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Abstract 

The coronavirus disease (COVID-19) pandemic caused by a severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide recently, leading to 

a global social and economic disruption. Although the emergently approved vaccine 

programs against SARS-CoV-2 have been rolled out globally, the number of COVID-19 

daily cases and deaths has remained significantly high. Here, we attempted to 

computationally screen for possible medications for COVID-19 via rapidly estimate the 

highly potential inhibitors from an FDA-approved drug database against the main 

protease (Mpro) of SARS-CoV-2. The approach combined molecular docking and fast 

pulling of ligand (FPL) simulations that were demonstrated to be accurate and suitable 

for quick prediction of SARS-CoV-2 Mpro inhibitors. The results suggested that twenty-

seven compounds were capable of strongly associating with SARS-CoV-2 Mpro. Among 

them, the seven top leads are daclatasvir, teniposide, etoposide, levoleucovorin, 

naldemedine, cabozantinib, and irinotecan. The potential application of these drugs in 

COVID-19 therapy has thus been discussed.  
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docking; potential inhibitors; SARS-CoV-2 Mpro  

Introduction 

The ongoing mortal pneumonia disease (COVID-19) caused by a severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has unstoppably spread globally 

since its first identification in December 2019. In March 2020, the World Health 

Organization (WHO) classified the COVID-19 outbreak as "Global Pandemic" [1]. The 

transmission rate of the viral infection is extremely high [2] while the fatality rate ranges 

from 1% to 12% [3]. Recently, the COVID-19 disease has affected 221 countries and 

territories around the world with approximately 112 million reported cases and 2.5 million 

mortality [4]. 

SARS-CoV-2 has a single-stranded positive-sense RNA genome with a length of 

approximately 29.9 kb [5, 6]. The viral genome is composed of 11 open reading frames 

coding for more than 20 different proteins. Among them, the SARS-CoV-2 main protease 

(Mpro), one of the most important proteins during the viral translation, is required to 

digests polyproteins at eleven or more conserved cleavage sites to produce various 

functional proteins [7]. The polypeptides generated are critical for the viral transcription 

and replication during its infection. The SARS-CoV-2 Mpro is well conserved in the 

Coronaviridae family [8] while its closely related homologs in humans have lacked. These 

characteristics cause Mpro one of the most interesting targets for the selection of antiviral 

drugs to restrain the SARS-CoV-2 growth and replication [9]. Consequently, multiple 

investigations have been done to define the promising inhibitors of this protease [7, 10-

15]. 

Nowadays, the computer-aided drug design (CADD) approach has been broadly 

shown to remarkably save time and cost in the development of a new medication [16, 17]. 

In CADD, the ligand-binding free energy ∆𝐺 of an inhibitor with the targeted protein can 

be accurately predicted via molecular dynamics (MD) simulations [16, 18]. Accordingly, 

rapidly and precisely estimating the ligand-binding free energy is extremely essential for 

identifying potential inhibitors [19-21]. Previously, the fast pulling of ligand (FPL) 
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simulations was shown to effectively and accurately estimate the relative binding affinities 

of small molecules against HIV-1 protease or CHK1 with an affordable CPU time 

consumption [22, 23]. It is worthy to mention that the computational combination of 

molecular docking and the FPL approach was validated on available inhibitors of SARS-

CoV-2 Mpro and showed good agreement between calculated binding free energies and 

experimental values [12, 13, 24]. In this study, the possible inhibitors of SARS-CoV-2 

Mpro were screened from FDA-approved drugs using a combination of molecular docking 

and the FPL simulations. The results revealed that twenty-seven compounds could 

interact with high affinity to SARS-CoV-2 Mpro. These compounds thus become potential 

candidates for drugs against the COVID-19 disease effectively. 

Materials and Methods  

Structure of SARS-CoV-2 Mpro and Ligands  

The crystal structure of SARS-COV-2 Mpro in monomeric form (6Y2F) was 

downloaded from the Protein Data Bank [10]. The structure of ligands was obtained from 

the ZINC15 sub-database named FDA-approved drugs [25]. 

Molecular Docking Simulations  

The Autodock Vina version 1.1 package was utilized to dock the screened ligands 

to the SARS-CoV-2 Mpro [26]. The parameters of the molecular docking simulations were 

prepared by AutodockTools 1.5.6 [27] following the earlier studies [12, 28]. In detail, the 

exhaustiveness parameter of global searching that corresponds to the accuracy of the 

docking simulation was defined as 8 which represents default options. The atomic 

charges of protein and ligands were anticipated using the Gasteiger–Marsili approach 

[29, 30]. The protein and ligands were emblemed by a united atom model with explicit 

polar hydrogens [31]. The maximum energy difference between the worst and best 

docking modes was set to 7 kcal/mol. The grid center of Vina docking was selected as 

the center of mass of compound α-ketoamide 13b, which was obtained using the 

experimental pose [10]. The highest binding affinity profiles were chosen as the best 

docking conformation. The docking grid was determined as 2.6 × 2.6 × 2.6 nm which is 

able to accommodate the whole targeted active site [12-14, 24].  



Molecular Dynamics Simulations 

We used the GROMACS version 5.1.5 [32] to simulate the conformation change 

of the complex SARS-CoV-2 Mpro and ligand. The protein and ions were parameterized 

using the Amber99SBILDN force field [33]. The water molecules were topologized via the 

TIP3P water model [34]. The general Amber force field (GAFF) [35] was applied to 

represent the ligand using AmberTools18 [36]. Combining the AMBER99SB-ILDN force 

field and water model provides one of the best options to estimate the free energy [37, 

38]. The restrained electrostatic potential (RESP) method [39] was used to fit the ligand 

atomic charges based on density functional theory (DFT) calculations using the 

combination of the B3LYP functional and 6-31G(d,p) basis set. The AMBER force field 

format was transformed to GROMACS using the ACPYPE protocol [40]. The time steps 

of MD simulations were set to 2 fs. MD simulations were carried out with an integrator at 

the absolute temperature of 300 K controlled by V-rescale. The 0.9 nm cutoff was applied 

to the non-bonded atoms pair list. The steepest descent method was initially applied to 

the complex of SARS-CoV-2 Mpro and inhibitor to minimize the system. To relax the 

system, the 0.1 ns of NVT and 2.0 ns of NPT simulations were computed. During the NVT 

and NPT ensembles, the 𝐶𝛼 atoms of SARS-CoV-2 Mpro were positionally restrained by 

a small harmonic force of 1,000 kJ/mol/nm2. The solvated complexes were recorded 

every 10 ps over MD simulations. 

Fast Pulling of Ligand Simulations 

The last snapshot of NPT simulations was then applied as the starting 

conformation of the steered-MD (SMD) simulation [22]. The complex of SARS-CoV-2 and 

ligand was covered into a rectangular periodic boundary conditions box (9.83 × 5.92 × 

8.70 nm) [12, 24, 41]. More than 50,000 atoms including SARS-CoV-2 Mpro, ligand, water 

molecules and counter-balanced ions Na+ were involved in the simulated system. To pull 

the ligand out of the binding site in SARS-CoV-2 Mpro, an external harmonic force 𝐹 =

𝑘(𝑣𝑡 − 𝑧) along the Z-axis was applied on the center of mass of the ligand in the complex 

system (a spring constant of the cantilever of 𝑘 = 0.005•nm•ps-1, pulling speed of 𝑣 = 600 

kJ•mol-1•nm-2, and z is the displacement of the ligand mass center from its initial position) 

[24, 41-43]. The work of external force 𝑊 is calculated according to the following equation:  



𝑊 = 𝑣 ∫ 𝐹(𝑡)𝑑𝑡 
𝑡

0
 (1) 

During SMD simulations, the solvated complex systems were recorded the external 

pulling force and the ligand displacement every 0.1 ps for the estimation of the ligand-

binding affinity [22]. For better sampling, 8 non-equilibrium MD simulation trajectories 

were independently conducted for each ligand-Mpro complex beginning with the same 

initial crystal structure but different random velocities. The mean external work 〈𝑊〉 was 

averaged from 8 SMD trajectories for each complex. 

Analyzed Tools  

To predict the ligand protonation state, the Chemicalize tools 

(www.chemicalize.com), a website application of the ChemAxon, were utilized. A 

hydrogen bond is defined if the angle of an acceptor (A)–hydrogen (H)–donor (D) is larger 

than 135° with the distance from A to D is smaller than 0.35 nm. A sidechain contact is 

determined if the distance between non-hydrogen atoms of SARS-CoV-2 Mpro and the 

ligands is smaller than 0.45 nm. The interaction between the SARS-CoV-2 Mpro protein 

and the ligand was illustrated by LigPlot+ software [44]. 

Results and Discussion 

Molecular Docking Simulation  

The SARS-CoV-2 Mpro in monomeric form can be used as a target for CADD to 

prevent the function of SARS-CoV-2 Mpro [12, 13, 24]. Autodock Vina [45], an open-

source docking package, is one of the most popular docking protocols to rapidly estimate 

the binding affinity and binding pose of the protein and ligand complex. To validate the 

suitability of the approach, Autodock Vina was first applied to dock 21 SARS-CoV-2 Mpro 

inhibitors that have been confirmed experimentally. As was expected, the approach 

formed appropriate results for calculating the ligand-binding affinities of SARS-CoV-2 

(Table 1) with a correlation coefficient correlation of 𝑅Dock = 0.66 ± 0.12 (Figure 1), which 

is in good agreement with the recent work [41]. Additionally, the root-mean-square error 

(RMSE) concerning practical data was calculated as 𝑅𝑀𝑆𝐸 = 0.83 ± 0.19 kcal mol-1. Noted 

that the results reported are consistent with the earlier studies [13, 14].  



Table 1. The binding affinity values of verified SARS-CoV-2 Mpro inhibitors obtained via 

the docking simulations. 

No Inhibitor 𝜟𝑮𝑫𝒐𝒄𝒌
𝒂 𝜟𝑮𝒆𝒙𝒑

𝒃 

1 11a -9.96 -7.60 

2 11b -10.13 -7.20 

3 11r -9.23 -6.90 

4 13a  -7.70 -6.80 

5 13b -8.45 -6.70 

6 Carmofur  -7.86 -6.60 

7 Disulfiram  -6.89 -6.10 

8 Ebselen  -8.45 -5.70 

9 PX-12 -6.39 -5.60 

10 Shikonin -6.58 -3.90 

11 Tideglusib -7.95 -3.80 

12 Digitoxin -9.09 -8.00 

13 Oubain -9.6 -7.20 

14 Remdesivir -6.96 -6.40 

15 Oxyclozanide -7.44 -6.30 

16 Ebastine -7.06 -6.10 

17 Toremifene -7.46 -5.90 

18 Hexachlorophene -8.28 -5.70 

19 Chloroquine -6.74 -5.60 

20 Triparanol -7.05 -5.50 

21 Favipiravir -4.52 -4.80 

aThe docking scores ∆𝐺Dock were obtained via the Autodock Vina package.  

bThe experimental binding free energy ∆𝐺exp was roughly identified using the reported 

values [46] of inhibition constant IC50 with an assumption that IC50 is equal to 𝑘i. The unit 

is in kcal mol-1. 



 

Figure 1. Correlation between molecular docking and experiment. The calculated errors 

are the standard error. 

Based on the above results, the binding affinities between the SARS-CoV-2 Mpro 

and the screened ligands were first predicted via Autodock Vina. The docking results 

revealed that the calculated binding free energies for all computed complexes varied from 

-2.4 to -9.2 kcal mol-1. The average of binding free energies obtained of -5.99  kcal mol-1 

with the standard error of the mean of 1.08 kcal mol-1. Based on the results, 27 top-lead 

ligands having the binding energy with SARS-CoV-2 Mpro more negative than -8.1 kcal 

mol-1 (Table 2) were chosen to be further examined by the FPL simulations.  

Table 2. Twenty-seven top-lead compounds obtained by docking and FPL simulations 

No Name 
 

ZINC ID Affinity 
Energy 

 

Average force 
(pN) 

Average 
Work 

(kcal/mol) 

Predicted 

∆𝑮
𝐏𝐫𝐞
𝐅𝐏𝐋

 

1 Indocyanine green acid form ZINC000008101127 -8.6 861.75 ± 42.65 94.55 ± 5.76 -10.81 

2 Daclatasvir ZINC000068204830 -8.1 590.59 ± 39.59 85.57 ± 6.52 -10.3 

3 Teniposide ZINC000004099009 -8.4 636.29 ± 28.39 71.74 ± 3.17 -9.53 

4 Etoposide ZINC000003938684 -8.1 652.51 ± 37.03 67.02 ± 4.55 -9.27 

5 Levoleucovorin ZINC000009212427 -8.1 610.87 ± 12.16 66.36 ± 1.89 -9.23 

6 Naldemedine ZINC000100378061 -8.2 648.26 ± 36.79 66.14 ± 3.12 -9.22 

7 Cabozantinib ZINC000070466416 -8.1 621.70 ± 28.96 62.88 ± 2.86 -9.03 

8 Irinotecan ZINC000001612996 -9 625.12 ± 41.31 62.15 ± 4.92 -8.99 

9 Azilsartan medoxomil ZINC000014210642 -8.2 550.68 ± 22.92 58.67 ± 3.46 -8.8 

10 Ergotamine ZINC000052955754 -8.4 576.51 ± 25.68 58.63  ± 2.61 -8.8 



11 Cromolyn ZINC000253632968 -8.1 551.18 ± 37.07 55.90 ± 5.61 -8.64 

12 Glecaprevir ZINC000164528615 -8.5 551.22 ± 40.48 55.54 ± 3.99 -8.62 

13 Dolutegravir ZINC000058581064 -8.2 559.65 ± 24.05 55.05 ± 2.07 -8.59 

14 Saquinavir ZINC000029416466 -8.1 514.50 ± 31.70 54.97 ± 5.12 -8.59 

15 Dihydroergotamine ZINC000003978005 -8.7 543.99 ± 42.88 54.42 ± 5.10 -8.56 

16 Accolate ZINC000000896717 -8.7 498.69 ± 32.54 52.91 ± 4.84 -8.47 

17 Lumacaftor ZINC000064033452 -8.5 528.13 ± 36.91 50.37 ± 3.87 -8.33 

18 Lifitegrast ZINC000084668739 -8.3 521.70 ± 22.03 49.47 ± 2.43 -8.28 

19 Doxazosin ZINC000094566092 -8.1 524.16 ± 17.71 48.82 ± 2.18 -8.25 

20 Rifaximin ZINC000169621200 -8.3 530.94 ± 42.43 45.23 ± 5.55 -8.04 

21 Ceftaroline ZINC000003989268 -8.2 420.93 ± 53.33 44.59 ± 5.96 -8.01 

22 Dutasteride ZINC000003932831 -8.1 499.62 ± 22.11 43.85 ± 2.42 -7.97 

23 Imatinib ZINC000019632618 -8.3 474.81 ± 16.15 43.26 ± 3.02 -7.93 

24 Raltegravir ZINC000013831130 -8.1 487.90 ± 22.66 43.05 ± 1.93 -7.92 

25 Trypan blue ZINC000169289767 -9.2 409.97 ± 45.04 41.79 ± 7.06 -7.85 

26 Nilotinib ZINC000006716957 -8.5 486.41 ± 26.65 39.98 ± 2.79 -7.75 

27 Regorafenib ZINC000006745272 -8.3 425.92 ± 16.90 37.54 ± 2.99 -7.61 

Docking binding pose 

To investigate the binding interaction between the 27 top-lead compounds and 

SARS-CoV-2 Mpro, a detailed analysis of their possible docked conformation was 

performed to explore their interaction with the SARS-CoV-2 Mpro-binding pocket. 

Accordingly, the preferential binding pose of top-lead drugs obtained by docking 

simulations in the complex with SARS-CoV-2 Mpro was determined. The detailed 

interaction of SARS-CoV-2 Mpro and the full top-lead compounds are illustrated in Table 

S1. In particular, Figure 2 shows the particular binding of representative drugs including 

daclatasvir, teniposide, etoposide, and levoleucovorin with SARS-CoV-2 Mpro. Note that 

the substrate-binding site of SARS-CoV-2 Mpro resides in a cleft between domain I and 

domain II [10, 47]. The obtained results suggest that the top-lead drugs identified by the 

docking method bind to the substrate-binding cleft of SARS-CoV-2 Mpro via different 

hydrogen bonds (HBs). These compounds establish the sidechain interactions with a set 

of critical residues, including Thr26, His41, Leu141, Gly143, Ser144, Cys145, His163, 

Glu166, and Gln189, of SARS-CoV-2 Mpro. It should be noted that His41 and Cys145 

reside in the Cys-His catalytic dyad and Glu166 is essential for dimerization of SARS-

CoV-2 Mpro [7, 10]. 



 

Figure 2. The detailed interactions between SARS-CoV-2 Mpro and four drugs obtained 

via molecular docking simulations are illustrated by the LigPlot++ program [44]. Residues 

of SARS-CoV-2 Mpro forming HBs and sidechain interactions with ligands are indicated 

in green and black, respectively. Atoms of carbon, oxygen, nitrogen, and sulfur are 

presented in black, red, blue, and yellow, respectively. 



FPL simulation 

The molecular docking simulations were performed with numerous limitations such 

as inflexible receptor and small number trial positions of inhibitors, the MD/SMD 

simulations were thus executed to refine the outcomes  [48, 49]. In this context, the FPL 

simulations were manipulated to re-rank the ligand-binding affinity to the SARS-CoV-2 

Mpro since the approach successfully formed an appropriate outcome compared with the 

respective experiments, 𝑅 = 0.76 [13]. During MD/SMD calculations, the complexes were 

first relaxed to the equilibrated states. The clustering method was then employed to 

estimate the stabilized structures of the complexes of SARS-CoV-2 Mpro and ligands with 

an all-atom root-mean-square deviation (RMSD) cutoff of 3.0 Å. The dominant 

conformations of the top-lead compounds in the complex with SARS-CoV-2 Mpro are 

depicted in Table S2. Since changing from the implicit solvent environment (docking 

results) to the explicit solvent modeling (MD simulations), the complex structures were 

slightly refined with an averaged RMSD between the initial and MD refine of ligands of 

ca. 2.0 Å. The structural changes of representative compounds are described in Figure 

3.  Although the value of RMSD is small, implying the success of the docking calculation, 

some charged groups of the ligands were also rotated and then formed HBs to the 

receptor. The shifts are small but important, resulting in the difference of the affinity 

ranking order of ligands (cf. Table 2). 

Over the FPL simulations, the maximal value of external force called rupture force 

and the pulling work averaged from 8 independent SMD simulation trajectories were both 

used as criteria to rank the ligand affinity. However, the pulling work is more appropriate 

than the rupture force because it directly associates with the ligand-binding free energy 

via isobaric−isothermal Jarzynski’s equality [22]. The average of pulling forces of all 

complexes between SARS-CoV-2 and tested ligands in a time-dependent manner is 

shown in Table S3. The obtained results indicated that the mean rupture forces ranged 

from 409.97 ± 45.04 (trypan blue free acid) to 861.75 ± 42.65 (indocyanine green acid 

form) pN with the average value of 552 ± 31.4 pN (Table 2). The pulling work was shown 

to be a key factor representing the binding of ligands and the protein [22, 23]. According 

to FPL calculations, the average pulling works of the tested 27 compounds fell within a 



range of 37.54 ± 2.99 (regorafenib) to 94.55 ± 5.76 (indocyanine green acid form) 

kcal•mol-1 with the mean value of 55.94 ± 3.02 kcal•mol-1 (Table 2).  

Every complex of SARS-CoV-2 Mpro and ligand was computed over 8 

independent FPL simulations which initiated from the same conformation but different in 

random velocity. One FPL trajectory consists of 0.1 ns of NVT, 2.0 ns of NPT, and 0.5 ns 

of SMD simulations. Totally, 20.8 ns of MD simulations were computed to evaluate the 

ligand-binding affinity with SARS-CoV-2 Mpro. The binding affinity of a ligand to the 

SARS-CoV-2 Mpro can thus be simulated 8 times during approximately 6 hours. 

Consequently, without the requirement of a professional computing system, the low CPU 

consumption allows the precise evaluation of the binding affinity of various compounds 

with SARS-CoV-2 Mpro at an appropriate time. 

 

 

Figure 3. The comparison between MD refined conformations of the complexes and 

docked structures. The MD refined structure was obtained by all-atom clustering with a 

cut-off of 0.3 nm over the last NPT snapshots. (A) is the daclatasvir complex; (B) is the 



teniposide system; (C) is the etoposide complex; (D) is the levoleucovorin system. Both 

receptors and ligands obtained from docking are displayed in green. 

Recently, the FPL calculations have been proved to adopt a good agreement with 

the experimental data for SARS-CoV-2 Mpro and its inhibitors [12, 13, 41]. The estimated 

binding free energies ∆𝐺
Pre
FPL

 between top-lead ligands and SARS-CoV-2 Mpro were thus 

calculated in the same way as in the previous study [13]. The obtained results are shown 

in Table 2. The ligand with the predicted ∆𝐺
Pre
FPL

 more negative than -9.0 kcal•mol-1 is thus 

strongly expected to be capable of inhibiting the function of the SARS-CoV-2 Mpro 

protein. Noted that indocyanine green acid form is a fluorescent dye used in medical 

diagnostics as an indicator substance in cardiac, circulatory, hepatic, and ophthalmic 

conditions [50] which might not be suitable to serve as a drug for COVID-19 treatment. 

Consequently, seven approved drugs including daclatasvir, teniposide, etoposide, 

levoleucovorin, naldemedine, cabozantinib, and irinotecan were predicted as the very 

promising inhibitors of SARS-CoV-2 Mpro in practice due to their high binding affinities 

calculated (Table 2).  

The most potential inhibitors of SARS-CoV-2 Mpro identified 

The 2D structures of 7 top-lead ligands of SARS-CoV-2 Mpro ranked by the FPL 

simulations are illustrated in Figure 4. Except for levoleucovorin and cabozantinib of which 

molecular structures are considered as flexible, the other 5 compounds possess the rigid 

structure and thus, lacking molecular flexibility. However, the substrate-binding cleft on 

the surface of SARS-CoV-2 Mpro is expected to be flexible to sizably accommodate a 

broad type of compound [14]. Importantly, all of the 7 top-lead inhibitors predicted have 

many sites to form intermolecular HBs with the protein, hence being able to strongly 

interact with SARS-CoV-2 Mpro.  



 

Figure 4. 2D structure of potential inhibitors for SARS-CoV-2 Mpro predicted by 

molecular docking and FPL simulations from the ZINC15 sub-database named FDA-

approved drugs. 

Daclatasvir belonging to a valine and derivatives group is a direct-acting antiviral 

agent against Hepatitis C Virus (HCV), a positive-sense single-stranded RNA virus [51]. 

Previously, the anti-HCV drug was shown to be effective in the treatment of Middle East 

Respiratory Syndrome (MERS) coronavirus [52]. Therefore, anti-HCV drugs are expected 

to express a common antiviral activity against human coronaviruses. From our 

calculation, daclatasvir showed the highest affinity to SARS-CoV-2 Mpro among tested 

compounds (cf. Table 2) via forming HBs with a critical residue Glu166 and other 

residues, namely Thr21 and Thr26 (Figure 2). Notably, it was shown that the combined 

use of sofosbuvir and daclatasvir improved the survival and clinical recovery of COVID-

19 patients with modest to intense symptoms [53]. The introduction of sofosbuvir and 

daclatasvir to standard care could reduce the hospitalization time for COVID-19 patients 

in comparison to standard care alone [54, 55]. These results indicated that daclatasvir is 

very promising in the treatment of COVID-19 patients and that our approach successfully 

selected the practically potential drug for COVID-19 therapy. 



It is believed that both virus-infected and cancer cells require the elevation of 

nucleic acids and protein synthesis and energy metabolism. Thus, drugs inhibiting cancer 

cells can be effective in the suppression of viral replication. Indeed, different 

antineoplastic agents re-purposed for COVID-19 therapy have been applied for early 

clinical trials [56, 57]. Etoposide and teniposide are anticancer drugs for the treatment of 

several types of tumors, leukemia, and lymphoma [58]. Etoposide and teniposide are both 

semisynthetic analogs of podophyllotoxin. They share a similar basic structure of the 

parent podophyllotoxin while the carbohydrate moiety of a methyl group in etoposide is 

substituted for a thenylidene group in teniposide [58], inducing a slight difference in 

binding affinities to SARS-CoV-2 Mpro (cf. Table 2). These two compounds are estimated 

to establish HBs with key residues Cy145 and His41 and residue Thr26 (Figure 2). 

Teniposide possesses a logP value of 2.78 (DrugBank, Accession Number DB00444) 

while etoposide has a lower logP value of 1.16 (DrugBank, Accession Number DB00773). 

These values are in the optimal range of 1 to 3 for a compound to achieve appropriate 

physicochemical characteristics [59]. However, teniposide which is predicted to have a 

higher affinity to SARS-CoV-2 Mpro has better membrane permeability. Irinotecan is 

indicated for colorectal and pancreatic cancer treatment or combined with cisplatin for the 

cure of small cell lung cancer [60-62]. The Sn38 moiety is believed to mainly impact the 

high binding affinity of irinotecan to SARS-CoV-2 Mpro [14]. The compound is predicted 

to form HBs with residues Thr24 and Thr26 of SARS-CoV-2 Mpro (Table S1). Irinotecan 

(DrugBank, Accession Number DB00762) has a similar logP value and molecular weight 

to teniposide, indicating a comparable membrane permeability. In general, these three 

anti-cancer drugs are highly promising in the treatment of COVID-19. 

Levoleucovorin, a folate analog, is utilized in rescue therapy to recover cells from 

the toxic effects of folate antagonists such as methotrexate after high-dose treatment in 

osteosarcoma therapy [63]. Naldemedine is an opioid receptor antagonist and used for 

the treatment of opioid-induced constipation [64]. Levoleucovorin and naldemedine share 

similar estimated binding affinities to SARS-CoV-2 Mpro (cf. Table 2). While naldemedine 

is predicted to form HBs with residues Thr24 and Ser46 (Table S1), levoleucovorin is 

expected to establish several HBs with both critical residues Cys145 and Glu166 and 

other residues including Leu141, Gly143, Ser144, and Thr190 (Figure 2). Nevertheless, 



levoleucovorin is hydrophilic with a low logP value of -2.8 (DrugBank, Accession Number 

DB11596), pointing out that the compound is not suitable as a drug for COVID-19 

treatment. Meanwhile, naldemedine shows a logP value of 2.43, indicating its good ability 

to be transported through a cellular membrane. 

Cabozantinib suppresses metastasis and oncogenesis by inhibiting receptor 

tyrosine kinases [65]. Recently, several kinase inhibitors have been re-purposed for 

COVID-19 therapy [66, 67]. The molecular structure of cabozantinib is not too bulky, 

flexible, and contains Fluoro, an element that can be found in many bioactive compounds. 

Cabozantinib is predicted to establish HBs with residues Ser46, Gly143 and a key residue 

Glu166 of SARS-CoV-2 Mpro (Table S1). The high logP value 4.66 of cabozantinib 

(DrugBank, Accession Number DB08875) indicating the considerable level of toxicity may 

limit the application of this drug in practical use. 

Conclusion 

Since the COVID-19 pandemic spread throughout the world, several inhibitors of 

SARS-CoV-2 Mpro have been identified experimentally [10, 68]. Based on CADD, various 

computational studies have also been conducted to search for the promising inhibitors of 

Mpro and other critical enzymes of SARS-CoV-2 [12, 13, 69-71]. Previously, a 

combination of molecular docking and FPL simulations was proved to efficiently predict 

the binding affinity of a ligand to SARS-CoV-2 Mpro. In this study, the same approach 

was employed to estimate the promising inhibitors for SARS-CoV-2 Mpro from a set of 

2100 FDA-approved drugs. The binding conformation of the top-lead compounds 

identified with SARS-CoV-2 Mpro was also analyzed. The detailed interactions of the 

seven top-lead drugs including daclatasvir, teniposide, etoposide, levoleucovorin, 

naldemedine, cabozantinib, and irinotecan that have the predicted binding free energies 

with SARS-CoV-2 Mpro less than -9.00 kcal•mol-1 indicated that these drugs all occupied 

the substrate-binding pocket of SARS-CoV-2 Mpro and thus potentially hindered the 

protease activity of the enzyme. These drugs interact with important residues of SARS-

CoV-2 Mpro including Thr26, His41, Leu141, Gly143, Ser144, Cys145, His163, Glu166, 

and Gln189. Further in vitro and in vivo investigations are needed to be performed to 

validate the obtained results. 
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