated. 

The above indicates that the development of 
alternative methods that can assess the separation 
ability of MOFs faster than GCMC simulations could 
revolutionize MOF screening for separations. 
Accordingly, there is an ever growing interest in 
developing machine learning (ML) models, trained on 
GCMC data, to predict MOF adsorption-based 
separation capabilities.16–18 As examples, in early 
efforts, Simon et al. trained random forests (RFs) to 
predict selectivity for 80/20 molar Kr/Xe mixtures at 
298 K and 1 bar.16  In more recent efforts, Dureckova 
et al. used tree-based models to predict selectivity and 
working capacity for separation of 40/60 CO2/H2 
mixtures for one operating conditions (a 40 bar ↔ 1 

bar swing at 313 K), training a different model for each 
metric.17 Burner et al. also trained separate artificial 
neural networks (ANN) to predict selectivity and 
working capacity for 15/85 CO2/N2 mixtures at 1 bar 
and 298 K.18  

The caveat is that ML models trained as described 
above have suffered from a lack of “reusability.” 
Briefly, the ML models are trained from GCMC 
simulation to predict separation metrics for a given 
MOF database for specific components, compositions, 
and operating conditions. However, since the 
separation properties of the given MOF database were 
already known from the “training” GCMC data, the 
motivation to reuse the ML model is nullified and the 
computational time “investment” to train the model is 
not recovered. In contrast, a given ML model could 
find widespread application if it were transferable to 
components, compositions, and operating conditions 
on which it was not trained. Thus, most recently, 
studies using “transfer learning” and developing 
“multipurpose” models are emerging.19–22  

Anderson et al.19 showed that an ANN could 
predict H2 adsorption in MOFs at 𝑇, 𝑃 values different 
from those included in the training data. Sun et al. 
demonstrated a similar capability for an ANN to 
predict sorption of pentanediol/water on zeolite MFI, 
and also illustrated the reuse of some ANN layers on a 
new model that predicts sorption when changing either 
the adsorbent or one of the adsorbates.22 Ma et al. 
reused some layers of an ANN trained to predict H2 
sorption in a new ANN trained to predict CH4 
sorption.20 Using genetic algorithm regression and 
adsorption data for multiple molecules in a subset of 
previously synthesized MOFs, Gharagheizi et al. 
obtained an equation capable of predicting isotherms 
for a diversity of CxHySuOvNw molecules.21 These 
authors used this equation to screen MOFs for many 
chemical separations. However, since the equation did 
not predict mixture adsorption, adsorption selectivities 
were approximated as ratios of single-component 
adsorption loadings at the corresponding single 
component vapor pressure.  

In our own efforts to develop “reusable”  models, 
we trained a deep learning, multipurpose model (a 
multilayer perceptron or MLP) capable of predicting 
single-component adsorption for a diversity of small, 
nonpolar adsorbates across different MOFs and 
pressures.23 The key to the development of this model 
is the inclusion of adsorbate properties and fugacity 
(along with MOF properties) as model inputs, 
allowing the model to learn the underlying physics of 
adsorption, agnostic to the chemistry of the adsorbates, 
and the use of adsorption data for alchemical species 
to increase the diversity of the training data. In fact, no 
data for real molecules was used in training. The 
caveat is that despite its versatility, much like the 
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multipurpose model by Gharagheizi et al.,21 our model 
could not directly predict mixture adsorption data.  

 
Figure 1. The computational MOF building blocks used to construct our 51,520 MOF database. a) Connecting (so-called 
“edge”) building blocks. b). Planar organic nodular building blocks. c) Non-planar organic nodular building blocks. d) 
Nodular inorganic building blocks. Connection sites “x”, where bonds are formed with other building blocks, are highlighted 
in yellow. 

 
Intriguingly, however, if one were to use 

single-component isotherm predictions from ML 
models as inputs for established thermodynamic 
theories such as Ideal Adsorbed Solution Theory 
(IAST), one would be able to generate mixture 
adsorption data for any composition at unprecedented 
speed. The potential issue is that while the difficulty in 
measuring mixture adsorption has made IAST popular 
with experimentalists, the accuracy of IAST is a 
subject of debate.24–27 Indeed, there are assumptions in 
IAST (such as interactions of all mixture components 
with the adsorbent being identical) that one would 
expect to break under the selective adsorption scenario 
that one pursues for adsorption-based separations. 
However, considering the transferability of IAST, and 
the numerous demonstrations of its sufficient accuracy 
for calculating multicomponent loadings of small 
molecules in MOFs and other porous crystals (albeit 
with some error),24–26,28,29 combining IAST with a 
machine learning model that can predict full isotherms 
for multiple adsorbates has would allow us to (almost) 
instantly screen MOFs for hundreds of separation 
conditions. This motivated to test and demonstrate the 
efficacy of this approach. 

To achieve this goal, we leveraged a herein 
updated version of our previously trained 
multipurpose MLP model,23 which predicts single-
component isotherms for components of a variety of 

mixtures relevant to chemical separations, and our 
ability to directly verify the accuracy of IAST via 
GCMC simulations of mixture adsorption. We chose 
to focus on the accuracy of the MLP+IAST framework 
to screen a 51,520 MOF database for their ability to 
separate the binary mixtures Ar/Kr, Kr/Xe, CH4/C2H6, 

and N2/CH4 at different molar compositions and 
pressures. The components in these mixtures present 
different degrees of similarity, providing different 
scenarios under which to test IAST validity.  
Additionally, these mixtures are 
industrially/experimentally relevant. As noted earlier, 
Kr/Xe separation is relevant to Xe extraction from air30 
and used nuclear fuel reprocessing.31,32 N2/CH4 

separation is relevant to upgrading natural gas, as 
many deposits have >10% N2 content,33,34 which needs 
to be reduced below 5% before use. CH4/C2H6 

separation is also relevant to natural gas processing.35 
Natural gas often contains large amounts of ethane, 
which is a precursor for the synthesis of ethene, an 
important industrial chemical.36 Finally, Ar/Kr 
separation is relevant to separating noble gases from 
air25,30 and has niche applications in radioisotope 
dating, as isotopes of Kr and Ar are excellent 
environmental tracers, mainly due to their 
inertness.37,38 

To assess MOF separation performance, here we 
calculated the hybrid selectivity-capacity metric 
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∆𝑄B/A defined by Krishna,39 which aims to anticipate 
relative MOF performance in breakthrough 
experiments normally done during the lab testing 
phase of MOFs for separation.  Thus, based on this 
metric, we specifically investigated the ability of 
MLP+IAST to i) correctly capture top-performing 
MOFs within our database for direct material 
discovery, and ii) faithfully reproduce structure-
performance relationships that can guide rational 
material design. Subsequently, using a clustering 
algorithm, we examined the similarity among top-
performing MOFs for different separations and 
different operating conditions, thus revisiting the 
concept of “privileged” adsorbents introduced earlier 
by Tang et al.40 Finally, we complemented our MOF 
performance predictions with large-scale free energy 
calculations, using our recently developed 
computational framework,41 to identify which MOFs 
among top performers are more synthetically likely, at 
least from a thermodynamic point of view. 

 
II. COMPUTATIONAL METHODS 
A. Database Construction. We used our graph-
theory based ToBaCCo-3.0 code42,43 to build a 
51,520-MOF database featuring MOFs in 424 
different topologies. The building blocks for MOF 
construction are shown in Fig. 1. The geometry of 
each MOF built by ToBaCCo was optimized using 
LAMMPS (version 31 March 2017)44 with 
interactions described  by the UFF4MOF 
forcefield.45,46 We used an iterative approach for the 
optimizations, where in each iteration the atom 
coordinates were first optimized keeping the MOF 
lattice parameters fixed, and then the atom positions 
and lattice parameters were optimized together. 
Iterations continued until the energy per atom changed 
by less than 1.0 × 10ିସ kcal/mol. The individual 
optimizations were considered converged when no 
atom experienced a force large than 1.0 × 10ି଺ 
kcal/(mol Å-1) and the energy between one geometry 
and the next changed by less than 1.0 ×  10ିସ %. The 
fast inertial relaxation engine algorithm of Bitzek at 
al.47 was used when optimizing only the atom 
positions and a steepest descent algorithm was used 
when optimizing the atom positions and lattice 
parameters together.  
 
B. Adsorption Simulations. Adsorption loadings 
were simulated using GCMC as implemented in  
RASPA-2.0.48 In these simulations, the chemical 
potential (), volume (V) and temperature (T) are kept 
constant, while the number of molecules (N) varies. 
To obtain single-component adsorption loadings used 
to train our neural network (see below), we directly 
used adsorbate fugacity as input, which RASPA then 

used to calculate chemical potential. To obtain mixture 
adsorption data to evaluate our MLP+IAST model, 
target pressures were first converted to fugacities 
using the Peng-Robinson equation of state, which 
were then used as input for the simulations. 
Single-component GCMC simulations used 2,000 
equilibration cycles, followed by 2,000 production 
cycles to calculate ensemble averages. Binary mixture 
GCMC simulations used 3,000 equilibration cycles 
followed by 3,000 production cycles. Adsorbate-
adsorbate interactions were modeled using Coulomb 
and Lennard-Jones (LJ) interactions, while adsorbate-
framework interactions were modeled using only LJ 
interactions. Lorentz-Berthelot mixing rules were 
used. Long-range electrostatic interactions between 
adsorbates were modeled using Ewald summation 
with a precision of 1.0 × 10ିହ, while long-range LJ 
interactions were neglected beyond a cutoff of 12.8 Å. 
The LJ parameters for all real adsorbates are given in 
Tables S1 and S2. The LJ parameters for MOF atoms 
were assigned from the Dreiding forcefield49 if 
available, otherwise UFF50 parameters were used. 
  
C. MLP+IAST Model Construction. We retrained 
our previously published single-adsorption-predicting 
multi-layer perceptron (MLP) model,23 which was 
originally trained with adsorption loadings at 
fugacities between 1 and 100 bar, to now include lower 
fugacities (as here IAST required adsorption data 
starting at sub-atmospheric pressures). We used 
broadly the same training framework detailed  in our 
previous work23 with a few key differences (noted 
here). Specifically, while we used adsorption loadings 
of the same 200 alchemical adsorbates on the same 
2,400 MOFs, we now included fugacities as low as 
0.01 bar (see Table S3 for the training, validation, and 
testing fugacities used).  We also employed the same 
200-MOF validation set, the same adsorbate features 
as MLP inputs, and similar MOF features. However, 
while we used the same six MOF textural properties, 
namely void fraction (VF), gravimetric surface area 
(GSA), largest pore diameter (LPD), pore-limiting 
diameter (PLD), and pore size standard deviation 
(PSSD), as in ref. 23, we updated the chemical features 
to use the UFF4MOF atom types found in our 51,520-
MOF databases. We use this typing scheme as it gives 
more implicit information about the chemical 
environment of the MOF atoms than the Dreiding/UFF 
atom types. The MOF atom types considered (with a 
brief description) are listed in Table S4. LPDs and 
PLDs for every MOF were calculated using zeo++ 
(version 0.2.2).51 The GSAs, VFs, and pore size 
distributions were calculated using RASPA-2.0 with a 
N2 sized probe for surface area calculations and a 
helium probe for VF calculations. Each chemical 
motif number density was calculated by dividing the 
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number of each motif type present in a given MOF by 
the MOF unit cell volume in Å3.  

Another difference with our previous MLP 
training was that here we used log of fugacity as input 
instead of fugacity itself.  We used the TensorFlow 
Python library to build and train our MLP. All MLP 
training details and hyperparameters are given in 
Section S2 and Table S5, respectively. The learning 
curve for our MLP is shown in Fig. S2 and a 
comparison of our MLP validation and test predictions 
is shown in Fig. S3. Co-adsorption loadings were 
calculated from predicted single component isotherms 
using the pyIAST Python package written by Simon 
et al.52 IAST requires single-component adsorption 
isotherms of each component of the mixture  as input 
to estimate mixture adsorption. Traditionally, a model 
(e.g., a Langmuir model) with an analytical integral is 
used to provide single component loadings at any 
required pressure, but it is also possible to linearly 
interpolate single-component isotherms and calculate 
integrals numerically.25,52 This latter method has the 
advantage of not making assumptions about the shapes 
of the isotherms but requires sufficient “resolution” in 
adsorption data for linear interpolation and integral 
calculation to be accurate. We use our retrained MLP-
model to do just that, providing single-component 
isotherms consisting of adsorption loadings at 73 
pressures between 0.01 and 100 bar. Given that our 
MLP works with (logs of) fugacity as input, pressures 
used in IAST calculations were converted to fugacities 
using the Peng-Robinson equation of state before 
being input to the MLP. All code versions used for our 
MLP training and MLP+IAST calculations are given 
in Table S6. 

 
D. Model-based clustering. For the clustering study 
discussed in Section 3.4, we used a model-based 
clustering approach as implemented in the R package 
mclust53 (version 5.4.7 with R version 3.6.2). In 
model-based clustering the data are assumed to be 
sampled from a mixture of probability distributions, 
typically from the same parametric family. The 
mclust package is specifically for Gaussian Mixture 
Modeling (GMM),53 in which each observation (data 
point) is assumed to be sampled from a multivariate-
normal distribution. Modeling the data with k 
distributions corresponds to categorizing the data in k 
clusters. One of the main advantages of model-based 
over k-means or hierarchical clustering is that each 
observation can be assigned a probability of belonging 
to each cluster, i.e., the cluster assignment is “soft”, 
which allows for more refined analysis of the data 
structure. More details on model-based clustering and 
our use of the mclust algorithm are given in Section 
S3. 

 
E. Free-energy calculations. We calculated the free 
energies used in Section 3.5 using the Frenkel-Ladd 
(FL) path method.54 The FL path is a thermodynamic 
integration approach used to calculate the absolute free 
energies of crystalline solids (in our case MOFs). 
Essentially, the free energy difference between an 
Einstein crystal (EC) representation of a MOF (in 
which each atom is tethered to its equilibrium position 
with a harmonic restraint and does not interact with the 
other framework atoms) to a flexible forcefield 
representation of the MOF is calculated using 
thermodynamic integration. Then, since the free 
energy of an EC is known analytically, the absolute 
free energy of the MOF is obtained as the sum of the 
calculated free energy difference and the free energy 
of the EC. The specifics of this calculation are given 
in our previous work in ref 41. We used the same 
approach as described therein for all free energy 
calculations. 
 
III. RESULTS AND DISCUSSION 
A. Predicting single-component loadings at low 
fugacities. There are two major reasons why an 
MLP+IAST framework could potentially give 
significantly different adsorption loadings than direct 
GCMC simulation of mixture adsorption: i) 
shortcomings in the IAST framework and ii) 
inaccurate isotherms used as input for IAST. Our 
previously trained MLP was capable of accurately 
predicting single-component adsorption loadings of a 
variety of small-gas adsorbates in MOFs at fugacities 
between 1 and 100 bar.23 But, numerous small-gas 
separations depend on mixture adsorption in the 1 – 10 
bar range which, if it is to be predicted with IAST, 
requires accurate single-component loadings for  
pressures around the 0.01-0.1 bar range to be accurate 
This is because IAST calculations heavily depend on 
the shape of the single component isotherm, especially 
at (relatively) low pressures. Therefore, we retrained 
our previous MLP model to make accurate predictions 
at fugacities as low as 0.01 bar (as described in Section 
2.3), which required adding adsorption data at low 
fugacities to the original 1-100 bar data.  

To test the prediction capabilities of the new MLP 
model, we compared MLP predictions for six 
adsorbates in 1,000 test MOFs at 15 fugacities with the 
results from GCMC simulations. We started by 
comparing individual loading predictions for 15 
different fugacities between 0.02 and 100 bar as shown 
in the parity plots in Fig. 2. The plots are presented in 
log scale to emphasize the comparison for the new 
predictions at low fugacities, although it should be 
noted that we retained similar prediction accuracy at 
high fugacities as in our previous MLP. Four 
prediction performance metrics were considered for 
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the data in Fig. 2: the median absolute error (MdAE) 
median absolute percentage error (MdAPE), the 
Pearson correlation coefficient (R), and Spearman 

rank correlation coefficient (S), all calculated for each 
fugacity (see Fig. S4).  

 
Figure 2. Machine learning (ML) predictions versus GCMC predictions for single-component loadings of the 
indicated adsorbates in our 1,000 test MOFs. Loading values are compared for each MOF corresponding to 15 different 
fugacities between 0.02 and 100 bar. The MdAPE calculated across all fugacities is shown for each plot. 

 

We used median errors instead of mean errors 
because the error distributions herein have long tails, 
making the medians a better measure of central 
tendency for the error. Furthermore, for small 
loadings, percentage errors can be very large even for 
accurate predictions, e.g., predicting 0.01 mol/kg as 
0.02 mol/kg would correspond to a 100% error, 
despite being an accurate prediction. Thus, MdAPE is 
a more reliable metric than mean absolute percentage 
error (MAPE) in cases (such as this one) where 
predictions can span orders of magnitude. As for  
the correlation coefficients, R values near unity 
indicate a strong linear relationship between the MLP- 
and GCMC-predicted values, whereas S values near 
unity indicate that the ranking of MOFs using MLP 
predictions is largely similar to that obtained using 
GCMC data.  

Our MLP model MdAE increased with fugacity for 
all adsorbates, the MdAPE error decreased, and the 
correlation coefficients got closer to unity. This makes 
intuitive sense as at low fugacities (0.02-0.08 bar) 
loadings tend to be small (< 1 mol/kg) and with low 
variance (e.g., the spread of loading values across 
MOFs is smaller at 0.02 bar than at 1 bar). This means 
that even relatively small absolute errors can result in 
large percentage errors and significant deviations from 
linearity/rank correspondence. Nonetheless, for each 

fugacity (including low fugacities) the MdAEs for 
each adsorbate are all considerably less (generally by 
order of magnitude) than the corresponding median 
GCMC loadings. Accordingly, we were satisfied with 
the predictions of the retrained MLP model. Notably, 
this illustrates the advantage of multipurpose models. 
In our case, the ability of our original MLP to already 
predict adsorption at different fugacities made it so 
that to make the model transferable to lower fugacities 
we could still reuse old training data only needing to 
add data for new fugacities (we expect an analogous 
scenario if were to add data for, say, new types of 
adsorbates).  

Crucially, while an MLP model that can accurately 
predict loadings at individual pressures for a variety of 
adsorbates is useful, to be able to couple the model 
with IAST, full isotherms must also be accurately 
predicted (especially capturing the isotherm 
curvature). Thus, to understand how well our model 
predicts full isotherms we calculated the isotherm 
mean absolute percentage error (IMAPE) for each of 
our 1000 test MOFs. IMAPE is defined as the mean of 
the absolute percentage errors (MAPE) of each point 
in an isotherm (in this case the 15-point isotherms we 
used to test our model). Contrary to the performance 
metrics for individual predictions, we use means 
instead of medians for the isotherm percentage errors 
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because in this case we are not interested in the central 
tendency of the errors in each isotherm, but rather we 
are seeking an aggregate measure of the quality of the 

“fit” of each isotherm. The latter can be interpreted as 
the distance between the simulated isotherm and the 
corresponding predicted isotherm.  

 
Figure 3. Comparison of our MLP-predicted isotherms for the six indicated adsorbates to GCMC simulated isotherms 
for the 0.00 (Q1), 0.25 (Q2), 0.50 (Q3), 0.75 (Q4), and 1.00 (Q5) quantiles of the IMAPE. The open, blue points are 
GCMC simulated values and the orange lines are MLP predictions. 
 

Next, for each adsorbate, we calculated the 0.00 
(Q1), 0.25 (Q2), 0.50 (Q3), 0.75 (Q4), and 1.00 (Q5) 
quantiles of IMAPE and plotted the isotherms of the 
MOFs nearest each quantile (Fig. 3). The Q1 isotherm 
can be thought of as the “best” prediction, the Q5 as the 
worst, and the Q3 as an average (median) prediction 
(according to the IMAPE values). From Fig. 3 we can 
observe our model generally reproduces isotherm 
shapes well, without noise or unphysical behavior (i.e., 
loading decreasing with fugacity). Even the “worst” 
predictions tend to be qualitatively correct, albeit with 
large systematic errors. Fig. S5 shows the same data 
as Fig. 3 but on a log-log scale, which is better for 
observing deviations for small loading values. 

At this point, it is worth emphasizing that the 
prediction performance metrics discussed so far are for 
1,000 MOFs that were not present in the training or 
validation set and have many organic building blocks 
and hundreds of topologies that were not present in the 
training set. Thus, we expect our MLP model will 
achieve similar accuracy when applied to other MOFs 
with a diversity of chemistries and topologies that 
were not present in the current work (although in our 
experience ML predictions seem to be relatively more 
sensitive to the chemistry of the inorganic nodes). 

 
B. Combining neural network predictions with 
IAST. With a promising MLP model completed, we 
then proceeded to evaluate the efficacy of combining 
it with IAST to screen MOFs for separation processes 
using fixed adsorption beds. For such application we 

are concerned with both the selectivity and adsorption 
capacity for the strongly adsorbed component. 
Screening materials for either metric individually 
often results in contradicting rankings as it has become 
clear that materials with the highest selectivities tend 
to have low capacities (and vice versa).10,39 
Consequently, screening is best done using a 
combined selectivity-capacity metric. Here we use the 
separation potential ∆𝑄, a hybrid metric recently 
defined by Krishna.39 For a binary mixture, ∆𝑄 can be 
calculated from the mixture adsorption loadings for 
each component as: 

∆𝑄 =  𝑄஺

𝑥஻

1 − 𝑥஻

− 𝑄஻  (1) 

where 𝑄஺ is the loading of the strongly adsorbed 
component, 𝑄஻ is the loading of the weakly absorbed 
component, and 𝑥஻ is the mol fraction of component 
B. ∆𝑄 can also be expressed in terms of selectivity for 
the strongly adsorbed component 

∆𝑄஻/஺ = 𝑄஺
௫ಳ

ଵି௫ಳ
൬1 −

ଵ

ௌಲ/ಳ
൰ (2)

where 𝑆஺/஻ is the adsorption selectivity defined as:  

𝑆஺/஻ =
𝑄஺/𝑄஻

𝑥஺/𝑥஻

. (3) 

We can observe from Eq 2 that 
∆𝑄஻/஺ ≈ 𝑄஺

௫ಳ

ଵି௫ಳ
                       (4) 

for 𝑆஺/஻ ≫ 1. Therefore, a material with very large 
𝑆஺/஻ is likely to be ranked lower according to ∆𝑄஻/஺, 
than a material with a moderate 𝑆஺/஻ and high 
capacity. A detailed derivation of ∆𝑄 is given in ref. 
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39. To assess the accuracy of MLP+IAST, then, we 
compared MLP+IAST predictions of loadings and ∆𝑄 
for four binary gas mixtures (iAr/Kr, Kr/Xe, 

CH4/C2H6, and N2/CH4) at four compositions (20/80, 
40/60, 60/40, and 80/20) and at 10 pressures from 1 to 

 
Figure 4. MLP+IAST predictions of the loadings of each component (top) and ∆𝑄஻/஺ (bottom) verses GCMC 
predictions for the indicated binary mixtures. The loading plots are colored according to the component and the ∆𝑄஻/஺ 
plots are colored by point density. These plots show values for all 10 pressures (1 to 10 bar) and mixture compositions 
(20/80, 40/60, 60/40, 80/20) considered.  
 
10 bar with the corresponding metric calculated from 
binary adsorption GCMC simulations in the same 
1,000 test MOFs we focused on in Section 3.1. From 
this point on we refer to a pressure, composition and 
mixture combination as a “condition,” in which case 
in this section we considered a total of 160 conditions 
for our tests. Parity plots comparing the binary 
loadings and ∆𝑄s predicted by our MLP+IAST model 
with the corresponding GCMC results are shown in 
Fig. 4 for all the conditions considered. Further, we 
show four error metrics for each condition in Figs. S6-
S9. These metrics include the previously described 
MdAPE, R, and S, as well as an additional ranking 
metric described below. The MdAPEs for each 
condition were all (generally, well) below 25% and R 
and S values were all above 0.80 for both loading and 
∆𝑄 predictions. 

Ultimately, for HTCS studies, provided that ∆𝑄 
predictions are “reasonable,” one is arguably more 
interested in correctly capturing the highest 
performing MOFs so they can be suggested for 
synthesis and experimental testing. While to some 
extent S can gauge whether this is true for our models, 
we find that it is more informative to directly compare 
the top N MOFs predicted by our MLP+IAST 
framework with the top M MOFs predicted by GCMC 
for increasing values of N (with 𝑁 ≥ 𝑀, and N and M 
being integers). Specifically, we considered how many 

GCMC-predicted top 50 ∆𝑄 MOFs (i.e., M = 50 
corresponding to the 95th percentile) were identified 
when considering the MLP+IAST-predicted top N 
MOFs for each condition. This equates to 8,000 top 
performing MOFs (50 for each of the 160 studied 
condition). These results are summarized in Fig. 5. 

 When 𝑁 = 50 we found that between 60 and 70% 
of GCMC-predicted top 50 MOFs were identified 
(depending on the condition). By increasing 𝑁 so 𝑁 =
100 (i.e. considering the 90th percentile), we found 
that between 80 and 95% of the GCMC-predicted top 
50 MOFs were identified, with an average (mean) of 
87.5% correctness across conditions. Thus, in 
screening MOFs for chemical separations, one can 
expect (on average) to capture 87.5% of the MOFs in 
the actual 95th percentile (top 50 for 1000 MOFs) if 
one considers MOFs in the 90th percentile of ∆𝑄 
values predicted by MLP+IAST. In other words, 90% 
of MOFs in a database could be discarded by our 
MLP+IAST framework, if this were to be used in a 
first step of a hierarchical screening study. 

 
C. Predicting structure-performance relationships. 
While direct discovery of top-performing MOFs is the 
central goal of HTCS, it is not the only goal. Structure-
performance relationships are an invaluable secondary 
result of HCTS, which can provide “clear-cut” design 
rules to guide rational material design experiments. 
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The clarity of the derived rules hinges on a large 
amount of data from which structure-performance 
relationships are visualized, even to the point of 
revealing potential physical limits for a given 
performance metric.2,4,6,8,9 Thus, a predictive model 
that replaces GCMC simulations should—in addition 
to being quantitively accurate enough for use in 
hierarchical screening—correctly reproduce these 
relationships. Here, we tested that ability for our 
MLP+IAST framework to do this. For various 
conditions, we plotted MLP+IAST and GCMC ∆𝑄 
values versus MOF properties on the same graph. 
Additionally, we compared the mean and standard 
deviation of ∆𝑄 for MOFs in the 95th percentile for 
each condition using MLP+IAST and GCMC.  

 

 
Figure 5. The percent of GCMC-predicted top 8000 
∆𝑄 MOFs (y-axis) identified (50 top MOFs for each 
of the 160 conditions considered) when considering 
the top N MLP+IAST-predicted MOFs for each 
condition (x-axis). 
 

As an example, Fig. 6 shows MLP+IAST and 
GCMC ∆𝑄Kr/Xe versus MOF void fraction (VF) for 
various pressures and mixture compositions. Clearly, 
the MLP+IAST predictions closely reproduce the 
GCMC-predicted relationships for these conditions. 
Figs. S10-S12 show analogous examples for the rest 
of gas mixtures we considered in this work. We also 
found that the mean and standard deviations of VF, 
LPD, PLD, GSA, and density for MOFs in the 95th 
percentile of MLP+IAST ∆𝑄s matched the analogous 
values for GCMC ∆𝑄s very closely for all our 
considered conditions (see Figs. S13-S17), indicating 
that our MLP+IAST model reproduces the 
relationships of ∆𝑄 with other MOF properties with 
high fidelity. Accordingly, one would draw the same 
conclusions about which MOF properties generally 
yield high performance regardless of whether one uses 
our MLP+IAST model or GCMC simulations to 

screen a MOF database. Notice that both the spread 
and central tendency of the properties of top MOFs are 
informative because relationships with sharp peaks (as 
in the  ∆𝑄Kr/Xe verses VF relationship) potentially 
indicate that the MOF property under consideration is 
more important for high performance than another 
property with a broad peak in the structure-
performance relationship. 

 
D. Identifying for what separations there may be 
privileged MOFs. After validating the predictive 
ability of our MLP+IAST model in the previous 
sections, in this final section we use our model in an 
example screening study. We highlight some of the 
unique results that can be garnered by harnessing the 
transferability of our model to a wide variety of 
conditions. We screened a database of 51,520 MOFs 
for separation performance (assessed with ∆𝑄) for 
four gas mixtures (Ar/Kr, Kr/Xe, CH4/C2H6, and 
N2/CH4) at two compositions (80/20 and 20/80) and 
five pressures (1.0, 2.5, 5.0, 7.5 and 10.0 bar). This 
equates to 2,060,800 data points, which would take 
~2,000,000 CPU hours to calculate using GCMC 
(assuming 1 CPU hour per simulation). In contrast, we 
were able the generate these data in 12.6 CPU hours 
using our MLP+IAST framework. We decided to use 
this data to identify MOFs that are expected to be 
“privileged” and be high performing for multiple 
conditions (recall we define a condition as a pressure, 
composition, and mixture combination). We 
accomplished this by calculating the mean properties 
of MOFs in the 95th percentile of ∆𝑄 for each 
condition and then clustered the conditions based on 
these mean properties.  

Conditions that are in the same (or similar) clusters 
are expected to have top-performing MOFs with 
similar properties, and the property distributions of 
each cluster yield information useful for designing 
materials that are useful for multiple separations. 
Specifically, we considered the MOF largest pore 
diameter (LPD), pore limiting diameter (PLD), 
gravimetric surface area (GSA), void fraction (VF), 
density, and pore size standard deviation (PSSD) as 
the clustering variables and used a model-based 
clustering algorithm as implemented in the mclust R 
package. We used these variables as we expect the ∆𝑄 
values for the conditions we considered to be primarily 
influenced by MOF textural properties and because 
these variables have underlying distributions that can 
be modeled. 
 The results of the clustering are summarized in 
Fig. 7 which show the clustered conditions projected 
onto the first three directions resulting from the  
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Figure 6. Plots comparing the relationship of ∆𝑄Kr/Xe versus MOF void fraction as predicted by GCMC (orange) and 
our MLP+IAST model (blue). The mean VF of MOFs in the 95th percentile of ∆𝑄Kr/Xe is shown by the solid line for 
GCMC ∆𝑄Kr/Xe, and by the dashed line for MLP+IAST ∆𝑄Kr/Xe. 
 
dimension reduction algorithm of Scrucca (these 
directions account for the majority of the structure in 
the clustered data).55 This algorithm finds a set of 
linear combinations of the features considered during 
clustering that results in maximal cluster separation. 
Fig. 7 also shows the boundaries between the 
classification regions defined for each cluster, colored 
according to the boundary uncertainty (darker areas 
indicate higher uncertainty). For example, we can 
observe from Fig. 7 that clusters 2 and 3 have some 
close points, and that two conditions lie on the 
boundary between clusters 2 and 3. The condition 
20/80 N2/CH4 at 5 bar is in cluster two (it is also one 
of the points at the boundary between clusters 2 and 3) 
and the condition 80/20 Kr/Xe at 1 bar is in cluster 3. 
This means that MOFs with high ∆𝑄s for these 
separations are likely to be similar, a significant result 
as both these conditions are relevant to industrial 
separation conditions. In other words, this type of 
analysis can be used to identify privileged MOFs, i.e.  
MOFs that are high performing for multiple 
separations and/or multiple 𝑇, 𝑃 combinations. An 
additional plot justifying this conclusion using an 
alternative method is shown in Figs. S18. 
 
E. Using MOF thermodynamic feasibility 
calculations in HTCS. After identifying potentially 
privileged MOFs using the methods outlined in the 
previous section, we can proceed to use a free energy 
threshold to identify MOFs more likely to be 

synthesizable on account of having similar free energy 
per atom as other previously synthesized MOFs.41 
While the exact criterion we outlined in ref. 41 may not 
necessarily be transferable to all MOFs in general, it 
does apply to all the structures in our 51,520 MOF 
database as they are based on the same type of 
inorganic nodes. This single, global criterion, 
however, is not the complete picture, as if there is 
isomorphism (same nodes and linkers, but a different 
topology) observed for a particular MOF composition, 
the isomorph with the lowest, calculated free energy 
has around 80% likelihood (based on 32 isomorphic 
families in ref. 41) of being the one observed 
experimentally.  

Having calculated the ∆𝑄s across our database 
using our MLP+IAST model for 80/20 Kr/Xe mixtures 
at 1 bar and 20/80 N2/CH4 mixtures at 5 bar, we can 
proceeded to identifying MOFs that are high-
performing for both separations (recalling the results 
of the clustering analysis in the previous section), 
while simultaneously considering the thermodynamic 
feasibility of these high-performing MOFs. To 
accomplish this, we calculated the free energies of 
each structure in our database using the Frenkel-Ladd 
path method. Following findings from our previous 
work we considered MOFs with free energy below a 4 
kJ/mol per atom threshold thermodynamically 
feasible. 
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Figure 7. Clusters of conditions as clustered by their mean high-performing MOF properties. Each cluster is shown 
as a different shape and color. The clusters are projected onto directions found from a cluster-based dimensionality 
reduction algorithm that seeks to find linear combinations of the mean MOF properties that results in maximal cluster 
separation. Here the first three of four directions are shown in a, b, and c. These three directions account for the 
majority of the structure in the clustered data. Uncertainty boundaries between the clusters are shown in grayscale, the 
darker the area the higher uncertainty. The specific conditions 20/80 N2/CH4 at 5 bar and 80/20 Kr/Xe at 1 bar are 
directly labeled 
 
 

 
Figure 8. ∆𝑄Kr/Xe for an 80/20 composition at 1 bar 
verses ∆𝑄N2/CH4

 for an 20/80 composition at 5 bar, 
both values were predicted using our MLP+IAST 
model. Cutoffs for to be in the 90th percentile for both 
∆𝑄s are shown and thermodynamically accessible 
MOFs in both regions are highlighted as yellow stars.  
 

Using the free energy criteria described above, in 
Fig. 8 we show ∆𝑄Kr/Xe versus ∆𝑄N2/CH4

, with MOFs 
that are predicted to be simultaneously 
thermodynamically feasible and in the 90th percentile 
of both ∆𝑄s, these MOFs correspond to the “star” 
points. We considered the 90th percentiles of our 
MLP+IAST predictions as our results from Section 
3.2 suggest that this would allow us to capture the vast 

majority of the 95th percentile of MOFs that would be 
identified using GCMC. Using this data, we were able 
to identify several promising structures that were 
ranked highly for both separations and were 
thermodynamically accessible. We used the average of 
the Kr/Xe and N2/CH4 rankings to obtain a single 
ranking for both separations. Six of the 
thermodynamically feasible MOFs with high rankings 
for both separations are shown in Fig. 9. Reassuringly 
for the validity of our criterion, we were to connect 
these structures with previously synthesized MOFs.  

The MOF in Fig. 9a (average rank = 165) of edq 
topology is similar to the existing MOF Co-ABTC 
synthesized by Duan et al (note that edq topology 
MOFs are often reported as having soc topology).56 
Various isoreticular versions of this edq MOF, with 
similarly sized linkers, also have high performance for 
both separations. The MOFs in Figs. 9b (average rank 
= 12) and 9c (average rank = 58) are isomorphs that 
were determined to both be thermodynamically 
accessible (their free energies were with 1% of each 
other) and are isoreticular with the existing MOF-150 
(pyr)57 and MOF-177 (qom),58 but with a contracted 
linker leading to smaller pores. Conveniently, both 
thermodynamically feasible isomorphs are ranked 
highly in this case. The MOFs in Figs. 9d (average 
rank = 12.5) and 9e (average rank = 8.5) are also 
isomorphic and both considered thermodynamically 
feasible. The jjt structure is isoreticular with the 
existing MOF JUC-101,59 but with a smaller linker. 
Finally, the MOF in Fig. 9f (average rank = 74) is an 
existing MOF previously synthesized by Chen et al.60 
We also found that the analogs of the existing MOF 
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Figure 9. Six high-performing and thermodynamically feasible MOFs identified from our screening study. Topologies 
are shown in bold with the metal in parenthesis. The corresponding linker molecules (carboxylate form) are shown 
below each MOF. 
 
NOTT-10061 and UTSA-2062 in our database have 
reasonably high performance with average ranks of 
697.5 and 517.5, respectively (note that these are ranks 
out of over 50,000 MOFs).  
 
IV. CONCLUSIONS 
 We have demonstrated the combination of Ideal 
Adsorbed Solution Theory (IAST) with multilayer 
perceptron (MLP) predictions of single component 
isotherms to predict binary adsorption data in MOFs. 
Given that our MLP model is transferable across 
multiple adsorbates, and IAST is inherently general, 
the MLP+IAST framework is transferable (without 
modification) to many binary gas mixtures and 
operating conditions. This allows for the rapid 
screening of MOFs for performance in a variety of 
fixed bed adsorption applications. We showed that our 
MLP+IAST framework can i) effectively capture the 
majority of high-performing MOFs (e.g., the 95th 
percentile) with calculations that are  many orders of 
magnitude faster than GCMC simulations, ii) 
faithfully reproduce the same structure-performance 
relationships that would result from GCMC 
simulations, and iii) screen MOFs for many different 
chemical separations, enabling us to identify MOFs 
that are simultaneously high performing for multiple 
separations/conditions, i.e. privileged MOFs. We 
demonstrated that these privileged MOFs can be 
efficiently identified using clustering algorithms. 
Finally, by combining our MLP+IAST results with 
large-scale free energy calculations we identify 
structures that are both high-performing and likely to 
be synthesizable from a thermodynamic standpoint. 
Overall, the theoretical framework presented in this 
work illustrates a computational discovery “pipeline” 
where MOFs are built in-silico, their separations 
properties are rapidly predicted for conditions of 

interest (screening a diversity of conditions in this step 
would allow one to identify privileged MOFs), and 
promising synthetic targets are proposed based on 
their expected performance and on their synthetic 
likelihood. 
 
V. SUPPLEMENTAL MATERIAL 
See Supplemental Material to find more detailed 
information about computational methods and 
additional data validating our MLP+IAST model. 
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