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Abstract

We develop a new Deep Potential - Range Correction (DPRc) machine learning potential

for combined quantum mechanical/molecular mechanical (QM/MM) simulations of chemical

reactions in the condensed phase. The new range correction enables short-ranged QM/MM

interactions to be tuned for higher accuracy, and the correction smoothly vanishes within a

specified cutoff. We further develop an active learning procedure for robust neural network

training. We test the DPRc model and training procedure against a series of 6 non-enzymatic

phosphoryl transfer reactions in solution that are important in mechanistic studies of RNA-

cleaving enzymes. Specifically, we apply DPRc corrections to a base QM model and test its

ability to reproduce free energy profiles generated from a target QM model. We perform these

*To whom correspondence should be addressed

1



comparisons using the MNDO/d and DFTB2 semiempirical models because they produce free

energy profiles which differ significantly from each other, thereby providing us a rigorous

stress test for the DPRc model and training procedure. The comparisons show that accurate

reproduction of the free energy profiles requires correction of the QM/MM interactions out to

6 Å. We further find that the model’s initial training benefits from generating data from tem-

perature replica exchange simulations and including high-temperature configurations into the

fitting procedure so the resulting models are trained to properly avoid high-energy regions. A

single DPRc model was trained to reproduce 4 different reactions and yielded good agreement

with the free energy profiles made from the target QM/MM simulations. The DPRc model

was further demonstrated to be transferable to 2D free energy surfaces and 1D free energy

profiles that were not explicitly considered in the training. Examination of the computational

performance of the DPRc model showed that it was fairly slow when run on CPUs, but was

sped up almost 100-fold when using an NVIDIA V100 GPUs, resulting in almost negligible

overhead. The new DPRc model and training procedure provide a potentially powerful new

tool for the creation of next-generation QM/MM potentials for a wide spectrum of free energy

applications ranging from drug discovery to enzyme design.
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1 Introduction

Classical molecular dynamics simulations using traditional molecular mechanics (MM) force fields

have had tremendous impact on life science applications.1–3 However, the translation of this ca-

pability to the latest and most powerful state-of-the-art and emerging quantum mechanical (QM)

methods has not kept pace.4 These high-level QM methods are extremely important for the study

of catalytic mechanisms to guide enzyme design,5 drug discovery, and precision medicine appli-

cations.6 However, in practice, the computational cost of high-level ab initio quantum mechani-

cal/molecular mechanical (QM/MM)7–10 or quantum mechanical force field (QMFF)11 simulations

prohibits their practical use for many important applications. An attractive alternative is to use ap-

proximate QM methods such as the semiempirical12 d-orbital modified neglect of diatomic overlap

(MNDO/d)13 or density-functional tight binding (DFTB)14,15 methods that are typically 100-1000

times faster than ab initio QM. For large systems, these methods can be made both much faster

(in terms of scaling) and more accurate for condensed phase simulations using a linear-scaling

quantum mechanical force field (QMFF) framework.11,16 Although some promising progress has

been recently made,17 a critical barrier to progress for both QM/MM and QMFF methods has been

in the design of robust models for the interactions between QM and MM regions or between QM

fragments that provide the quantitative accuracy demanded by biocatalysis, drug discovery, and

precision medicine applications.

Machine learning (ML)-based potentials afford a promising solution to the development of

next-generation molecular simulation force fields with the efficiency comparable to that of MM

force fields, and accuracy that has started to approach that of high-level QM methods.18 In the past

decade, researchers have developed a broad spectrum of different ML potentials.19–35 Recently,

an ML-based model called Deep Potential - Smooth Edition (DeepPot-SE)36 was developed to

efficiently represent organic molecules, metals, semiconductors and insulators with an accuracy

comparable to that of ab initio QM models. The DeepPot-SE model has recently been highlighted

in simulations of interfacial processes in aqueous aerosol37 and large-scale combustion reactions

in the gas phase,38 and demonstrated great success in providing predictive insight into complex
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reaction processes. To improve the accuracy and transferability of the DeepPot-SE models, the

Deep Potential GENerator (DP-GEN) scheme39,40 uses an active-learning algorithm to generate

models in a way that minimizes human intervention and reduces the computational cost for data

generation and model training. The DP-GEN scheme has been successful in modeling metallic

systems,39,40 chemical reactions at the interface of water and TiO2,41 transition from molecular to

ionic ice at high pressure,42 gas-phase reactive systems,43 etc. These methods have evolved into

an open-source software platform (DeePMD-kit44 and DP-GEN40), and have been enhanced with

GPU acceleration and applied to simulations of 100 million atoms.45,46 Despite the achievement of

these preliminary applications, in practice, pure ML potentials alone have had only limited success

for condensed phase MD simulations.47 This is due to the fact that ML potentials often explicitly

model short-ranged interactions without an explicit treatment of long-ranged interactions that are

critical for modeling heterogeneous systems in the condensed phase.48

In the present work, we develop a QM/MM model strategy that departs from a fast approx-

imate QM method, and uses ML potential as a correction term to greatly enhance the QM-QM

and QM-MM interactions so as to achieve much higher quantitative accuracy. The fast QM meth-

ods provide a robust model for short-ranged bonding and enable rigorous and efficient modeling

of long-range many-body polarization and electrostatic interactions, which is the part of the inter-

atomic interactions where pure ML potentials are unreliable. However, where the fast QM methods

lack quantitative accuracy is in the short or mid-range interactions where the ML correction po-

tentials are exceptional. It is noteworthy that Kroodblawd, Goldman and co-workers have recently

reported promising success in generating accurate free energy surfaces for chemical reactions using

a similar-spirited approach using a semi-empirical QM model and force-matching.17,49

The ultimate goal is to develop new QM/MM and QMFF models based on high-level ab ini-

tio QM data in environments that mimic the condensed phase. In particular, we are interested in

models that are able to reproduce free energy (potential of mean force) surfaces and reaction path-

ways. The goal of the current work is to develop a robust training procedure for the ML neural

networks such that the resulting models can robustly reproduce free energy profiles from a refer-
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ence model. Recall, however, that for a high-level ab initio QM methods, we cannot generally

afford to simulate the QM/MM reference free energy profiles, at least not to sufficiently high pre-

cision to allow assessment of the new models. After all, this is the reason we wish to develop

ML correction potentials that can be used along with an affordable QM/MM model for practical

applications. Hence, in the present work, instead of using a high-level ab initio free energy profile,

which would not be feasible to compute, we examine two different approximate semiempirical QM

models, MNDO/d13 and 2nd-order DFTB,14 that are substantially different in functional form, and

also in terms of their predicted free energy profile results, to alternatively serve as baseline and

target models. Specifically, we examine QM/MM simulations of a series of non-enzymatic model

phosphoryl transfer reactions in aqueous solution (Figure 1).

As both QM models are sufficiently affordable, we can determine high-level reference free en-

ergy profiles from which to evaluate the performance of the ML correction potentials, and validate

the training procedures. The validated training procedures can then be applied in future work to

develop ML correction potentials using high-level ab initio QM reference data, where it is not

affordable to rigorously compute the high-level free energy surfaces. As will be discussed below,

different QM models affect not only the internal QM energy and forces, but also those arising

from QM/MM interactions. This brought to light limitations in the current DeepPot-SE model for

QM/MM simulations, and the need to develop an affordable solution to improving the QM/MM

interactions as well as the internal QM energy and forces.

To achieve this, we have extended the DeepPot-SE model to include a range-corrected QM/MM

interaction term that is smooth across the range boundary. This Deep Potential - Range Correction

(DPRc) model is shown to be critical for correctly reproducing QM/MM reference data where the

QM base and target models are significantly different. We further enhance the latest AMBER2050

with our QM/MM and QMFF framework11 interfaced with DeePMD-kit44 and DP-GEN40 to en-

able ML corrections for high accuracy. To demonstrate the accuracy and transferability of the

approach using these efficient tools, we studied the 2’-O-transphosphorylation RNA cleavage reac-

tions51 (Figure 1). This specific phosphoryl transfer (PT) reaction is essential for living organisms,

5



and has been the focus of many structural and mechanistic computational enzymology studies

of nucleic acid enzymes known to catalyze it5,52–55 yielding insight into nucleic acid enzyme de-

sign.56 This approach builds upon our recent work to develop new methods for construction of

multi-dimensional free energy surfaces57 and “quantum mechanical book-ending” methods58 for

alchemical free energy simulations, adding to the arsenal of computational tools for free energy

prediction in the AMBER suite of programs.

The paper is outlined as follows. The Methods section describes details of the DPRc models,

active learning workflow, and computational details of the free energy simulations. The Results

and Discussion section first outlines the research strategy and specific objectives of the paper,

then explores the effects of the QM/MM interaction range cutoff and initial data set on a native

non-enzymatic phosphoryl transfer model system in solution. Next, we examine the effect of the

active learning workflow on the transferability of the ML corrected models outside the scope of

their training by considering reactions of 5 additional chemically modified variants that represent

thio substitutions used experimentally in mechanistic studies of RNA-cleaving enzymes.59 Finally,

we examine the behavior of the ML QM/MM interaction potential as well as the computational

performance on both CPUs and GPUs. The paper concludes with a summary of key results and an

outlook on future work.

Table 1: Different variants of reactions were simulated where the phosphorus atom has up to 5
bonds to different atoms during the course of the reaction. X2’ and X5’ refer to the nucleophile
and leaving group positions, respectively; XP2 and XP1 refer to the pro-RP and pro-SP non-bridge
phosphoryl positions, respectively; S12 refers to a double thio substitution at the non-bridge po-
sitions. “X” refers generically to either oxygen “O” (as in the native reaction, or sulfur “S” for a
chemically modified non-native reaction.) The abbreviations for the reaction used elsewhere in the
figures, tables and text are indicated in parentheses.

Reaction X2’ X5’ XP2 XP1 X3’
Native O O O O O
O2’:S (S2’) S O O O O
O5’:S (S5’) O S O O O
O3’:S (S3’) O O O O S
OP1:S (S1P) O O O S O
OP2:S, OP1:S (S12) O O S S O
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Figure 1: Model non-enzymatic phosphoryl transfer reaction in solution. In a native RNA sys-
tem, the positions labeled “X” correspond to oxygen positions (canonical RNA numbering scheme
is used to identify atomic positions). However, chemically modified variants involving thio sub-
stitution at one or more of these positions are commonly used in experimental mechanistic stud-
ies of RNA-cleaving enzymes.59 In addition to the native model system, several of these vari-
ants will be studied in the present work (Table 1.) The phosphoryl transfer reaction coordinate,
ξPT = RX5’-P−RX2’-P, is a difference between bond-breaking and bond-forming bond lengths, RX5’-P

and RX2’-P, respectively.

2 Methods

This section describes details of the neural networks and Deep Potential model, and our exten-

sion to include smooth range-corrections for QM/MM interactions. These methods have been

implemented into the DeePMD-kit software,44 and neural network training was facilitated by the

DP-GEN software.40 Combined QM/MM and QM/MM/DPRc simulations were performed with

the sander program within AMBER20,50 with interfaces built with DeePMD-kit to integrate the

DPRc term into the potential energy. Analysis of free energy surfaces was made using the vari-

ational free energy profile (vFEP) method60,61 that has recently been extended to enable analysis

of high-dimensional free energy profiles57 and implemented into the FE-ToolKit software pack-

age.62 A more detailed description of each of these methods, along with computational details, is

provided below.

2.1 Neural networks

A neural network consists of an input layer, an output layer, and a sequence of Nhidden hidden layers

connecting the input to the output. In the context of the present work, each layer is an array, and

7



the length of the array is the number of nodes (neurons) within the layer. The Mk nodes of layer

k are denoted L(k)
i

(x) (i = 1, · · ·Mk), where the input array, x, are all Mk−1 node values from the

previous layer or all M0 node values of the input layer. The node values are computed from a

biased, weighted sum of the inputs, where the weight W and bias b values are the neural network

parameters to be trained. The dimensionality of the parameter arrays depend on the dimensionality

of the inputs and outputs.

For example, the Mk nodes of layer k can be expanded from a scalar quantity x.

L
e,(k)
i

(x) = tanh
(

xW
e,(k)
i
+ b

e,(k)
i

)

for 1 ≤ i ≤ Mk (1)

The superscript “e” refers to the “expanded” size of the output. An array input can be expanded

similarly.

L
e,(k)
i

(x) = tanh

















Mx
∑

j

x jW
e,(k)
ji
+ b

e,(k)
i

















for 1 ≤ i ≤ Mk (2)

In this case, the weight matrix is a Mx × Mk matrix rather than an array of length Mk, where Mx is

the length of the input array x.

A scalar output layer can be contracted from an input array by performing a weighted sum of

all node values. We will denote this with a superscript “c” for scalar “contraction.”

Lc,(k)(x) =
Mx
∑

j

x jW
c,(k)
j
+ bc,(k) (3)

Layer k could have twice as many nodes as the input layer, Mk = 2Mx, which shall be denoted

with a superscript “d” for a “doubling” of size.

L
d,(k)
i

(x) =































xi + tanh
(

∑Mx

j
x jW

d,(k)
ji
+ b

d,(k)
i

)

if 1 ≤ i ≤ Mx

xi−Mx
+ tanh

(

∑Mx

j
x jW

d,(k)
ji
+ b

d,(k)
i

)

if Mx + 1 ≤ i ≤ 2Mx

(4)

Finally, consecutive layers may have the same number of nodes, Mk = Mx, in which case we
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use a superscript “u” to denote an “unchanged” size.

L
u,(k)
i

(x) = xi + tanh

















Mk
∑

j

x jW
u,(k)
ji
+ b

u,(k)
i

















for 1 ≤ i ≤ Mk (5)

2.2 Deep Potential (DP)

The Deep Potential is a sum of atomic contributions to the energy.

E =

N
∑

i=1

Ei (6)

The expression for the atomic contribution Ei is a neural network consisting of 3 hidden layers (see

Eq. 7). The input layer is the “descriptor” array D(R̃i) (see Eq. 8), which provides a description

of the environment, inferred from the the “environment matrix” R̃i (see Eq. 9), the “embedding”

matrix Gi (see Eq. 11), and a reduced dimension embedding matrix G<i (see Eq. 12).

Ei = L
c
(

L
u,(Ei,3)

(

L
u,(Ei,2)

(

L
e,(Ei,1)

(

D(R̃i)
))))

(7)

D(R̃i) =
(

G
<
i

)T
· R̃i ·

(

R̃i

)T
· Gi (8)

(R̃i) ja =







































































s(Ri j), if a = 1

s(Ri j)Xi j/Ri j, if a = 2

s(Ri j)Yi j/Ri j, if a = 3

s(Ri j)Zi j/Ri j, if a = 4

(9)

s(Ri j) =



















































1
Ri j
, if Ri j ≤ Ron

1
2Ri j

[

cos
(

π
Ri j−Ron

Roff−Ron

)

+ 1
]

, if Ron < Ri j < Roff

0, if Ri j ≥ Roff

(10)

(Gi) jk = L
d,(Gi,3)
k

(

L
d,(Gi,2)

(

L
e,(Gi,1)

(

s(Ri j)
)))

(11)
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(G<i ) jk = (Gi) jk for 1 ≤ j ≤ Nneigh, 1 ≤ k ≤ M< (12)

Equation 10 is a switched reciprocal distance function that controls the range of the environment

to be described. If an atom is separated from atom i by a distance greater than Roff, then the atom is

not included in the environmental description of atom i. If a neighboring atom is within a distance

of Ron, then the neighbor is given full weight in the description. The weight smoothly changes

between these limits. Consequently, the environment matrix is a Nneigh × 4 array, where Nneigh is

the number of atoms within Roff.

Equation 11 is a second neural network; therefore, we use the superscripts (Ei, k) and (Gi, k)

to refer to the layers appearing in Eqs. 7 and 11, respectively. The number of nodes in each layer

is a choice that completes the definition of the neural network. The chosen number of nodes also

defines the array sizes for several of the arrays used in the above expressions. In the present work,

the 3 layers appearing in Eq. 7 use M
(Ei)
1 = 240, M

(Ei)
2 = 240, and M

(Ei)
3 = 240 nodes. The 3

layers appearing in Eq. 11 use M
(Gi)
1 = 25, M

(Gi)
2 = 50, and M

(Gi)
3 = 100 nodes. Each row of the

embedding matrix corresponds to a neighbor, so the size of the matrix is Nneigh × M
(Gi)
3 .

The reduced dimensional embedding matrix has the same values as Gi; however, only the

first M< columns are stored, where 1 ≤ M< ≤ M
(Gi)
3 . In other words, the dimensions of G<i are

Nneigh ×M<. Small values of M< will increase computational performance, but decrease numerical

accuracy. One empirically chooses the smallest value of M< that yields acceptable accuracy. We

have found M< = 12 to be an acceptable value in the present work.

The values of the descriptor array can be viewed as elements of a M< × M
(Gi)
3 matrix (Eq. 11);

however, it is viewed as a vector of length M< · M
(Gi)
3 when used as the input layer in Eq. 7.

2.3 Range-Corrected Deep Potential (DPRc)

We seek to develop a computationally efficient approximation to replace costly ab initio Hamil-

tonian evaluations within QM/MM MD simulations. There are several ways that one might ap-

proach this. Some researchers might prefer to eliminate the use of physics-based models entirely
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and solely rely on a ML trained model; however, current pure ML models do not explicitly contain

a treatment for long-range electrostatic interactions, which are important to maintain stable RNA

and DNA secondary structures, for example. The approach explored in this work is to substitute

the ab initio QM Hamiltonian with a semiempirical Hamiltonian and use a ML model to correct

short-range atomic interactions to mimic those obtained with an expensive Hamiltonian. We are

motivated to use a semiempirical Hamiltonian as a foundation for correction because the physics

built in to semiempirical Hamiltonians explicitly model long-range interactions, and they offer a

reasonable description of bond making and breaking events at an affordable cost.

The QM/MM calculations considered in this work use electrostatic embedding; therefore, the

QM electrostatic interaction with the MM region change when replacing the ab initio Hamiltonian

with a semiempirical model. The largest discrepancies between the electrostatic interactions will

be between the QM region and the nearby MM residues. In other words, to make the semiempirical

QM/MM method mimic the ab initio QM/MM energies and forces, the ML correction potential

needs to modify the interactions between the semiempirical atoms with the other semiempirical

atoms and the nearby MM atoms. Alternatively, replacing the QM Hamiltonian has no effect on

the MM interactions with other MM atoms. The Deep Potential can be applied to the improvement

of QM-QM interactions; however, a few changes need to be made for it to include correct QM-

MM interactions without affecting MM-MM interactions in a manner that conserves energy as MM

residues diffuse in to (or out of) the vicinity of the QM region. The modified ML model shall be

referred to as the range-corrected deep potential, which we abbreviate DPRc and describe below.

The electrostatically embedded QM/MM energy with a DPRc ML potential is shown in Eq. 13

E(R; P) = EQM(R; P) + EQM/MM(R; P) + EMM(R) + EML(R) (13)

R is a N × 3 array of atomic coordinates and P is the QM Hamiltonian’s single particle density

matrix. EQM(R; P) and EMM(R) are the QM and MM energies, respectively. EQM/MM(R; P) con-

tains the electrostatic and Lennard-Jones (or other nonelectrostatic-nonbonded model) interactions
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between the QM and MM regions. EML(R) is the DPRc ML potential.

If the ML correction was applied only to the QM atoms, then one could train the existing

deep potential model to obtain parameters for each atomic number, and the resulting model would

correct the energies and the forces between the QM atoms. When considering a layer of MM

atoms, some modifications are necessary. The correction applied to the interaction between a MM

hydrogen and the QM atoms will be much different than the correction between a QM hydrogen

and the other QM atoms. In other words, ML weight and bias parameters are trained for QM atomic

numbers and MM force field “atom types”. One can imagine other schemes, such as training the

ML parameters for MM atoms using the MM atomic charge as an additional input; however, the

MM atomic charge information is partially encoded within the force field atom type assignments.

The interaction between MM atoms with other MM atoms remains unchanged upon replacing

the ab initio Hamiltonian with a semiempirical model. The ML correction should not alter the MM-

MM interactions. During the course of a MD simulation, the MM residues may diffuse away from

(or toward) the QM region. To maintain energy conservation, the ML correction to the QM/MM

interactions must approach zero as the MM atoms leave the area of the QM region, as defined by

a cutoff distance. Furthermore, the MM atoms cannot contribute a (one-body) constant to the ML

correction to the energy.

To satisfy these requirements, the definition of the switched reciprocal function (Eq. 10) is

modified to eliminate MM atoms from the environment of other MM atoms, and formally will
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have an explicit dependence on the atom indexes in addition to their separation distance.

si j(Ri j) =















































































































































































0, if i j ∈ MM

if i j ∈ QM:

1
Ri j
, if Ri j ≤ Ron,QM

1
2Ri j

[

cos
(

π
Ri j−Ron,QM

Roff,QM−Ron,QM

)

+ 1
]

, if Ron,QM < Ri j < Roff,QM

0, if Ri j ≥ Roff,QM

if i ∈ QM ∧ j ∈ MM or i ∈ MM ∧ j ∈ QM:

1
Ri j
, if Ri j ≤ Ron,QM/MM

1
2Ri j

[

cos
(

π
Ri j−Ron,QM

Roff,QM/MM−Ron,QM/MM

)

+ 1
]

, if Ron,QM/MM < Ri j < Roff,QM/MM

0, if Ri j ≥ Roff,QM/MM

(14)

This definition creates different Ron and Roff parameters for QM-QM interactions and QM-MM

interactions so we may explore the inclusion of QM-MM corrections without disturbing the QM-

QM interactions. Furthermore, the definition the atomic contribution must be modified to avoid

one-body contributions from the MM atoms.

Ei =































Lc(Lu,(Ei,3)(Lu,(Ei,2)(Le,(Ei,1)(D(Ri))))), i ∈ QM

Lc(Lu,(Ei,3)(Lu,(Ei,2)(Le,(Ei,1)(D(Ri))))) − E
(0)
i
, i ∈ MM

(15)

E
(0)
i

is the one-body contribution to the energy.

E
(0)
i
= Lc(Lu,(Ei,3)(Lu,(Ei,2)(Le,(Ei,1)(0)))) (16)
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2.4 Computation details

We seek to use a ML-corrected semiempirical model as a replacement for an ab initio Hamiltonian

within QM/MM simulations, however, a robust training procedure for the ML correction must be

developed. The development requires answering several questions, such as:

• To what extent does “active learning” improve the fitted models ability to reproduce free

energy profiles?

• Do the models produce better free energy profiles if the training data include samples from

high temperature ensembles?

• What is an acceptable cutoff for correcting the interaction between QM and MM regions?

• Do the models reproduce free energy profiles for systems not included in the training?

Answering these questions requires extensive ab initio QM/MM simulation sampling. Our ap-

proach to developing a training procedure is to use the ML model to mimic the energies and forces

of another semiempirical Hamiltonian. For example, we can extensively sample free energy sur-

faces with MNDO/d, and the create a ML-corrected DFTB2 that reproduce the MNDO/d forces

and compare the resulting free energy profiles. In addition, we could create a reference DFTB2

profile, train a ML-corrected MNDO/d model, and compare the profiles.

For the purpose of developing the training procedure, we create free energy profiles of the

model non-enzymatic phosphoryl transfer reaction (Fig. 1) in explicit solvent. The native state

contains oxygens at the 2’, 3’, 5’ and nonbridging phosphoryl positions. We shall also explore

various thio-substituted model compounds (see Table 1) to explore the transferability of the trained

models. That is, ML-corrected Hamiltonians will be trained using the energies and forces gathered

from a subset of the thio-substituted systems, and the trained models will be used to calculate the

free energy profiles of the systems that did not contribute to the set of training data.

Simulation setup. The initial structure for each RNA-like non-enzymatic model system shown

in Fig. 1 was generated from SMILES with Openbabel,63 and then parameterized using the AM-
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BER ff14SB/GAFF force field64,65 together with partial charges generated by AM1-BCC.66 The

entire RNA-like solute molecule was defined as the QM region (QM solute). For each system,

the QM solute was solvated with 1510 TIP4P/Ew waters.67 Simulations were performed with the

sander program within AMBER2050 using a 1 fs time step. The equilibration procedure consisted

of 100 ps of heating using the Langevin thermostat to raise the temperature from 0 K to 298 K.68

The system density was equilibrated in the isothermal-isobaric ensemble at 1 atm and 298 K. Pres-

sure was regulated with Berendsen barostat using a 5 ps collision frequency.69 The Lennard-Jones

potential was truncated at 8 Å, and a a long-range tail correction is used to model the interac-

tions beyond the cutoff. The long-range electrostatics were evaluated with the particle mesh Ewald

method using a 1 Å3 grid spacing.9,70

The RNA cleavage reaction51 is described by the the reaction coordinate (progress variable)

ξPT defined as,

ξPT = RX5’-P − RX2’-P (17)

where RX5’-P and RX2’-P are the bond-breaking and bond-forming bond lengths in Fig. 1, respec-

tively. After equilibration of the reactant structure, umbrella window simulations were prepared to

scan the reaction coordinate ξPT from -4 to 5 Å in steps of 0.1 Å (91 umbrella windows in total).

The initial coordinates of each window were generated by sequentially equilibrating each umbrella

window for 25 ps in the canonical ensemble at 298 K starting from the nearest available equili-

brated structure. Free energy profiles were analyzed from 100 ps of canonical ensemble sampling

at 298 K. The 100 ps of sampling for each window was generated from 4 independent 25 ps sim-

ulations initiated from different random number seeds. The vFEP method,60,61 which has recently

been extended for analysis of high-dimensional free energy profiles57 and implemented into the

FE-ToolKit software package,62 was used to analyze the simulation results to generate the free

energy profiles.

Neural Network Training. The neural network parameters are optimized to reproduce a target

set of energies and forces. If the DFTB2 QM/MM system is the target, then the ML model is

trained to reproduce the difference between the DFTB2 QM/MM and MNDO/d QM/MM energies
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and forces. Similarly, if the MNDO/d QM/MM system is the target, then the target quantities are

the differences between the MNDO/d QM/MM and DFTB2 QM/MM energies and forces. The

energies and forces include all atoms in the system. The training is improved by providing the

optimization algorithm more samples, and the efficiency of the optimization can be improved by

using active learning (AL).

Active Learning Workflow. Active learning is a procedure whereby the set of target data is

increased to improve the fit; however, the new data is selected to avoid including redundant in-

formation within the existing training set. The 3 steps in an active learning cycle are: training,

exploration, and labeling. The training phase parametrizes multiple ML models from the existing

collection of target data. The ML training is a stochastic procedure, and the multiple ML models

are obtained by initiating the fit procedure from different random seeds. In the present work, we

generate 4 ML models per fit. The exploration process uses one of the new ML models to sample

phase space. In the current context, this means we perform a new set of ML-corrected semiem-

pirical QM/MM umbrella window simulations using 1 of the 4 ML models. The trajectories are

then reanalyzed to calculate the ML-corrected QM/MM energies and forces for each of the 4 ML

models; if the 4 sets of energies and forces sufficiently agree, then the trajectory frame is discarded.

The exploration step reanalyzes the saved trajectory frames (that were not discarded in the explo-

ration step) to obtain new target data to include in a new fit. The labeling phase evaluates the target

energies and forces for each frame saved in the exploration phase. The additional set of target

data generated in the labeling phase extends the training data used in the next iteration of active

learning. If the target energies and forces were expensive to compute, then AL is a valuable tool

to efficiently expand the information contained in the training. Alternatively, if the target energies

and forces are inexpensive to compute, then the pruning of the frames in the exploration step is not

necessary; all of the samples generated from the exploration phase can enter the labeling phase.

Initial Data. The energies and forces used to perform the fit (or the first fit in an AL proce-

dure), can be analyzed from the trajectory frames of the umbrella window simulations. This is

denoted by “MD@298” in Table 2. One could instead perform temperature replica exchange sim-

16



ulations (TREMD); in Table 2, the rows marked “TREMD@298,315,330” generate initial data

from TREMD simulations involving 3 temperatures: 298, 315, and 330 K. The rows marked

“TREMD@298,(315),(330)” perform TREMD simulations, but the training data only contains

the samples taken from the 298 K ensemble. The initial training data consists of 500 frames per

umbrella window simulation. Each umbrella window simulations was run for 25 ps (1 fs timestep)

and each frame was stored every 50 fs. The reaction coordinate is divided into 91 umbrella win-

dows, so the “MD@298” and “TREMD@298,(315),(330)” protocols each produce 45.5k frames

for the initial training. The “TREMD@298,315,330” protocol produces 136.5k frames because all

3 temperatures are included in the training.

3 Results and Discussion

3.1 Research Strategy

Herein we develop a robust training procedure for the ML neural networks that can be used as

corrections to a base QM model in order to robustly reproduce free energy profiles from a target

QM model. Such a procedure will be extremely important for developing next-generation fast QM

force fields that have accuracy comparable to very high-level QM methods for which simulation is

prohibitive due to excessive computational requirements. Hence, in order to develop and validate

such a robust procedure, we chose two fast approximate QM models, both of which it is possible to

compute benchmark reference free energy profiles for a series of chemical reactions: MNDO/d13

and 2nd-order DFTB.14 These QM models make approximations that enable greatly enhanced

computational efficiency relative to high-level ab initio QM methods, and take recourse into em-

piricism to recover considerable accuracy. These models are also significantly different from one

another in terms of the approximations they make and consequently their functional form. These

models were intentionally chosen because they are known to give significantly different reaction

profiles for the phosphoryl transfer reactions in the present study.71,72 In this way, the goal of de-

veloping a robust training procedure for a ML potentials that “corrects” one QM model into the
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other presents a stringent stress test.

Both MNDO/d and DFTB2 allow for d-orbitals in their representation of 3rd row elements,

which has been shown to be important for modeling phosphoryl transfer reactions73–75 as well as

bonding of sulfur atoms in some cases. The MNDO/d method is based on the neglect of diatomic

overlap, which enables a framework for electrostatics to be modeled as a set of atom-centered

multipoles. However, the overlap matrix used in the eigenvalue problem that must be solved self-

consistently is assumed to be the unit matrix, and hence the normal exchange-repulsions that would

normally arise from orthogonalization of the molecular orbitals are absent, and must be modeled in

a different way.76 The DFTB2 method uses a 2nd-order density functional expansion and a 2-center

integral approximation that enables very fast computation of a first order effective Hamiltonian

(tight-binding) matrix.77 Electrostatic interactions are captured as a second order term, which, like

the MNDO/d method, demands a self-consistent procedure to solve. A rigorous atomic overlap

matrix is used in the generalized eigenvalue problem that more naturally overcomes issues related

to orthogonalization. However, this also introduces complications in the representation of electro-

static interactions, and in the DFTB2 model, these interactions are modeled as atomic monopoles

with charges determined from density matrix partitioning.

As mentioned above, these QM methods were not chosen for their accuracy for the phospho-

ryl transfer reactions being used here, but rather because their differences pose a stringent test for

the purpose of training ML potentials as QM model corrections. In fact, phosphoryl transfer re-

actions are of such importance in biology that specialized models have been developed based on

a semiempirical MNDO/d-like78 and 3rd-order DFTB79,80 that greatly improve the accuracy for

these reactions. Of key importance to recognize is that the MNDO/d and DFTB2 methods have

substantial differences in the way they model orbital orthogonalization and electrostatics. The

former implies that one can expect significant differences in short-ranged exchange-repulsions, in-

cluding 1-4 interactions of the QM atoms that effect rotation about single bonds, and in particular

the puckering of 5-membered rings.81–83 The latter implies that there will be also be differences in

electrostatic interactions from different multipolar representation that affect interactions between
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QM and MM atoms in the mid-range.

In this way, we introduce a considerable challenge developing a robust ML training procedure

able to correct one QM model into the other, and vice verse. Development and validation of such

a procedure would enable the design of new fast QM+ML models, built upon the latest, most ad-

vanced QM base models with ML correction potentials trained with high-level ab initio QM target

reference data. It should be noted that the ML training procedure used here is designed to match

the forces of the target QM model. Here we compare free energy results derived from performing

new simulations using the QM+ML models, and constructing free energy profiles57,60,61 for the

chemical reactions along 1D and later in the paper 2D coordinates. Hence, the free energy pro-

files being compared were not themselves explicitly considered in the training, although reference

force data was obtained from simulations along the reaction path. Agreement of the analyzed free

energy profile results is thus a sensitive indicator of the robustness of the training procedure that

considered only force data.

In the sections that follow, we will use notation (QM base)+ML→(QM target) to indicate how

the ML correction is being applied, and we will alternatively use MNDO/d and DFTB2 as QM

base and target models. In the second subsection that follows, we will explore the effects of the

QM/MM interaction range cutoff and initial data set on a native non-enzymatic phosphoryl transfer

model system. In the third subsection, we develop a robust active learning workflow and test the

robustness the ML corrected models on a series of reactions, as well as their transferability outside

the scope of their training. In the fourth subsection, we will illustrate the nature of the DPRc model

in correcting short and mid-range QM/MM interaction potential and examine more broadly the

computational scaling on both CPUs and GPUs for different QM/MM interaction range correction

cutoffs.

3.2 Effect of Range Correction and Initial Training Data

We examined the effect of varying the cutoff for the range correction, along with the initial data

used in training, on the accuracy of the resulting parameters sets for the native reaction illustrated
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in Figure. 1 (where the “native” reaction has oxygen for all the “X” atoms in the figure). Several

parameter sets were developed and tested, and are summarized in Table 2.

Figure 2 compares the free energy profiles for each of the trained parameter sets listed in

Table 2. In each panel, the uncorrected MNDO/d (red) and DFTB2 (black) are shown in bold

line. It is clear that the profiles are considerably different in shape, overall reaction free energy,

and curvature around the reactant state minimum. The top panels (Figure 2a-b) compare QM/MM

interaction range correction cutoff values of Roff,QM/MM=0, 3, 6 and 9 Å, all using initial data from

TREMD at 298, 315 and 330K (TREMD@298,315,330 protocol). As Roff,QM/MM increases, a larger

radius of MM atoms are included in the DPRc correction potential. The bottom panel (Figure 2c-

d), on the other hand, compares the effect of initial training data set (prior to the active learning

cycles) using a cutoff value Roff,QM/MM=6 Å. The DPRc models were initially trained on data derived

from one of 3 protocols (MD@298, TREMD@298,(315),(330), or TREMD@298,315,330). Each

model then underwent 2 cycles of active learning, each of which produced 500 additional frames

per umbrella window simulation that were then included in the labeling phases. The profiles within

the figure were generated from final models after the active learning cycles.

It is clear that in absence of a range correction (Roff,QM/MM=0Å), the DPRc potential does not

lead to close agreement with the target QM results (particularly for the DFTB2+ML model). Con-

sideration of a range correction out to 3Å considerably improves the agreement. Extending the

range correction to 6Å leads to profiles that are visually almost indistinguishable from the target

reference results (and is within the statistical uncertainty of the calculations, data not shown in

order to maintain better clarity of the plot lines). Further extension out to 9Å does not provide

significant if any additional benefit.

Whereas the DPRc models were sensitive to the range correction cutoff, they are less affected

by the initial data set used prior to active learning optimization cycles (bottom panels of Fig. 2).

The only notable exception occurs for the MNDO/d+ML model using replica exchange data only

at 298K, the overall reaction free energy (orange line, bottom left panel in Fig. 2) is elevated and

remains closer to the uncorrected MNDO/d result. Inclusion of data from higher temperatures al-
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leviates this issue and provides overall the closest agreement with the target QM reference data.

We recommend the use of enhanced sampling with TREMD for generation of initial data in order

to broaden the conformational space considered. As this method also requires coupled simula-

tions at higher temperatures, we further recommend that this data be used in the ML training.

The philosophy here is that it is important to include representative data not only for low-energy

conformations that are likely to be frequently sampled, but also higher-energy conformations that

should rarely be sampled at ambient temperatures. In this way, the ML correction potentials can

be trained to appropriately occupy/avoid low-energy/high-energy regions of conformational space,

as appropriate.

Taken together, these are important results. The need to include a range correction out to 6Å

suggest that for QM/MM simulations, it may not be enough to simply correct the internal QM

energies and forces, but that explicit consideration of ML corrections for the mid-range QM/MM

interactions is also crucial. Further, it is prudent to include not only simulation data at ambient

temperatures, but also data from higher temperature enhanced sampling simulations. Moving for-

ward, we adopt the use of a 6Å QM/MM interaction range correction, and include initial data from

TREMD simulations at 298, 315 and 330K.

3.3 Transferability and ML Model Validation

To check the transferability of the model, we examine 5 different variants from the native reaction

where one or more oxygen positions are replaced with sulfur (Fig. 1). These variants, along with

their abbreviations, are listed in Table 1. These substitutions are often used experimentally as

probes in mechanistic studies of RNA-cleaving enzymes,59 and particularly RNA enzymes. Sulfur

is larger, softer, less electronegative and more polarizable than oxygen. Thiols tend to have pKa

values that are 4-5 units below that of corresponding alcohols, indicating that alkyl sulfides are

more stable in solution than alkyl oxides. Hence, for example, an S5’ variant is an “enhanced

leaving group” that can be used to probe to rescue the effects of knocking out a presumed catalytic

general acid. An S2’ variant, on the other hand, is expected to be more reticent toward nucleophilic
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Table 2: 12 sets of ML parameters used to explore accuracy of resulting DPRc model and ro-
bust active learning workflow. We use the notations (QM base)+ML→(QM target) to represent
the development of a ML correction to the QM base model in order to reproduce reference re-
sults from the target QM model. Models consider different cutoffs, RC ≡ Roff,QM/MM for the
smooth range correction for QM/MM interactions (a value of zero indicates no range correc-
tion). The value for Ron,QM/MM in the switched reciprocal function in Eqn. 14 was chosen to be:
Ron,QM/MM = max(0,Roff,QM/MM − 2Å). The values of Ron,QM and Roff,QM are fixed to 1 and 6 Å, re-
spectively. These values were chosen to be consistent with previous works using the Deep Potential
model.38,43 In addition, we consider different initial data used in the ML potential training. Specif-
ically, we consider: 1) “MD@298”, traditional MD at 298K, 2) “TREMD@298,(315),(330)”,
enhanced sampling with TREMD at 298K, and 3) “TREMD@298,315,330”, TREMD using data
at 298K in addition to data from elevated temperatures 315K and 330K.

ML QM base +ML→ QM target RC (Å) Initial Data Set
1 MNDO/d +ML→ DFTB2 0.0 TREMD@298,315,330
2 MNDO/d +ML→ DFTB2 3.0 TREMD@298,315,330
3 MNDO/d +ML→ DFTB2 6.0 TREMD@298,315,330
4 MNDO/d +ML→ DFTB2 9.0 TREMD@298,315,330
5 DFTB2 +ML→MNDO/d 0.0 TREMD@298,315,330
6 DFTB2 +ML→MNDO/d 3.0 TREMD@298,315,330
7 DFTB2 +ML→MNDO/d 6.0 TREMD@298,315,330
8 DFTB2 +ML→MNDO/d 9.0 TREMD@298,315,330
9 MNDO/d +ML→ DFTB2 6.0 TREMD@298,(315),(330)
10 MNDO/d +ML→ DFTB2 6.0 MD@298
11 DFTB2 +ML→MNDO/d 6.0 TREMD@298,(315),(330)
12 DFTB2 +ML→MNDO/d 6.0 MD@298
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Figure 2: Free energy profiles of different parameters defined in Table 2, compared with original
DFTB2 and MNDO/d curves. The left panels involve ML parameters that use MNDO/d as the
base QM model and DFTB2 as the target QM reference, whereas the right panels use DFTB2
as the base QM model and MNDO/d as the target QM reference. The top panels compare range
correction values of 0, 3, 6 and 9 Å, all using initial data from TREMD at 298, 315 and 330K.
The bottom panels compare initial data from conventional MD and TREMD at 298K, as well as
from TREMD using 298, 315 and 330K, all using a range correction of 6 Å. All ML curves were
calculated from 4 independent MD simulations at the last cycle of active learning. All reference
curves were calculated from 4 independent MD simulations with the same method.
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attack to phosphorus.84 Further, in the non-bridge (OP1/OP2) positions, sulfur will prevent binding

of hard divalent metal ions such as Mg2+ which is often seen in RNA enzyme active sites, but will

bind softer thiophilic divalent ions such as Cd2+. Hence, thio substitution experiments are often

used to study thio/rescue effects in order to probe for functional divalent metal ion binding sites.

In the absence of divalent metal ion binding, these positions have much smaller effects that involve

a balance between electronic and solvation effects.

Here we apply ML training procedures using not only the native reaction, but also reactions of

S2’, S5’ and S12 variants. As described above, we use a 6Å range correction, and TREMD data

at 298, 315 and 330K as initial data. However, here we explicitly examine ML parameters sets

that were trained both without and with the active learning approach. We focus on the analysis

of results that use of DFTB2 as the base QM model, and MNDO/d as the target QM model (i.e.,

DFTB2+ML→MNDO/d). Corresponding results switching the base and target QM models are

provided in the supporting information.

Table 3 quantifies the improvement gained by active learning and the transferability of the

trained models. The table summarizes the reaction profiles by listing the reaction free energies

(∆G) and transition state barriers ∆G‡. The MNDO/d QM/MM profiles are the reference pro-

files, and the ML corrections are applied to the DFTB2 system. All ML corrections use the

4 Å and 6 Å for Ron and Roff, respectively, and the initial training set was generated with the

TREMD@298,315,330 protocol (ML 7 in Table 2). The initial training set includes the energies

and forces from all 91 windows spanning the reaction coordinate of the native ligand and the 91

windows for each of the S2’, S5’ and S12 thio-substituted ligands. The S3’ and S1P thio sub-

stitution data are not included in the training of the ML corrections. The training to the initial

data produces 4 sets of ML parameters (by running the optimization 4 times with different random

number seeds). DFTB2+ML free energy profiles are generated for each set of ML parameters.

The 4 free energy profiles are averaged, and the columns in Table 3 labeled “ML (No AL)” are

taken from the average profile. Similarly, the columns labeled “ML (with AL)” are taken from an

averaged profile after applying 2 cycles of active learning to each of the 4 ML parameterizations.
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Each cycle of active learning produced 500 additional frames per umbrella window simulation, all

of which was included in the labeling phases.

Overall, the training procedure appears to be remarkably robust (Figure 3), despite the fact

that for the reactions of the variants, the DFTB2 and MNDO/d profiles are strikingly different

compared with that of the native reaction. Specifically, the DFTB2 sulfur is considerably softer,

leading to dramatically more stable alkyl sufide species. This results in reaction ∆G values that

are much more positive and negative for the S2’ (nucleophile position) and S5’ (leaving group

position) variant reactions, respectively. The reactions all occur through an in-line 2’ nucleophilic

attack to form a pentavalent dianionic phosphorane transition state (or intermediate), followed

by departure of the 5’ leaving group. In the transition state/intermediate, the 2’ and 5’ positions

occupy axial positions in the pentavalent phosphorane (X2’-P-X5’ angle roughly 180 degrees),

and the XP1, XP2 and X3’ positions are located in equatorial positions. The X3’ position is a

“bridging” position between the phosphorus and C3’ atom, whereas the XP1 and XP2 are terminal

“non-bridge” positions. DFTB2 predicts that sulfur in an equatorial position in the phosphorane is

greatly overstabilized (by more than 30 kcal/mol), leading to a deep artificially stable phosphorane

intermediate not observed for MNDO/d. Nonetheless, for the reactions included in the training

(Figure 3a,c,d,f), the DFTB2+ML models are in remarkable agreement with the MNDO/d profiles.

ML training in the absence of active learning provides good overall agreement with the shape of

the profiles, but tend to have barriers that are still underpredicted. In all cases, further training

with active learning leads to improvement of the barriers. After active learning, the greatest error

of reactions used in training with respect to the MNDO/d reference free energy barriers occurs

for the native and S12 reactions, with errors of -1.0 and -1.4 kcal/mol, respectively (roughly 5%

error in the forward barrier). Errors in the reaction free energy values are all below 1.0 kcal/mol in

magnitude.

In order to assess transferability of the DFTB2+ML model, we examine 1D profiles for two re-

actions of the S1P and S3’ (Figure 3b,e) that were not considered in the training. The DFTB2+ML

models the S1P reaction reasonably well, whereas for the S3’ reaction the barrier is considerably
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underestimated. The latter is due to the overstabilization of equatorial sulfur in the DFTB2 model.

The S3’ variant is the only example in all of the reactions where there is a sulfur in a bridging equa-

torial position in the pentavalent phosphorane transition state (whereas this is a stable intermediate

with pure DFTB2). Hence, the neural network did not have data representative of this situation,

and the DFTB2+ML correction is in greater error. The S1P reaction also has a sulfur in an equa-

torial position in the pentavalent phosphorane transition state, however, it is non-bridging. In the

training of the DFTB2+ML, the S12 reaction had two sulfur atoms in non-bridging positions, and

this enabled the resulting network to better predict the behavior for the S1P variant which had only

one. One striking feature of the data shown in Table 3 is the improvement that the active learning

procedure affords, which is most pronounced for the reactions of variants not even considered in

the training. After active learning, the S1P reaction barriers had an error that was reduced from

-2.3 kcal/mol to only -0.3 kcal/mol (1.3% error), whereas the S3’ reaction barrier had an error that

was reduced from -6.7 kcal/mol to -5.5 kcal/mol (27% error). This is strongly suggestive that the

active learning procedure is a powerful methods to create more robust and transferable ML models.

We further examined transferability by considering 2D free energy profiles for the native reac-

tion from umbrella sampling simulations not included in the training. Figure 4 compares the 2D

free energy surfaces (RP-O2’ and RP-O5’ coordinates) and 1D reaction profiles (derived from the 2D

surface) for the native reaction using MNDO/d+ML→DFTB2 (left panels) and DFTB2+ML→MNDO/d

(right panels). Only the active learning ML correction is considered. Transition state barriers and

reaction coordinate values are provided in the supporting information. Overall, for the native re-

action, active learning very accurately models the full 2D free energy surface, reaction path, and

transition state barrier and geometry for both MNDO/d and DFTB2 target reference data.

3.4 Behavior and Computational Performance of the DPRc Potential

In order to illustrate the behavior of the DPRc QM/MM interaction range correction, Figure 5

shows the interaction energy between an MM (TIP4P/Ew) water molecule with the QM solute as a

function of the phosphorus-water oxygen (P-OW) interaction distance. Shown are the DFTB2 and
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Figure 3: Free energy profiles of different variants listed in Table 1, compared with original DFTB2
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simulations at the last cycle of active learning. Curves labeled ML (no AL) were calculated from
one MD simulation at the first cycle of active learning.

27



Figure 4: 2D free energy surfaces (RP-O2’ and RP-O5’ coordinates) and 1D reaction profiles (de-
rived from the 2D surface) for the native reaction using MNDO/d+ML→DFTB2 (left panels) and
DFTB2+ML→MNDO/d (right panels). Only the active learning ML correction is shown. Top row
shows 2D surface for target QM reference results (left, DFTB2; right, MNDO/d), as well as a 1D
profile along the reaction path obtained from the 2D surface and projected onto the 1D reaction
coordinate ξPT = RP-O5’ − RP-O2’ (shown as insets, with transition state position labeled with a solid
dot). Bottom row shows 2D surface for base QM +ML model results (left, MNDO/d+ML; right,
DFTB2+ML), as well as a 1D profiles along the reaction path obtained from the 2D surface and
projected onto the 1D reaction coordinate ξPT = RP-O5’ − RP-O2’ (shown as insets, with transition
state position labeled with a solid dot).
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Table 3: Comparison of target and model transition state free energy barriers (∆G‡) and reaction
free energies (∆G) in kcal/mol for each of the reaction models described in Table 1. Reaction free
energy values were taken as the difference between the reactant state minimum and the value of
the free energy profile at 4 Å. The target QM reference is MNDO/d, and the model is DFTB2 +
ML correction. Two ML correction potentials are compared. The first, designated ML (no AL),
is trained on an initial set of simulation data with no active learning. The second, designated ML
(with AL) uses active learning procedure to further evolve and improve the deep learning potential.
Note: reactions of variants indicated by an asterisk (*) were NOT used in the ML training, and
are examined to test the transferability of the ML correction to reactions outside the scope of its
training. Details are provided in the text, and the full free energy profile curves are shown in Fig. 3.

DFTB2+ML→MNDO/d
Errors (shown in parentheses)

MNDO/d ML (no AL) ML (with AL)
Reaction ∆G‡ ∆G ∆G‡ ∆G ∆G‡ ∆G

Native 20.0 -5.2 (-1.2) (-0.1) (-1.0) (0.7)
S2’ 30.5 4.3 (-1.2) (-0.8) (-0.3) (0.2)
S5’ 10.0 -18.5 (-1.2) (-0.8) (-0.5) (-0.5)
*S3’ 20.1 -5.5 (-6.7) (-0.6) (-5.5) (-0.8)
*S1P 23.2 -3.1 (-2.3) (-0.5) (-0.3) (0.3)
S12 28.3 -1.2 (-3.2) (-4.4) (-1.4) (-0.5)

MNDO/d QM/MM potential energies, and a DFTB2+ML model trained to reproduce the MNDO/d

QM/MM energies and forces. The ML parameterization is the same used within Table 3. The

interaction potential is seen to be quite smooth, and quickly approaches zero by 4.0 Å, until it is

rigorously and smoothly turned off by 6 Å. In this way, the DPRc term is able to compensate for

differences in the short-ranged exchange repulsions, as well as mid-range electrostatic interactions

between the MNDO/d and DFTB2 QM models.

The inclusion of the DPRc correction to the QM/MM calculations necessarily causes the simu-

lations to require more wallclock time to complete the simulation. Table 4 compares the wallclock

time of the DFTB QM/MM simulations shown in Fig. 2b as the DPRc QM/MM cutoff is increased.

The timings are shown when the entirety of the calculation is performed on 1 CPU core and when

the QM/MM calculation is performed on 1 CPU core and the DPRc correction is accelerated by

use of a GPU coprocessor. The simulations were performed using a 2.10GHz Intel Xeon Gold

6230 CPU with 28MB of cache and a NVIDIA V100 GPU. Figure 6 further illustrates the scaling

of the DPRc term as a function of the QM/MM range correction cutoff.
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The timings shown in Table 4 suggest that the DPRc correction is very expensive if performed

on CPUs. Extending the correction to include 6 Å of MM solvent is 5 times more expensive than

performing an uncorrected DFTB2 QM/MM force evaluation. Alternatively, the DPRc correction

is relatively inexpensive if it is performed on a GPU, owing to our use of DeePMD-kit, which has

been highly-tuned for GPU performance. The GPU evaluation of the DPRc model using a 6 Å cor-

rection increases the cost of the underlying QM/MM (single-core CPU) calculation by only 11%.

The cost of an ab initio QM Hamiltonian is orders of magnitude more expensive than a semiempiri-

cal evaluation in comparison, which is the primary motivation for developing the DPRc correction.

The cost of the DPRc correction is expected to increase roughly linearly with number of QM/MM

particle-particle interactions, which in the limit of very large values of QM/MM interaction range

correction cutoff, Roff,QM/MM, is expected to be proportional to (Roff,QM/MM)3 (i.e., proportional to

the volume, assuming uniform density of MM particles around the QM solute). In the present

example, the timings for both CPU and CPU/GPUs can be fit to a scaling model as illustrated in

Fig. 6 (see supporting information for further details). Examination of the pre-factors suggest that

the evaluation of the range-correction term is roughly 100 times faster using an NVIDIA V100

GPU co-processor than using a single CPU core alone.

Table 4: Wallclock time per simulation step (ms/step) observed in the DFTB2 QM/MM simulations
of the native reaction with and without the use of DPRc corrections. The timings were performed
using a 2.10GHz Intel Xeon Gold 6230 CPU with 28MB of cache. The “CPU” times performed
the QM/MM and DPRc corrections on 1 CPU core. The “GPU” times performed the QM/MM
calculation on 1 CPU core and the DPRc correction a NVIDIA V100 GPU. The “QM/MM” column
does not include a DPRc correction. The remaining columns include the DPRc model to correct
the interaction between QM atoms and the interactions between QM and MM atoms separated by
a distance not greater than RC, where RC ≡ Roff,QM/MM is the cutoff for the smooth range correction
for the QM/MM interactions (a value of zero indicates no range correction). The timings with
DPRc correction correspond to models 5-8 in Table 2.

QM/MM RC (Å)
· · · 0 3 6 9

CPU 140 374 442 748 1416
GPU · · · 152 152 156 164
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Figure 5: The interaction energy ∆E between the native QM solute and a single MM water calcu-
lated at a range of phosphorous (P) and water oxygen (Ow) distances by 1D rigid translation of the
water along the phosphate plane. The model ML 7 in Table 2 was used to correct the interaction
energy from DFTB2 to MNDO/d level. The purpose of this plot is to simply illustrate the nature
of the DPRc term for a simple well-defined interaction energy between QM and MM molecules.
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Figure 6: Illustration of scaling of the wallclock time per simulation step (ms/step) observed in the
DFTB2 QM/MM simulations of the native reaction with and without the use of DPRc corrections.
Times are shown as a function of RC ≡ Roff,QM/MM, the cutoff for the smooth range correction for
the QM/MM interactions (a value of zero indicates no range correction). These values are listed in
Table 4 and described in more detail in the caption. The DPRc timings could be fit to non-linear
model t0 + a · (RC)b where t0 is the timing in ms/step for the DPRc model with RC=0 Å, a is a pre-
factor parameter in units of (ms/step)/(Åb), and b is an empirical unitless scaling exponent. The
simulations were performed using a 2.10GHz Intel Xeon Gold 6230 CPU with 28MB of cache and
a NVIDIA V100 GPU.
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4 Conclusion

In this work we develop a new Deep Potential - Range Correction (DPRc) machine learning poten-

tial, along with an active learning procedure for neural network training. We test the DPRc model

and training procedure against a series of 6 non-enzymatic phosphoryl transfer reactions in solu-

tion that are important in mechanistic studies of RNA-cleaving enzymes. We used DPRc model

corrections to a base QM model in order to reproduce reference data from a QM target model. For

this purpose, we chose the MNDO/d and DFTB2 approximate quantum models that differ from

one another substantially in order to provide a rigorous stress test for the DPRc model and training

procedure. Examination of different range corrections and training data for the native reaction sug-

gest that range corrections for QM/MM interactions out to 6Å are required for high accuracy, and

further that there is benefit from including data from enhanced sampling with temperature replica

exchange, including some data at elevated temperatures to train models to avoid high-energy re-

gions of conformational space. The DPRc model was demonstrated to be highly robust in its ability

to accurately model 4 different reactions simultaneously (i.e., with the same universal model). Fur-

ther, the DPRc model and training procedure were demonstrated to be highly transferable to model

2D free energy surfaces for the native reaction, along with a 1D free energy profile for the reaction

of the S1P variant, both of which were not explicitly considered in the training. Transferability

to the reaction of the S3’ variant was not as successful, producing a free energy profile that was

overall correct in shape, but that underestimated the forward barrier by 5.5 kcal/mol. Here it was

shown that active learning had a profound effect on improving the DPRc model in terms of agree-

ment with training data, as well as transferability outside the scope of the training data. It should

be noted that the DP-GEN scheme used to develop the DPRc models considers the atomic forces as

target parameters to train the neural networks. Our assessment and validation of the models, how-

ever, considers the analyzed free energy surfaces that result from umbrella sampling simulations

along the reaction coordinate(s) which were not explicitly considered in the training per se. Hence,

the success of the models reported here has important implications for quantitative free energy

simulations that use range-corrected ML potentials to enhance the accuracy of fast, approximate
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QM/MM methods. It is the hope that the new range-corrected ML potential, along with the robust

training procedure, will enable the creation of next-generation QM/MM and QMFF potentials for

a wide spectrum of free energy applications, ranging from drug discovery to enzyme design.
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