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1 Abstract 

The research on dye solubility modeling in supercritical carbon dioxide is gaining prominence over the past few decades. A simple 

and ubiquitous model that is capable of accurately predicting the solubility in supercritical carbon dioxide would be invaluable for 

industrial and research applications. In this study, we present such a model for predicting dye solubility in supercritical carbon 

dioxide with ethanol as the co-solvent for a qualitatively diverse sample of eight dyes. A feed forward back propagation - artificial 

neural network model based on Levenberg-Marquardt algorithm was constructed with seven input parameters for solubility 

prediction, the network architecture was optimized to be [7-7-1] with mean absolute error, mean square error, root mean square 

error and Nash-Sutcliffe coefficient to be 0.026, 0.0016, 0.04 and 0.9588 respectively. Further, Pearson-product moment correlation 

analysis was performed to assess the relative importance of the parameters considered in the ANN model. A total of twelve 

prevalent semi-empirical equations were also studied to analyze their efficiency in correlating to the solubility of the prepared 

sample. Mendez-Teja model was found to be relatively efficient with root mean square error and mean absolute error to be 0.094 

and 0.0088 respectively. Furthermore, Grey relational analysis was performed and the optimum regime of temperature and pressure 

were identified with dye solubility as the higher the better performance characteristic. Finally, the dye specific crossover ranges 

were identified by analysis of isotherms and a strategy for class specific selective dye extraction using supercritical CO2 extraction 

process is proposed. 
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2 Introduction 

Supercritical fluid extraction has been amassing 

prominence as an effective method to separate and purify 

a variety of substances from multi-component mixtures. 

Supercritical fluid extraction has been employed for the 

purification of a raft of different products ranging from 

petrochemicals [1] to phytochemicals [2] and from dyes 

[3] to radioactive elements [4].  Among the different 

solvents employed in the supercritical fluid extraction 

process, CO2 has been extensively used for many of its 

fitting and desirable attributes [5]. The diversity of 

product applications that use supercritical CO2 extraction 

calls for the need to model the process accurately. 

Experimentation of supercritical fluid extraction on 

high-value dyestuff just for the sake of modeling is 

resource consuming and costly. Therefore, research 

focused on modeling dyestuff solubility using 

supercritical fluid extraction process using empirical 

data is being pursued at an accelerating pace over the past 

few decades. Although cubic equations of state are 

widely used to calculate solubilities of solutes in 

supercritical CO2, they are highly disadvantageous for 

application in industries for the various reasons 

explained by Gharagheizi et al [6]. Further, Semi-

empirical models, models involving mass transfer 

phenomenon, and Black box approaches like wavelet 

neural networks, artificial neural networks, Fuzzy logic 

technology, Response surface methodology, have also 

been studied for general solubility modeling purposes of 

the supercritical CO2 extraction process. Among others, 

Black-box modeling strategies are beneficial in 

modeling processes as they are devoid of tedious 

theoretical mathematical modeling and are industry-

friendly approaches [7].   

Artificial neural network simulation is one such black-

box approach that is showing promise for tackling 

multivariate and complex modeling problems. Artificial 

neural networks and other machine learning algorithms 

are employed for their high sensitivity to change in 

variables, accommodation for a large number of 

variables, flexibility, ease in network construction, and 

the diverse availability of adjustable functions for 

precision modeling and prediction [8]. Prominently, 

Artificial neural network modeling of dyestuff solubility 

in supercritical CO2 is gradually gaining importance due 

to the sheer volume of its applications in modeling 

clarification [9], removal, solubility of novel dyes and 

derivatives [10,11], and commercial-grade dye 

purification. Tabaraki et al., [12,13] and Khazaiepoul et 

al., [14] have studied artificial and wavelet neural 

network modeling of dyestuff solubility in supercritical 

CO2 with different techniques on homogenous (mono 

class) dye samples yielding deviant results from each 

other. On the other hand, previous research works [3,15–

20] involving the use of numerous semi-empirical

models for modeling their experimental solubility data 

have inundated the research on dye solubility modeling 

with ambiguity.  

Grey relational analysis by D. Julong [21] is a proven 

optimization method to determine the best parameter 

settings for identifying the maximum desired output. 

Additionally, Grey approach has been employed 

extensively by various studies for problems associated 

with complicated interrelationships among performance 

characteristics combined with uncertain, irregular, 

incomplete, and disorganized data. Apparently, there are 

no restrictions on the number of variables employed for 

modeling a phenomenon using artificial neural networks. 

Hence, Grey relational analysis could be employed for 

studying complex models such as this to establish the 

optimum regime for parameter (controlled variable) 

setting during (pilot) process execution for the maximum 

desired output and minimum resource loss.  

The prime objective of this study is to (1) employ 

artificial neural network for modeling the solubility of 

three different classes of dyes in supercritical CO2 with 

ethanol as the co-solvent. (2) Investigate the solubility 

modeling efficiency of different semi-empirical 

equations on the prepared data sample. (3) Employ the 

use of Grey relational analysis to identify the regime of 

the controllable real-time parameters for maximum dye 

solubility in supercritical CO2. (4) To perform a 

comparative analysis of parametric variation and its 

effect on dye solubility as observed from previously 

studied models and theoretical fluid phase equilibria for 

drawing a clear conclusion. (5) Present a hypothesis for 

selective dye-extraction from multi-dye mixtures based 

on retrograde solubility interference. 

3 Materials and Methods 

Data Acquisition and parametric description  

A total of 250 data points pertaining to the solubility of 

three different classes of dyes (eight dyes in total) were 

mined and curated from the literature. The experimental 

solubility data and the structures of the dyes required 

for the present study were procured   from the literature 

cited in       Table 3-2.    Three anthraquinone            
dyes, four azo dyes, and one quinoline                  dye were 

strategically selected to   introduce   qualitative  
diversity for accurate modeling. Temperature, pressure, 



Topological polar surface area, critical pressure and 

temperature, and molecular weight were the 

mined/computed attributes for the corresponding dye. 

The topological polar surface area of the dyes was 

calculated using Peter Ertl et al., method [22]. The 

critical properties of the solutes were obtained from 

literature survey and from the NIST database [23]. The 

entire data set was normalized between 0 and 1 using the 

equation (1) for artificial neural network simulation. The 

range of the selected parameters are tabulated in Table 

3-1. 

Normalized value =
xactual − xmin

xmax − xmin
(1) 

Parameter Range 

Temperature (K) 308 - 423.15 

Pressure (MPa) 4.2 - 35.5 

Density (kg/m-3) 214 - 978.782 

Critical Temperature (K) 348.4 - 1361 

Critical Pressure (MPa) 1.68241 - 12.46 

Molecular weight (g/mol) 240.21 - 639.41 

Topological polar surface area 

(Å) 
67.26 - 210.53 

Dye solubility mole fraction 
0.000000194 - 

0.000136 

Table 3-1: Range of the parameters utilized for 

modeling. 

Sl No Dye References 

1 

4-(N, N-

diethylamino)-4'-

Nitroazobenzene 

[24] 

2 Disperse Blue 79 [17,25] 

3 Disperse Blue 60 [26] 

4 Disperse Orange 3 [25] 

5 Disperse red 60 [26,27] 

6 Disperse Yellow 54 [28] 

7 Quinizarin [17] 

8 Solvent Brown 1 [25] 

Table 3-2: Structures of the studied dyes. 

Feed Forward Backpropagation-Artificial Neural 

Network (FFB-ANN) Architecture and Modeling 

A 64-bit, 8Gb RAM workstation with a 1.99 GHz 

processor, was used for all computation. MATLAB 

2019b software from https://in.mathworks.com/ was 

used for building the tri-layer neural network 

architecture and its simulation trials. The architecture of 

the constructed neural network comprised of the first 

layer termed as the input layer with of seven nodes 

corresponding to the seven input parameters. The second 

layer comprised of a range of three to eight nodes with 

single node increment for heuristic computation during 

each of the six trial simulations. The third layer was 

comprised of a single output node corresponding to the 

solubility of the dye.  A tangent-sigmoid (tansig) transfer 

function was used for the hidden layer nodes, and a linear 

function was used for the output layer node. A gradient 

descent with momentum weight and bias learning 

function (Learngdm) along with backpropagation based 

Levenberg-Marquardt algorithm (trainlm) was employed 

for calculation and optimization of layer to layer and 

node to node weights for all simulation trials. Mean 

squared error was selected as the performance function, 

and 2000 epochs was the maximum set for each 

simulation. The entire data set was divided into the ratio 

of 6:2:2 (60%, 20%, 20%) for training, validation, and 

testing sets, respectively [29], and this ratio was fixed for 

each trial run. Continuous simulations were reinitiated 

until the training accuracy reached the maximum 

possible value, and convergence of weight optimization 

was reached (weights and bias do not change with 

additional training rounds after convergence). Care was 

taken to avoid overfitting (validation and testing 

accuracy > training accuracy) of the data.  

3.1.1 Statistical Evaluation of the Artificial neural 

network (FFB-ANN) Model 

Statistical evaluation of the model was performed using 

the Microsoft excel 2019 and GraphPad prism software. 

Nash–Sutcliffe model efficiency coefficient (N-S) was 

computed for the predicted solubility for all the 

simulation trials using the equation (2).  

N − S = 1 −
∑ (yi

exp
− yi

pred
)2n

i=1

∑ (yi
exp

− yi
pred

)2n
i=1

(2) 

Additionally, mean absolute error (MAE), mean square 

error (MSE), root mean square error (RMSE), and 

coefficient of correlation (R2) were also computed using 

the equations (3,4,5).   

Mean Absolute Error =
1

n
∑|(yi

exp
− yi

pred
)|

n

i=1
(3) 

Mean Square Error =
1

n
∑(yi

exp
− yi

pred
)2

n

i=1
(4) 

https://in.mathworks.com/


RMSE = √
1

n
∑(yi

exp
− yi

pred
)2

n

i=1

 

 

(5)) 

Assessment of relative variable importance Pearson 

product-moment correlation analysis 

Pearson product-moment correlation coefficient (rx,y) 

was computed to estimate the extent and nature of inter 

variable correlation using the equation (6) 

rx,y =
COV(x, y)

σx, σy
=

E((x − μx)(y − μy))

σx, σy
 (6) 

Where σx, σy are the standard deviations of the two 

variables (x, y), and COV(x, y) is the covariance of the 

two variables. Pearson product-moment correlation 

coefficient of any two variables is defined as the ratio of 

covariance of the two variables to the product of standard 

deviations of the two variables. The range of  rx,y is from 

-1 to 1. An absolute value of 1 corresponds to a perfect 

correlation between the variables; likewise, a value of 0 

corresponds to no correlation. The coefficient sign 

indicates the nature/quality of the relationship between 

the variables and corresponds to the positive and 

negative correlation between the variables [30].  A heat-

map representation of the results was plotted, and the 

relative importance of the variables was assessed.   

Analysis of Density-Based Semi-Empirical Models  

In this study, twelve different density-based semi-

empirical models were selected for assessing their 

efficiency in modeling the solubility of the prepared 

sample of dyes in supercritical CO2. Modified Adachi-

lu model by Sparks et al., Bian et al., Sung and Shim, 

Chrastil, Jafari Nejad et al., Sodeifian et al., Keshmiri, 

Garlapati and Madras, Jouyban et al., Khansary, Kumar, 

and Johnston (K-J) and Méndez-Santiago and Teja 

(MST) models were studied for their efficiency in 

modeling the sample of solubility data used in this study. 

The equations of the studied models are tabulated in the 

Table 3-3.  Solver add-in from Excel 2019 was used to 

perform regression analysis and for the computation of 

model constants with mean absolute error as the 

minimized objective function. Statistical analysis was 

performed on the different model predictions by the 

computation and analysis of mean absolute error (MAE), 

mean square error (MSE), root mean square error 

(RMSE), and coefficient of correlation (R2) using the 

equations (3,4,) 

Sl No Model Equation References 

1 

 
Chrastil 

ln(y) = A +
B

T
+ C(ln(ρ)) 

 
[31] 

2 
Kumar-

Johnston 
ln(y) = A + B(ρ) +

C

T
 

 
[32] 

3 Jouyban 
ln(y) = A + B(P) + C(P2) + D(PT) + E (

T

P
) + F(ln(ρ)) 

 

[33] 

4 Mendez-Teja 
Tln(yp) = A + B(ρ) + C(T) 

 
[34] 

5 
Sung and 

Shim 
ln(y) = (A +

B

T
) (ln(ρ)) +

C

T
+ D 

 

[26] 

6 
Garlapati-

Madras 
ln(y) = A + (B + C(ρ))(ln(ρ)) +

D

T
+ E(ln(ρT)) 

 
[35] 

7 Jafari-Nejad 
ln(y) = A + B(p2) + C(T2) + D(ln(ρ)) 

 
[36] 

8 Keshmiri 
ln(y) = A +

B

T
+ C(P2) + (D +

E

T
) (ln(ρ)) 

 

[37] 

9 Khansary 
ln(y) =

A

T
+ B(P) + C (

p2

T
) + (D + E(p))(ln(ρ)) 

 

[38] 



10 Bian 
ln(y) = A +

B

T
+

C(ρ)

T
+ (D + E(ρ))(ln(ρ)) 

 

[39] 

11 Sodefian 
ln(y) = A + B (

P2

T
) + C(ln(ρT)) + D(ρ(ln ( ρ)) + E(P(ln(T))) + F (

ln(ρ)

T
) 

 

[40] 

12 Adachi-Lu 
y = ρA+Bρ+C(ρ2) exp (

a

T
+ b) 

 
[41] 

Table 3-3: List of the semi-empirical models investigated for dye solubility modeling. 

 

Grey Relational Analysis 

Grey relational analysis was applied to the procured data 

for establishing the generalized optimum regime of 

parameter settings leading to maximum dye solubility in 

supercritical CO2. FFB-ANN predicted solubility and 

corresponding experimental solubility were 

simultaneously selected as the performance measures.  

The entire data was initially normalized for the higher-

the-better performance characteristic using equation (7). 

 
xi

∗(k) =
xi

o(k) − min (xi
o(k))

max (xi
o(k)) − min (xi

o(k))
 

 

(7) 

 

Further, the grey relational coefficient ξi(i) for the kth 

performance characteristics in the ith experiment is 

computed using equation (8). 

ξi(i) =  
∆min − ζ∆max

∆oi(k) − ζ∆max
 (8) 

The deviation between reference and comparability 

sequences is represented using Δoi where, Δoi =

 ‖xo
∗ (k) − xi

∗(k)‖; 0 <  ξi(i) < 1; Δmin =

min∀j∈imin∀k‖xo
∗ (k) − xi

∗(k)‖  and Δmax =

max∀j∈imax∀k‖xo
∗ (k) − xi

∗(k)‖. The reference equation 

is denoted by xo
∗ (k) and the comparability sequence is 

denoted by xi
∗(k). ζ is the distinguishing coefficient 

defined in the range of 0 ≤ ζ ≤ 1. The value of ζ is 

generally taken as 0.5; hence, the value ζ = 0.5 was 

used. Grey relational grade was computed by calculating 

the average of the grey relational coefficients using 

equation (9) [42]. The computed grey relational grades 

pertaining to each experiment were ranked in the order 

(max (grey relational grade) = 1st rank). The optimum 

settings for the control parameters were determined by 

the range of the variable magnitudes corresponding to the 

top five ranks 

γi =
1

n
∑ ξi(i)

n

k=1

 (9) 

4 Results and Discussion 

Optimization of the ANN-FFBP architecture and 

performance assessment 

In this work, the input variables, temperature (308 K - 

423.15 K), pressure (4.2MPa - 35.5 MPa), density (214 

Kgm-3 - 978.782 Kgm-3), critical temperature (348.4 K - 

1361 K), critical pressure (1.68241 MPa - 12.46 MPa), 

molecular weight (240.21 Kgmol-1- 639.41 Kgmol-1) and 

topological polar surface area (67.26 Å- 210.53 Å) 

utilized in this sample were used for the prediction of dye 

solubility in supercritical CO2 using ANN-FFB 

simulations. Empirical equations are available for 

identifying the optimum hidden neurons, but these 

equations are problem-specific, and post-optimization is 

an efficient option. Hence, the number of neurons in the 

hidden layer was optimized through the trial-and-error 

method after data preparation [43]. Primarily, A simple 

one-tailed test with a 95% confidence interval was 

performed for the comparison of means of the 

experimental and predicted data sample. Further, 

additional statistical parameters like MAE, MSE, RMSE, 

N-S coefficient were used as the screening parameter for 

the selection of the best ANN-FFB architecture. FFB-

ANN predicted v/s experimental data parity plot along 

with those obtained from MATLAB, are illustrated in 

Figure 4-1 and Figure 4-2. 

 

 

 



 

 

 
Figure 4-1:  Individual regression plots pertaining to the 

training, validation and testing of the sample data for 

the ANN simulation of the (7-7-1) architecture. 
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Figure 4-2: Consolidated experimental v/s FFBP-ANN 

predicted data parity plot of the (7-7-1) architecture 

ANN simulation. 

The architecture [7-7-1] was found to have the least error 

of prediction (MSE, MAE, RMSE) and the highest 

correlation (R2 and N-S coefficient). Although, an eight 

and seven hidden layer neuron architecture was reported 

twice by Tabaraki et al. [12,13] as the best for prediction 

of solubility of homogenously separate samples of azo 

and anthraquinone dyes in SCCO2. The results from this 

study corroborate that found by Aminian (2017) for a 

qualitatively diverse set of non-dye solutes and 

sufficiently proves that a seven-neuron architecture is 

optimum for modeling qualitatively diverse samples 

[44]. The values of the learning rate and learning 

momentum are insignificant as they only relate to the 

time of convergence (which is anywhere between 1-10 

minutes) and is unrelated to the predictive ability of the 

model. The magnitude of the computed statistical 

parameters for the neural network architectures are 

mentioned in Table 4-1.  

Neurons MAE MSE RMSE N-S R2 

3 0.032 0.0022 0.046 0.940 0.945 

4 0.0385 0.0021 0.054 0.916 0.926 

5 0.027 0.001 0.041 0.954 0.957 

6 0.218 0.324 0.570 -0.400 0.0007 

7 0.026 0.001 0.040 0.958 0.983 

8 0.0380 0.022 0.149 0.642 0.645 

Table 4-1: Hidden layer optimization trials and their 

corresponding statistical indices. MAE: Mean 

Absolute Error; MSE: Mean Square Error; RMSE: 

Root Mean Square Error  

It is important to note that the value of mean absolute 

error, mean square error, root mean square error, and 

Nash-Sutcliffe coefficient obtained in this study for the 

[7-7-1] architecture is 0.026, 0.0016, 0.04 and 0.9588 

respectively. These error indices are significantly 

better than those reported twice by Tabaraki et al. 

[12,13] for dyestuff solubility modeling in SCCO2. 

Although Khazaiepoul et al., [14] have reported lower 

and better error indices in testing data prediction for 

dyestuff solubility modeling in SCCO2, The indices 

reported by them is for a qualitatively homogenous 

sample of three azo dyes with eight testing data points 

(n= 15% of the total 48 data points = eight testing data 

points). The present study has investigated a 

qualitatively heterogenous dye sample of a total of 250 

data points with 20% testing data (n= 40 points), 

making this a pervasive, properly fit, robust model. 

According to Jha et al., the pioneers in solubility 

modeling using ANN, a ubiquitous, properly fit, robust 

model should undergo training with consistent 

accuracy, without the influence of the initial weight 

and bias settings. Additionally, such a model should be 

versatile in predicting the solubility of a broader 

spectrum of solutes (this case dyes). An overly fit 

model (e.g., R2 = 0.9999; R2train < R2validation, 

R2testing), when reused/expanded, would require 

more time for convergence, additional training rounds 



and would not accurately predict the solubility of solute 

classes that were not considered for training [45].  

Assessment of relative variable importance 

Assessment of variable importance was primarily 

performed using the simulation neural network 1.0 

software obtained from Prof. Montaño [46]. But the 

slope of means method (numeric sensitivity analysis) is 

inefficient in calculating the relative variable importance 

as it does not consider the effect of retrograde solubility 

interference, region-specific calculations are tedious and 

time-consuming and are not supported by the software. 

Likewise, Garson’s method [47] has been reported to be 

relatively less efficient compared to numeric sensitivity 

analysis by Montaño et al., [46]. Hence, Pearson’s 

product-moment correlation coefficient was computed 

for the quantitative measurement of the relationship 

strengths between the input variables and dye solubility. 

The values of the computed coefficients are illustrated in 

the form of a heat map in Figure 4-3 .  
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Figure 4-3: Heat map chart of the Pearson product 

moment correlation analysis performed on the input and 

output variables of the FFBP-ANN model. 

The analysis of the heat-map reveals that pressure has the 

highest positive correlation (0.41) with solubility. This 

may be due to the fact that an increase in pressure causes 

a proportional increase in density, leading to increased 

solubility. But this behavior is limited to a threshold, 

beyond which an increase in pressure causes an increase 

in fluid viscosity, contributing to decreased solubility. 

This behavior has been reported by Suryawanshi et al 

[48]. Khazaiepoul et al, [14] in their studies have 

included acentric factor for ANN modeling. For the 

computation of the acentric factor, vapor pressure data at 

the reference temperature is required, whereas, for the 

calculation of the topological polar surface area, the 

molecular structure of the solute is sufficient. Since the 

acentric factor and TPSA are interdependent, TPSA was 

used as an input parameter for modeling in this study, as 

it is relatively easy to compute (future model expansion 

propagates smoothly without any hassles regarding 

uncomputable/missing identifiers). Temperature as an 

input variable was found to have a low correlation 

coefficient of 0.04 with solubility, indicating that there is 

retrograde solubility interference at play [49]. Studies 

conducted by Ongkasin et al., on cefuroxime axetil 

solubility in supercritical CO2 report that at isobaric 

conditions, an increase in temperature results in a 

decrease in density and solubility in the retrograde zone 

((∂(ln(y))/ ∂T)P < 0; ∀ PL < PSolute < PU), (where 

supercritical CO2 density effect is predominant) But, at 

pressures lower and nearer to the lowest pressure limit of 

the retrograde zone along with pressures higher than the 

upper cross-over pressure ((∂(ln(y))/ ∂T)P > 0; ∀ 0 <

PSolute < PL), the effect of solute vapor pressure 

becomes predominant wherein an increase in 

temperature results in increased solubility [50]. Further, 

Density was found to have a negative correlation with 

solubility with a coefficient of -0.29. Hence, we can infer 

two aspects. First, that most of the solubility data 

analyzed in this study have been recorded in the 

retrograde zone (graphical analysis of select isotherm 

plots Figure 4-6 indicates an absence of either upper or 

lower crossover pressure) where there is a predominance 

of the supercritical CO2 density effect (since density was 

found to be “generally” decreased (rρ,y =  −0.29) with 

increased temperature (rT,y = 0.04)). Second, the 

correlation analysis sufficiently validates the generalized 

robustness of the proposed ANN model in this study as 

it relates to supercritical phase equilibria. Furthermore, 

critical pressure, topological polar surface area and 

molecular weight was found to have a negative 

correlation with dye solubility with values of -0.1, -0.33 

and -0.37 respectively. Previous studies by Aminian et 

al., and Madras et al., have also reported that an increase 

in molecular weight is related to decreased solute 

solubility in supercritical CO2 [44,51] corroborating the 

negative correlation found between molecular weight 

and dye solubility in the present study.  

Analysis of Density-Based Semi-Empirical Models  

Various density-based semi-empirical models were 

investigated for their efficiency in modeling solubility of 

the prepared sample data. Among the models 

investigated, the Mendez-Teja model could model the 

solubility of the investigated sample with the highest 

statistical desirability and agreement. The root mean 

square error and mean absolute error were computed to 

be 0.094 and 0.0088, respectively. Further, a Tln(Py)-

C(T) v/s density plot for the Mendez-Teja model 

produced a straight trendline with relatively fewer 



outliers. Mendez-Teja, in their proposed model [34], 

elucidate the manifestation of % co-solvent as parallel 

trendlines in the Tln(Py)-C(T) v/s density plot. The 

Tln(Py)-C(T) v/s density plot is illustrated in Figure 4-4.
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Figure 4-4: Solubility of the investigated dye sample in 

supercritical carbon dioxide with ethanol as the 

cosolvent as a function of carbon dioxide density based 

on the Mendez-Teja model. The trendlines depict the 

various dye-specific quantities of the cosolvent used 

during the experiments. 

A total of six such trendlines corresponding to different 

quantities of co-solvent were observed in the plotted 

graphs in the present investigation. In the present study, 

ethanol was fixed as the co-solvent used during 

experimental supercritical CO2 dye extraction studies. 

But the quantities (% v/v) of ethanol used during SC-CO2 

extraction were not available in the literature; hence % 

co-solvent was not used as a parameter during modeling. 

The modified Adachi-lu model was assessed as the 

second best with root mean square error and mean 

absolute error of 0.81 and 0.66, respectively. The 

generalized reduced gradient nonlinear regression 

method was employed to obtain the coefficients of the 

investigated models. The coefficients and the computed 

statistical results of the models are tabulated in Table 4-2 

and Table 4-3, respectively

Sl. No Model 
Constants 

A0 A1 A2 A3 A4 A5 

1 Sodeifian 0.00000000 0.00122297 0.31395470 1.06949312 0.00000000 0.00000000 

2 Chrastil 0.66979881 0.01002547 0.00000000 - - - 

3 Mendez-Teja -0.00001000 -0.00001000 0.00050000 - - - 

4 Kumar-Johnston 0.00000100 0.02500000 -0.00100000 - - - 

5 Garlapati-Madras 0.00000000 0.00117374 0.41996382 0.00000000 0.31953855 - 

6 Bian 0.00100000 -0.00125600 0.00000000 0.34070671 8.70164889 - 

7 Jouyban 0.00650000 0.10000000 0.00332250 -0.85200000 0.33256800 0.66979358 

8 Adachi-Lou 0.00650004 0.10000724 0.00332251 0.00000000 0.00000000 - 

9 Sung-Shim 0.66938901 0.00137131 -0.00002000 -0.10000000 - - 

10 Jafari Nejad 0.01250000 0.00524500 0.50000000 0.77142091 - - 

11 Keshmiri -0.10000000 0.00000000 0.00069883 0.66946426 0.00137151 - 

12 Khansary 0.00000000 -0.98000000 0.00000000 0.77142067 0.00001372 - 

Table 4-2: List of coefficients computed by regression for the studied semi empirical model 

Sl. No Model MAE MSE RMSE 

1 Sodeifian 1.26 2.39 1.54 

2 Chrastil 1.66 4.44 2.10 

3 Mendez-Teja** 0.076 0.008 0.09 

4 Kumar-Johnston 2.48 8.20 2.86 

5 
Garlapati-

Madras 
1.28 2.41 1.55 

6 Bian 1.26 2.54 1.59 

7 Jouyban 1.68 4.5 2.14 

8 Adachi-Lou 0.78 0.66 0.81 

9 Sung-Shim 1.67 4.14 2.03 

10 Jafari Nejad 1.68 4.37 2.09 

11 Keshmiri 1.67 4.15 2.039 

12 Khansary 1.66 3.88 1.97 

Table 4-3: Statistical indices pertaining to the analyzed semi-empirical models. MAE: Mean Absolute Error; MSE: 

Mean Square Error; RMSE: Root Mean Square Error.



Optimum parameter settings and estimation of 

crossover pressure.  

The performed Grey relational analysis predicted 

optimum values of the adjustable experimental 

parameters during SCCO2 extraction of the investigated 

dyes in the sample. The range of predicted optimum 

parameter values of temperature and pressure with 

higher the better solubility characteristics corresponding 

to the top five ranks are 353.2 K to 373.2 K and 25 MPa 

to 26.1 MPa, respectively. These are general settings that 

yield maximum dye solubility and are not dye-specific. 

The dye-specific range of parameters and the resultant 

dye-specific solubility from the experimental data 

(illustrated in Figure 4-5) was used to better understand 

the overview of their effect on solubility. 
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Figure 4-5: Parameter profile violin plots illustrating the 

dye specific ranges of temperature, pressure and 

solubility. 

The cross-over pressures of the individual dyes were 

estimated from solubility v/s pressure isotherm plots of 

individual dyes, and the obtained data is tabulated in 

Table 4-4. Thermodynamically, the crossover region of 

a solute in supercritical CO2 is estimated by using the 

equation criteria (10).  

(∂(ln(y))/ ∂T)P = 0 at P = PL, P = PU. 

 
(10) 

Three anthraquinone dyes, Quinizarin, Disperse Blue 60 

and Disperse Red 60, displayed a generalized crossover 

pressure region ranging from 16 MPa to 24 MPa. 

Likewise, three azo dyes, Disperse Blue 79, Disperse 

Orange 3, and 4-(N, N-Diethylamino)-4'-

Nitroazobenzene displayed a generalized crossover 

region ranging from 9 MPa to 20 MPa. The crossover 

region of Solvent Brown 1 (Azo class) dye could not be 

estimated from the range of the recorded data. Finally, 

the generalized crossover pressure region of Disperse 

Yellow 54 (Quinoline class) dye ranged from 15 MPa to 

20 MPa.  The isotherms are depicted in Figure 4-6.  
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Figure 4-6: Dye specific isotherm plots that illustrate 

crossover points (*). 

Experimental studies conducted on Phenanthrene 

deposition/recrystallization by Esmaeilzadeh et al., in a 

tri-solute system report that Phenanthrene can be 

selectively purified from a tri-solute mixture by fixing 

the pressure (isobaric) in the cross-over region of other 

constituent solutes and by gradually increasing the 

temperature [52]. Likewise, upon fixing the pressure 

between 9 MPa (PL (Azo)) to 16 MPa (PL 

(Anthraquinone) (empirically determined error factor 

should be considered if any solute-solute interactions 

cause changes in the crossover region) and by gradually 

increasing the temperature (353.2 K to 373.2 K), 

Anthraquinone and Azo dyes could be selectively 

purified from their mixtures (Anthraquinone + Azo) as 

only one dye solute class (Anthraquinones in this case) 

would be relatively more soluble in SC-CO2  at 

((∂(ln(y))/ ∂T)P > 0; ∀ 0 < PAnthraquinone < PL). 

Further, for sustainable single solute dye extraction in 

SC-CO2, isobaric increase in temperature (353.2 K to 

373.2 K) while the pressure is fixed at  ((∂(ln(y))/

∂T)P > 0; ∀ 0 < PSolute < PL) would yield maximum 

solubility with minimum resource consumption. The 

identified retrograde zones of the individual dyes are 

tabulated in Table 4-4. 

Dye Class LCP UCP 

4-(N, N-

Diethylamino)-4'-

Nitroazobenzene 

SAC 9-10 18 

Disperse Blue 79 SAC 18 22 

Disperse Blue 60 A 21 24 

Disperse Orange 3 SAC 14-15 19.5 

Disperse Red 60 A 16 18 

Disperse Yellow 54 Q 15 20 

Quinizarin A 17 18.3 

Solvent Brown 1 SAC Unclear Unclear 



Table 4-4: List of Dyes, their classes and their 

respective crossover pressures. SAC: Single Azo class; 

A: Anthraquinone; Q: Quinoline class; LCP: Lower 

Crossover Pressure; UCP: Upper Crossover Pressure. 

5 Conclusions 

Based on the outcomes of the present investigations, the 

following conclusions were drawn. A generalized, 

properly fit, robust feed-forward artificial neural network 

model was developed using a backpropagation based 

Levenberg-Marquardt algorithm on a qualitatively 

diverse sample of three anthraquinone dyes, four azo 

dyes and one quinoline dye for modeling their solubility 

in supercritical carbon-di-oxide with ethanol as the fixed 

co-solvent. The optimized neural network architecture 

was realized to be composed of 7 hidden neurons (7-7-

1). The mean absolute error, mean square error, root 

mean square error and Nash-Sutcliffe coefficient was 

computed to be 0.026, 0.0016, 0.04 and 0.9588, 

respectively. The coefficient of determination (R2) for 

training, validation, and testing were computed to be 

0.983, 0.980, and 0.958, respectively. Among the twelve 

investigated semi-empirical models, the Mendez-Teja 

model was found to be the best for predicting solubility 

in supercritical carbon-di-oxide for the prepared sample 

of dyes. The root mean square error and mean absolute 

error were computed to be 0.094 and 0.0088, 

respectively. Grey relational analysis with higher the 

better dye solubility as the performance characteristic 

was employed to identify the optimum regime of 

parameter settings for maximized dye solubility. 

Retrograde solubility interference was observed, and the 

individual (dye-specific) crossover pressure range was 

identified. Selective purification of dyes in a multi-solute 

system using supercritical carbon-di-oxide extraction has 

been discussed based on the identified parameter 

regimes. 
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