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ABSTRACT 

Target prediction is a crucial step in modern drug discovery. However, existing experimental 

approaches to target prediction are time-consuming and costly. Here, we introduce LigTMap, an 

online server with a fully automated workflow that can identify protein targets of chemical 

compounds among 17 classes of therapeutic proteins extracted from the PDBbind database.  It 

combines ligand similarity search with docking and binding similarity analysis to predict putative 

targets.  In the validation experiment of 1251 compounds, targets were successfully predicted for 

more than 70% of the compounds within the top-10 list. The performance of LigTMap is 

comparable to the current best servers SwissTargetPrediction and SEA. When testing with our 

newly compiled compounds from recent literature, we get improved top 10 success rate (66% ours 

vs. 60% SwissTargetPrediction and 64% SEA) and similar top 1 success rate (45% ours vs. 51% 

SwissTargetPrediction and 41% SEA).  LigTMap directly provides ligand-bound complexes in 

PDB format, making the result suitable for further structural studies of protein-ligand complexes 

in computer-aided drug design and drug repurposing projects. LigTMap is free for non-commercial 

use at https://cbbio.cis.um.edu.mo/LigTMap/.  (177 words) 
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INTRODUCTION 

In recent years, the number of small natural and synthetic molecules, both real and virtual, has 

significantly increased [1]. One way to evaluate their potential for therapeutic applications is to 

identify their molecular targets related to diseases. Similarly, compared with traditional methods, 

finding new targets for existing drugs, that is, drug repurposing, can disclose new clinical 

applications of known drugs in a shorter time and at a lower cost [2]. On the other hand, the newly 

discovered molecular targets of existing drugs may imply the potential side effects and toxicity of 

the drug, so efforts should be made to improve the safety of these drugs [3]. Despite technological 

advances, experimental methods to target identification remain laborious, expensive, and 

sometimes unsuccessful. Moreover, initial hypotheses on the potential target are typically required 

as the basis for the design of effective biochemical and genetic interaction experiments [4].  

 

Over the years, various in silico approaches have been developed to provide solutions to the target 

prediction problem [5]. Supplementary Table S1 presents a list of some of these computational 

target prediction methods, highlighting their methodological strategies, employed datasets, and 

availability of online servers. These approaches can be broadly classified into three groups: ligand-

based, structure-based, and hybrid [6][7]. The central notion of ligand-based approaches is that 

chemically similar compounds exhibit analogous biological activities [8]. Thus, ligand-based 

methods extract chemical features of molecules using fingerprint algorithms to compare the 

similarities between the query compounds and the ligands with known activities [8]. Despite their 

simplicity, with prior knowledge of ligands and their targets, ligand-based methods are effective 

and fast. Nevertheless, their domains of application are limited by the available chemical and 

biological data [9].  Furthermore, it is not straightforward to define cutoffs for chemical similarity 
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measures, as they strongly depend on the fingerprints used and classes of the compounds under 

study [10]. Examples of ligand-based methods include SEA [11], SuperPred [12], PASS [13], and 

TarPred [14]. To improve predictive performance, newer methods have emerged which utilize 

supervised (such as HitPick [15] and Target Hunter [16]) and unsupervised machine learning (ML) 

(such as SPiDER [17]) to improve the model precision rate. In addition, some of the earlier 

methods, such as ChemProt [18] and SwissTargetPrediction [19,20] have also updated their search 

engines to use ML models, thus showing greater effectiveness [21,22]. 

 

On the other hand, structure-based approaches utilize the available three-dimensional (3D) 

structural information of the target. They either apply docking to estimate the structural and 

chemical fitness of the query compound to the target or extract a set of pharmacophores from 

protein-ligand complexes and check whether the query compound matches well with the 

pharmacophores. In both cases, sufficient exploration of the ligand or protein conformational space 

is necessary. Consequently, structure-based approaches are costly and more time-consuming than 

the ligand-based methods. Several such methods have been developed including TarFisDock [23], 

PharmMapper [24], DRAR-CPI [25], PatchSearch [26], ACID [27], and Zhang [28]. However, 

few of them provide online servers, and for these servers, the number of searchable targets is 

limited. Finally, methods that combine both ligand and structural information, such as 

ChemMapper [29], can be utilized to predict more complex systems [7]. In addition to typical 

protein or ligand data, other biological information, including protein sequences, protein-protein 

and protein-ligand interactions, and disease pathways, can also be used to more reliably infer the 

relevant targets [30]. 
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In the present study, a new, hybrid, fully automated target prediction workflow called LigTMap 

was developed to predict the molecular targets of a query compound. Here, we propose the ligand 

similarity search as the first step to short-list putative targets, and study the influence of different 

fingerprints and thresholds on effective target selection. In the second step, the binding mode of 

the query compound into each putative target is predicted by molecular docking, and its binding 

mode is compared with the binding mode of the co-crystallized ligand. The ranking of the targets 

is based on the combined score computed from the ligand and binding similarity scores. To assess 

the performance of LigTMap, we compare it with four existing servers using a set of manually 

curated benchmark compounds.  
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MATERIALS & METHODS 

Target Class-specific Datasets 

The ligand and protein structures, as well as their experimental activity data in Ki, Kd, or IC50, 

were obtained from the PDBbind database (version 2017) [31]. This annually updated database 

has been widely used as the benchmark for comparison of protein-ligand docking programs and 

for assessment of scoring functions. For the purpose of target prediction, we labeled each PDB 

structure in the dataset with its actual target class and target name by referring to the PDB database 

[32] and the original literature of the structure. In total, about 6000 protein-ligand complexes were 

processed and classified into 17 target classes. Among the target classes, 12 are human protein 

targets and 5 are non-human targets that are originated from viruses or bacteria. The human protein 

targets include kinase, transferase, beta-secretase, hydrolase, ligase, and isomerase enzymes as 

well as an anticoagulant, a bromodomain (BRD), peroxisome, estrogen, carbonic anhydrase (CA), 

and diabetes, while the non-human targets include the human immunodeficiency virus (HIV), 

hepatitis C virus (HCV), influenza, tuberculosis (TB), and Helicobacter pylori (H. pylori). Table 

1 lists the 17 target-specific datasets curated in this study.  

 

To prepare for the prediction workflow, each ligand in the datasets was first converted into a 

SMILES string using the Maestro program in Schrödinger (Schrödinger Release 2017-4, 2017). 

Subsequently, the 2D structural fingerprints of the evaluated ligand were generated by RDKit 

(RDKit: Open-source cheminformatics) employing Morgan (also named as the circular 

fingerprint), MACCS keys, Daylight, Avalon, and 3D pharmacophore fingerprint algorithms. For 

each protein-ligand complex, the interaction fingerprint (IFP) was extracted using the Open Drug 

Discovery Toolkit (Wójcikowski et al., 2015). All fingerprints were saved in the binary format to 



 7 

accelerate the similarity analyses that were conducted for the query ligands. To prepare for docking 

using PSOVina2 (Tai et al., 2018), the PDB files in the datasets were converted into the PDBQT 

format using AutoDockTools (Morris et al., 2009). Protein structures were processed employing 

the prepare_receptor4.py program with the options to remove water residues and 

nonstandard residues, create bonds, and add hydrogens if none were already present. Ligand 

structures were prepared using the prepare_ligand4.py program with the options to repair 

hydrogens and merge nonpolar hydrogens and lone pairs.  

 

For method validation, each target dataset was divided into 80% training and 20% validation.   The 

selection of ligands for the validation set is based on random selection but each ligand was checked 

to ensure that the correct protein target is present in the training set. Finally, there were 5062 

complexes in the training set and 1251 ligands in the validation set.  

 

To test the performance of LigTMap independently, newly identified compounds with 

experimentally validated targets were searched from current medicinal chemistry journals. To 

ensure that these compounds were not already included in our datasets or in the datasets of the 

methods used for comparison, only reports published in the year of 2018 and later were considered. 

In total, 98 compounds were obtained for 7 target classes, including kinase, ligase, BRD, CA, beta-

secretase, HIV, and TB.  It should be noted that the benchmark data also contained compounds for 

multiple targets – kinase and BRD (categorized into the kinase class) as well as TB and kinase 

(categorized into the TB class). However, for 10 target classes new compounds were not found in 

the literature, and thus, they were not included in the benchmark experiments. Using the 
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benchmark datasets, LigTMap was compared to four state-of-the-art target prediction methods 

including SEA [40], SwissTargetPrediction [17], SuperPred [10], and HitPick [13].  

 

Table 1. The 17 target class-specific datasets used in this study. 

Target Class 
Core Set 

Benchmark Seta  
Total Training Validation  

Human Target 
Kinase 2008 1608 400 18 
Transferase 559 448 111 -- 
Beta-secretase 309 248 61 19 
Hydrolase 1196 957 239 -- 
Anticoagulant 264 212 52 -- 
Carbonic anhydrase 354 285 69 16 
Ligase 89 71 18 5 
Bromodomain  167 133 34 19 
Isomerase 110 91 19 -- 
Estrogen 76 61 15 -- 
Peroxisome 16 13 3 -- 
Diabetes 99 81 18 -- 

Non-Human Target 
HIV 524 419 105 10 
Tuberculosis  232 186 46 11 
HCV 159 127 32 -- 
Influenza 99 81 18 -- 
Helicobacter pylori 52 41 11 -- 

Total 6313 5062 1251 98 
 a For benchmark, where no new suitable data were found in the literature, the entries are marked 
as “--.” Sources of benchmark data are: Kinase (Wang et al., 2018), Ligase (Jessica E. Watt et al., 
2018), BRD (Bamborough et al., 2018), CA (Buemi et al., 2019), beta-secretase (Fujimoto et al., 
2019), HIV (Pribut et al., 2019), and TB (Laura A.T. Cleghorn et al., 2018) 
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Target Prediction Workflow 

The workflow of LigTMap is illustrated in Figure 1. It consists of five steps:  

1. For a query compound, a set of potential targets is selected based on fingerprint similarities 

to the co-crystallized ligands. Multiple fingerprints (Morgan, MACCS, Daylight, etc.) are 

generated, and the ligand similarity score (TL) is computed as an average of the fingerprint 

Tanimoto coefficients (T) [33]: 

𝑇 =
𝑁!"

𝑁! +𝑁"−	𝑁!"
 (1) 

where 𝑁!  and 𝑁"  are the numbers of 1-bit in the fingerprints of ligand a and ligand b, 

respectively. 𝑁!" denotes the number of 1-bit common to both ligands. To find out which 

fingerprints are effective for this task, we compared the predictive performance of six 

fingerprints and their combinations, including Morgan, MACCS, Daylight, Atom pair, 

Torsion, and Pharmacophore. We will show (in the Result section) that Morgan, MACCS, 

and Daylight (MMD) constitute the best combination and a cutoff of 0.4 is empirically 

defined.  

2. For each potential target, molecular docking is performed using PSOVina2 [34]. The 

conformation of the compound with the lowest binding free energy is taken as the optimal 

binding mode in the ligand-binding pocket.  

3. A binding interaction fingerprint (IFP) of the compound is generated based on the predicted 

binding mode. The established IFP is compared with the IFP of the co-crystallized ligand 

using the Tanimoto coefficient to obtain the binding similarity score (TB). 

4. For each potential target class, the compound binding activity is predicted using the class-

specific random forest (RF) model and the Avalon fingerprint as the molecular descriptors.  
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5. Finally, all prediction results are consolidated, and the protein targets are ranked based on 

the combined LigTMap score as 0.7 TL + 0.3 TB.  

The parameters mentioned in this workflow were determined by testing a range of combinations 

using the training set and they will be discussed in the Result section.  

 

 

Figure 1. Workflow of LigTMap for target class prediction. For class-specific prediction, 

MM is used instead of MMD in the ligand similarity search. 

 

Performance Measures for Target Prediction 

A prediction is considered correct if the name of the predicted target matches the name of the 

experimental target of the test compound. Moreover, in the case of a multi-target compound, a 

predicted target that matches any known target of the compound is considered a correct prediction. 
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When testing a set of ligands, we computed the success rate of the method as the fraction of ligands 

in the set predicted correctly within top N ∈ {1, 5, 10} of the output list. In addition, for each test 

ligand, we computed the recall, precision, and F1 scores taking the top N targets as predicted 

positives (TP) and all correct targets as actual positives (TP+FN): 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3) 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (4) 

 

Thus, recall measures the proportion of correctly predicted targets among all correct targets, 

while precision indicates the proportion of correctly predicted targets within top N. F1 provides a 

single estimate that combines recall and precision.  

 

Ligand Binding Activity Prediction 

Once a target is identified, it is desirable to obtain an estimation of the compound binding activity 

toward the target. In the current method, the binding activity (pKi/Kd/IC50) is predicted employing 

a class-specific ML model. Four ML algorithms based on the Avalon fingerprint were tested, 

including RF, support vector machines, gradient boosted tree, and K-nearest neighbor algorithms. 

RF was selected, as the preliminary tests using five selected target class datasets indicated that, in 

comparison to the other algorithms, it produced superior results. To prevent the issue of 

information leak [35], nested cross-validation (CV) [36] was used to train and optimize the RF 

models. The detail of the nested CV for model training-and-optimization is presented in the 

Supplementary Materials and Methods section. 
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RESULTS AND DISCUSSION 

LigTMap is a ligand- and structure-based method for target prediction. It consists of five key steps: 

1) ligand similarity search to identify potential targets and the associated target class, 2) prediction 

of ligand binding modes toward the potential targets, 3) assessment of binding similarity to the co-

crystallized ligand binding modes, 4) prediction of class-specific binding activity, and 5) 

consolidation of results and ranking. 

Selection of the Fingerprint Algorithm for Ligand Similarity Search  

Previous studies have shown that the choice of the fingerprint algorithm is crucial for the success 

of ligand-based target prediction. Furthermore, combining multiple fingerprints further improves 

the success rates of target prediction models [37] [38]. To establish an optimal combination of 

fingerprints for the ligand similarity search, we tested six different fingerprint algorithms, i.e., 

Morgan, MACCS, Daylight, AtomPairs, Torsion, and Pharmacophore, as well as their 

combinations for target prediction using the validation set. Supplementary Figure S2 shows the 

distribution of the number of ligands with correctly predicted targets, which ranked within the top 

1, 5, and 10 in the output of the ligand similarity search. The figure also indicates the number of 

ligands for which targets ranked below 10 but were still in the prediction list. Based on the obtained 

results, it is clear that when the cutoff decreased from 1.0 to 0.1, the number of correctly predicted 

targets increased until reaching a certain cutoff value, at which the top 1/5/10 results remained 

relatively stable. This “optimal” range of cutoff values varied for different fingerprints. For 

Morgan, AtomPairs, and Torsion, it was determined at 0.1–0.3; for MACCS and Daylight, it was 

0.1–0.5; and for Pharmacophore, it was 0.1–0.2. When extracting the potential targets in LigTMap, 

if the cutoff is set too high, actual targets may be discarded too early. Conversely, if the cutoff is 
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set too low, too many false positives are included, causing excessive computations in the 

subsequent steps. Among the six fingerprints, Morgan, MACCS, and Daylight were considered as 

the best options. Importantly, MACCS and Daylight included correct targets with high cutoff, 

while Morgan predicted correct targets in top 10 for most ligands. On the other hand, AtomPairs, 

Torsion, and Pharmacophore exhibited worse performance or required low cutoff. 

Subsequently, we also tested combinations of fingerprints, i.e., Morgan+MACCS (MM) and 

Morgan+MACCS+Daylight (MMD) for target prediction, where the average of the component 

scores was taken as the ligand similarity score. As shown in Supplementary Figure S3, the 

combined fingerprints performed better than MACCS and Daylight alone with improved correct 

top 10 predictions. In addition, they achieved similar performances as Morgan, however, with 

increased optimal cutoff range (between 0.1 and 0.4). Consequently, we considered both combined 

fingerprints in further experiments and took the borderline cutoff of 0.4 as default in the LigTMap 

workflow.  

 

LigTMap Target Prediction Performance Evaluation 

Predictive performance of the entire LigTMap workflow was assessed utilizing both the validation 

and benchmark sets. Because the binding IFP calculation is computationally expensive, we tested 

target classes from the validation set of which benchmark data was also available. These included 

kinase, beta-secretase, BRD, CA, ligase, HIV, and TB. Totally, 733 ligands were tested from the 

validation set and 98 from the benchmark set. The entire target prediction workflow was run 

comprising the MM or MMD for the ligand similarity search with IFP based binding similarity 
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analysis.  Target ranking was based on the LigTMap score that was obtained as a weighted sum of 

the ligand similarity and binding similarity scores. The results of different weighted sum of ligand 

and binding similarity scores show that combined score from 70% of ligand and 30% of binding 

fingerprint score performed well in the identification of targets than using only the ligand 

fingerprint alone. Furthermore, according to the SEA target prediction study, target class-specific 

models improve the prediction precision rate in ligand-based methods [37]. To verify this 

hypothesis, we compared the results from the all-target class prediction to those from the class-

specific prediction. In the CS experiment, each ligand was predicted for its target class only, and 

thus, the output contained only targets from this class. Table 2 shows the overall performance of 

LigTMap in the conducted experiments.  

 

For all-target class prediction, the LigTMap score with MMD achieved higher top-5 and top-10 

success rates than that with MM in both validation and benchmark experiments. It achieved an 

average top-10 success rate of almost 70%, with an average precision rate of 0.34 and recall of 

0.26. Notably, the comparison between all-target class experiments (LigTMap score with MM or 

MMD) and CS experiments (with MM-CS or MMD-CS) revealed significant improvement in all 

measures. This is presumably due to the exclusion of “off-targets” from the prediction list. 

Moreover, the comparison between MM-CS and MMD-CS shows that LigTMap score with MM-

CS has a 1%–5% higher success rate and 15%–35% improvement in recall with comparable 

precision. Meanwhile, comparing to MMD, LigTMap score with MM-CS improved the top-1 

success rate by 27% and the top-10 success rate by 17%, with >50% increase in precision. Overall, 
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the LigTMap score with MMD outperformed that with MM in all-target class predictions; however, 

LigTMap score with MM-CS surpassed MMD-CS in the CS predictions. 

Table 2. Overall performance of LigTMap using MM or MMD as ligand similarity search, 

for all-target class prediction or class-specific (CS) prediction. 

 Average Success Rate Average (Top 10) 

 Top 1 Top 5 Top 10 Precision Recall F1 Score 

Validation Set 

MM 0.56 0.68 0.72 0.35 0.27 0.23 
MMD 0.53 0.70 0.73 0.35 0.25 0.20 
MM-CS 0.63 0.75 0.77 0.55 0.52 0.45 
MMD-CS 0.61 0.74 0.76 0.54 0.38 0.35 
Benchmark Set 

MM 0.40 0.59 0.63 0.29 0.27 0.26 

MMD 0.44 0.64 0.65 0.33 0.27 0.24 

MM-CS 0.60 0.74 0.84 0.53 0.52 0.65 

MMD-CS 0.57 0.73 0.82 0.55 0.45 0.44 

 

Table 3 demonstrates the detailed predictive performance of LigTMap for each target class. 

Among the seven target classes, in the validation set, the highest success rate was achieved for 

beta-secretase (>0.9), followed by BRD, HIV (~0.8), CA and ligase (~0.7), kinase, and TB (~0.5). 

For the benchmark set, LigTMap performed exceptionally for CA, beta-secretase, and BRD (>0.9). 

It also showed good performance for HIV (>0.8) and moderate for kinase (~0.7). LigTMap failed 

to find correct targets for ligase and TB ligands. Consistent with Table 2, LigTMap score with 

MMD performed better than MM in all-target class experiments for most targets in terms of the 

top 10 success rate, in expense of the reduced F1 score. As a target prediction method, successful 
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identification of the query compounds is of great importance; thus, LigTMap score with MMD is 

suitable. For compounds the target class of which is known but not the proteins, MM-CS is more 

optimal for finding the correct target within the class. The prediction results of all benchmark 

compounds with their experimental targets, predicted targets, PDB IDs, and ranks of the first true 

targets are provided in Supplementary Tables S3–S9. 

 

Table 3. Predictive performance for each target class in all-target class and class-specific 
experiments.  

 

LigTMap score 

(MM) 

LigTMap score 

(MMD) 

LigTMap score   

(MM-CS) 

LigTMap score 

(MMD-CS) 

 Top 10 F1 Score Top 10  F1 Score Top 10  F1 Score  Top 10  F1 Score  

Validation Set 

Kinase 0.52 0.20 0.54 0.16 0.55 0.32 0.56 0.19 

Beta-secretase 0.97 0.29 0.97 0.23 1.00 0.54 1.00 0.42 

Bromodomain 0.79 0.25 0.82 0.25 0.91 0.63 0.88 0.55 

Carbonic 

anhydrase 0.74 0.19 0.72 0.23 0.74 0.29 0.72 0.28 

Ligase 0.72 0.34 0.72 0.23 0.72 0.72 0.72 0.4 

HIV 0.79 0.14 0.83 0.13 0.83 0.18 0.85 0.17 

TB 0.49 0.53 0.21 0.20 0.62 0.58 0.44 0.42 

Benchmark Set 

Kinase 0.67 0.15 0.72 0.13 0.89 0.23 0.72 0.22 

Beta-secretase 0.89 0.42 1.00 0.28 0.95 0.49 0.95 0.30 

Bromodomain 0.89 0.27 0.95 0.33 0.95 0.72 0.95 0.70 

Carbonic 

anhydrase 1.00 0.54 1.00 0.60 1.00 0.81 1.00 0.85 

Ligase 0.00 0.00 0.00 0.00 0.20 0.00 0.20 0.00 

HIV 0.80 0.29 0.80 0.31 1.00 0.83 1.00 0.93 

TB 0.18 0.13 0.09 0.01 0.91 1.49 0.91 0.08 
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Comparison to the State-of-the-Art Target Prediction Methods 

The benchmark dataset was tested using four state-of-the-art target prediction servers, i.e., 

SwissTargetPrediction [22], SEA [37], SuperPred [12], and HitPick [15]. As these servers mainly 

provide prediction for human targets, we excluded nonhuman targets from the comparative study. 

In total, 77 ligands for kinase, beta-secretase, CA, ligase, and BRD were evaluated. As benchmark 

data run with all classes, LigTMap score with MMD was used and results are shown in Figure 1. 

LigTMap exhibited the highest top-10 success rates of 86%, followed by SEA (83%), and 

SwissTargetPrediction (78%). Moreover, it outperforms SuperPred and HitPick in all top-1, top-

5, and top-10 success rates. SwissTargetPrediction has the highest top-1 success rate of 66%. 

 

Figure 1. Comparative performance of five target prediction methods using benchmark 

compounds of human protein targets. 
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Table 4. The number of top-1, top-10, and failure predictions in the benchmark set for five 

target prediction servers.  

 SwissTargetPrediction SEA SuperPred HitPick LigTMap 

 Top  
1 

Top  
10 

Fail Top  
1 

Top  
10 

Fail Top  
1 

Top  
10 

Fail Top  
1 

Top  
10 

Fail Top  
1 

Top  
10 

Fail 

Beta-secretase 16 19 0 17 19 0 9 19 0 6 6 13 15 19 0 

Bromodomain 17 19 0 19 19 0 0 0 19 0 0 19 14 18 1 

Kinase 10 13 5 1 18 0 0 0 18 10 10 8 3 13 5 

Carbonic 
anhydrase 

8 9 7 4 8 8 6 7 8 1 5 8 13 16 0 

Ligase 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 

Total 51 60 17 41 64 13 15 27 50 17 24 53 45 66 11 

(%) 66 78 22 53 83 17 19 35 65 22 31 69 59 86 14 

 

Regarding the predictions for each target class, as shown in Table 4, all beta-secretase ligands were 

successfully predicted by SwissTargetPrediction, SEA, and LigTMap. The same outcomes were 

noted for BRD, apart from LigTMap, which had one failure. For kinase, SEA successfully 

predicted all ligands; however, SwissTargetPrediction and LigTMap resulted in five failures. 

Furthermore, for CA, LigTMap was the only method, which predicted all ligands, with the 

remaining four methods predicting just half of the cases. Ligase proved to be the most challenging 

target in the benchmarking experiment; no methods provided successful prediction for this target 

class. Based on the conducted analyses, it can be concluded that LigTMap reached the state-of-

the-art performance and, in some target classes, outperformed the existing methods.  
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Performance of Ligand Binding Activity Prediction  

The predictive performance of all-target class-specific RF models using the core set is presented 

in Table 5. Two metrics were used to measure the performance of the models, i.e., the Pearson’s 

correlation coefficient (R) and the RMSE between the experimentally measured binding constants 

and the predicted values. Both coefficients were obtained by averaging from the test folds in the 

outer CV loop. The nested CV run was performed 10 times for each target, and the average 

performance and standard deviation were reported. Based on the obtained outcomes, we observed 

that R ranges between 0.5 to 0.8 for different target classes, with the HIV model achieves the 

highest correlation of 0.81 and the estrogen model the lowest correlation of 0.47. Overall, the 

average performance gives a correlation of 0.61 and RMSE of 1.23 (-log M).  

 

The class-specific RF models were further assessed using the benchmark set. As shown in Table 

6, the average correlation is 0.63, while RMSE is 1.26, which is in good agreement with the CV 

result. The two cases that are found different between the benchmark and validation results are the 

beta-secretase (benchmark/validation 0.31/0.75) and kinase (0.18/0.66). For the beta-secretase, the 

experimental values of the test compound concentrated in a narrow range of 7.6–8.2, whereas the 

prediction gave a range of 7.2–9. Despite the poor correlation, the RMSE for beta-secretase is low 

(only 0.49), suggesting that the predicted values were reasonably close to the experimental ones.  
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Table 5. Cross-validation performance of 17 target class-specific RF activity prediction 

models on the core dataset. 

 Target Class 
Pearson’s Correlation 

Coefficient 

RMSE 

(-log M) 

HIV  0.81 ± 0.01  1.28 ± 0.03 

Beta-secretase  0.75 ± 0.01 0.97 ± 0.03 

Ligase  0.73 ± 0.01 1.26 ± 0.03 

TB  0.67 ± 0.02 1.24 ± 0.03 

Transferase  0.67 ± 0.01 1.30 ± 0.02 

Kinase  0.66 ± 0.06 1.18 ± 0.01 

HCV  0.65 ± 0.02 1.22 ± 0.04 

Bromodomain  0.65 ± 0.02 0.93 ± 0.02 

Carbonic anhydrase  0.64 ± 0.02 1.23 ± 0.04 

Anticoagulant  0.63 ± 0.02 1.37 ± 0.03 

Hydrolase  0.62 ± 0.02 1.42 ± 0.03 

Helicobacter pylori  0.60 ± 0.11 1.44 ± 0.19 

Influenza  0.59 ± 0.05 1.77 ± 0.08 

Diabetes  0.53 ± 0.03 1.05 ± 0.03 

Isomerase  0.53 ± 0.03 1.38 ± 0.01 

Peroxisome  0.48 ± 0.07 0.99 ± 0.10 

Estrogen  0.47 ± 0.07 1.12 ± 0.05 

Average 0.61 1.23 
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Table 6. Test performance of 7 target class-specific RF activity prediction models on the 

benchmark dataset.  

Target Class 
Pearson’s Correlation 

Coefficient 

RMSE  

(-log M) 

Bromodomain 0.95 0.65 

Ligase 0.88 0.99 

HIV 0.83 0.44 

Carbonic anhydrase 0.57 1.92 

TB 0.72 2.71 

Beta-secretase 0.31 0.49 

Kinase 0.18 1.62 

Average 0.63 1.26 

 

 

In the kinase class, some of the compounds were identified experimentally to target two different 

kinase proteins (PLK1 and ALK), and some also targeted another class, i.e., bromodomain BRD4. 

Taking the average of the PLK1 and ALK activity values and comparing them to the predicted 

values gave a poor correlation of 0.18 and RMSD of 1.62. Nevertheless, the predictions correlated 

better with PLK1 alone, giving an improved correlation of 0.61 and RMSD of 0.85 (see Table 

S14). However, worse outcomes were noted when the predictions were correlated with ALK alone 

(correlation of -0.33 and RMSD of 1.11). As none of the dual-class compounds were identified for 

BRD, the predicted activity using the BRD model poorly correlated with the experimental data for 

BRD4 (correlation of -0.09 and RMSD of 1.17).  

In the case of TB, although all compounds were identified to target both the bacterial TB 

(MtbAdok) and human kinase (hAdoK), only the TB model correlated reasonably with the 
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MtbAdok activity (correlation of 0.72 and RMSD of 2.71). The kinase model did not correlate 

with hAdoK (correlation of 0.24 and RMSD of 5.42).  

The activity prediction results of the benchmark set are listed in Tables S9–S15. 

 

Case Study of the HIV Drug Target Prediction  

Structure-based drug design has played an important role in the anti-HIV drug search. Since the 

first discovery of HIV 36 years ago [39] more than 30 drugs for the treatment of AIDS have been 

developed and identified to target all 7 life cycles of the virus [40]. The fast development of novel 

anti-HIV agents targeting multiple targets can be attributed to the availability of the 3D structures 

of the HIV proteins. In the PDBbind dataset alone, there are currently 580 crystal complexes of 

the HIV proteins as well as their ligands. The structural information, together with accurate 

experimental activity data of true binders, can be exploited to construct highly accurate predictive 

HIV models to support the hits discovery and lead optimization. In the present study, the developed 

predictive RF model for HIV yields an average correlation of 0.81 with RMSE of 1.28 (-log M) in 

the nested CV assessment (see Table 5). Further evaluation of the RF model was performed using 

10 novel compounds reported by Pribut et al. [41]. According to their study, aryl substituted 

benzimidazolones were experimentally validated to exhibit inhibitory effects against the HIV-1 

non-nucleoside reverse transcriptase, with the reported pIC50 values in the range of 4.87–7.58. 

The binding modes of these compounds were studied by molecular docking using the receptor 

structures PDB 2jle and 2fr2. Notably, our RF model for HIV displayed remarkable performance 

in predicting the activities of these 10 compounds, yielding a correlation of 0.83 and RMSE of 

0.44 (see Table 6).  
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Furthermore, for comparison, we also tested the new compounds using two recently released 

online servers for anti-HIV biological activity prediction, namely, AntiHIV-Pred [42] and 

HIVprotI [43]. Their methods employed large-scale experimental data extracted from the 

ChEMBL database and their prediction models are ligand-based and HIV protein-specific. Users 

can select the prediction target as HIV protease, reverse transcriptase, integrase, REV (AntiHIV-

Pred only), or TAT (AntiHIV-Pred only). Surprisingly, the AntiHIV-Pred server reported that the 

evaluated compounds were in the non-applicable domain, regardless of the selected target; 

therefore, no activity values were predicted. On the other hand, the HIVprotI server successfully 

returned prediction results for nine compounds against the reverse transcriptase target. However, 

poor correlation of 0.56 was obtained, which was significantly lower than the originally reported 

correlation of 0.76 [43]. Figure 2 showed a comparison of the anti-HIV inhibitor predictions by 

HIVprotI and LigTMap, indicating that LigTMap performed superior in activity predictions. 

 

Figure 2. Performance comparison of HIV activity prediction methods. 
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Figure 3. Predicted binding modes of three known anti-HIV ligands by PSOVina2 in 

LigTMap. Images were prepared using Schrödinger Maestro. 

 

We compared the binding modes predicted by PSOVina2 in LigTMap to the previously reported 

binding modes [41]. The three compounds were evaluated: 42, 50, and 54. Previously, these 

compounds were lead optimised from the non-nucleoside reverse transcriptase inhibitor (PDB ID 

2jle). Remarkably, LigTMap was able to predict the correct target for the three compounds in the 

top 1. As shown in Figure 3, our predicted binding modes matched closely to the reported protein-

ligand interaction patterns. For instance, the binding of the second-generation benzimidazole 

inhibitor (compound 42) was reported to involve two pi-pi interactions with the Tyr188 and 

Trp229 residues, and a hydrogen bond to Lys101. The ligand docked by LigTMap retained an 

analogous binding mode, also predicting two pi-pi interactions and a hydrogen bond as the major 

contributors to the ligand binding. The reported binding modes of 50 involved the Lys101, Tyr188, 

Lys223, and Tyr229 amino acids, while Lys101, Tyr188, and Tyr229 participated in the 

interactions with compound 54. Notably, all of them were correctly predicted by LigTMap.  
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Features of the LigTMap Server 

The LigTMap server is free for non-commercial use at https://cbbio.cis.um.edu.mo/LigTMap/. 

The server accepts queries for multiple compound predictions (maximum of 20 for a batch 

submission) for both human and non-human (viral and bacterial) target classes. The output of the 

target prediction displays the name of the predicted target, its PDB ID, the ligand similarity score, 

binding similarity score, predicted activity value, docking score, and docking pose determined 

using PSOVina2. In Table 7, the LigTMap server is compared to the existing state-of-the-art target 

prediction servers with respect to their target scope and prediction output.  

 
Table 7. Comparison of various features of target prediction servers. 

Server Feature SEA SwissTarget 
Prediction 

SuperPred HitPick LigTMap 

Target Scope 
Predict human 
targets 

Yes Yes Yes Yes Yes 

Predict non-
human (viral and 
bacterial) targets 

No Yes (few) No No Yes 

Prediction  
Support input of 
multiple compounds 

No No No Yes Yes 

Target name Yes Yes Yes Yes Yes 
Target PDB No No Yes No Yes 
Biological activity No No No No Yes 
Binding mode No No No No Yes 
External links to 
target related 
information 

ZINC Uniprot, 
GeneCard 

Uniprot, 
BindingDB, 
RefSeq, etc. 

GeneCard PDB 
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CONCLUSION 

Target prediction of small molecules is a crucial step in drug discovery and study of disease 

mechanisms. The existing computational approaches to target prediction are limited in terms of 

availability, functionality, and accuracy. In the current work, we present LigTMap, a new target 

prediction method developed to predict 17 therapeutic protein classes, including human and 

nonhuman protein targets. It is a multistage prediction workflow, which combines the ligand 

similarity search with docking and binding similarity analysis to accurately identify protein targets. 

Extensive experiments utilizing validation and benchmark sets revealed that LigTMap (MMD) 

achieved a top-10 success rate of almost 70%, with an average precision rate of 0.34. This 

performance is good as compared to the current best prediction servers SwissTargetPrediction and 

SEA. Class-specific target prediction of LigTMap (MM-CS) improved the top-1 success rate by 

27% and the top-10 success rate by 17%, with >50% increase in precision. Hence, LigTMap is a 

new, reliable method for target prediction of novel ligands. Furthermore, it can identify with a 

higher success rate for ligands whose target class is known but the actual targets are still unknown.  

 

The current version of LigTMap is limited to target classes prediction. For future work, other large 

compound databases, such as ChEMBL and ZINC, as well as protein-ligand interaction databases, 

e.g., STITCH, will be exploited to expand the target class coverage and enhance the prediction 

accuracy.  
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